philipp gegenwart max-planck institute for chemical physics of solids, dresden, germany

48
Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany Experimental Tutorial on Quantum Criticality Reviews on quantum criticality in strongly correlated in strongly correlated electron systems: electron systems: E.g. E.g. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001). G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001). H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, cond-mat/0606317 cond-mat/0606317 Outline of Outline of this talk : : Introduction Introduction Quantum criticality in some antiferromagnetic HF Quantum criticality in some antiferromagnetic HF systems systems First part First part Second part Second part

Upload: george

Post on 31-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Experimental Tutorial on Quantum Criticality. First part. Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany. Reviews on quantum criticality in strongly correlated electron systems: E.g. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Philipp GegenwartMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Experimental Tutorial on Quantum Criticality

Reviews on quantum criticality in strongly correlated electron systems: in strongly correlated electron systems:

E.g.E.g.

• G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001).G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

• H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, cond-mat/0606317H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, cond-mat/0606317

Outline of Outline of this talk::

• IntroductionIntroduction

• Quantum criticality in some antiferromagnetic HF systemsQuantum criticality in some antiferromagnetic HF systems

(mainly those studied in Dresden)(mainly those studied in Dresden)

• Ferromagnetic quantum criticalityFerromagnetic quantum criticality

First partFirst part

Second partSecond part

Page 2: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

T. Westerkamp, J.-G. Donath, F. Weickert, J. Custers, R. Küchler, Y. Tokiwa, T. Radu,

J. Ferstl, C. Krellner, O. Trovarelli, C. Geibel, G. Sparn, S. Paschen, J.A. Mydosh, F.

Steglich

K. Neumaier1, E.-W. Scheidt2, G.R. Stewart3, A.P. Mackenzie4, R.S. Perry4,5,

Y. Maeno5, K. Ishida5, E.D. Bauer6, J.L. Sarrao6, J. Sereni7, M. Garst8, Q. Si9, C. Pépin10

& P. Coleman11

1Walther Meissner Institute, Garching, Germany 2Augsburg University, Germany

3University of Florida, Gainesville FL, USA 4St. Andrews University, Scotland

5Kyoto University, Japan 6Los Alamos National Laboratory, USA

7CNEA Bariloche, Argentina 8University of Minnesota, Minneapolis, USA

9Rice University, Texas, USA 10CEA-Saclay, France

11Rutgers University, USA

Collaborators

Page 3: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

• Lattice of certain f-electrons (most Ce, Yb or U) in metallic environment

• La3+: 4f0, Ce3+: 4f1 (J = 5/2), Yb3+: 4f13 (J = 7/2), Lu3+: 4f14 (6s25d1,l=3)

• partially filled inner 4f/5f shells localized magnetic moment

• CEF splitting effective S=1/2

f-electron based Heavy Fermion systems

T

T* ~ 5 – 50 K

localized moments+

conduction electrons

moments boundin

spin singlets

Page 4: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Microscopic model: Kondo effect (Jun Kondo ´63)

sSJH sd

local moment conduction el

J: hybridization

between local moments

and conduction el.

AF coupling J < 0

lnT

Kondo-minimum

TK

T5

TK: characteristic

„Kondo“-temperature

T < TK: formation of a bound state

between local spin and conduction

electron spin local spin singlet

Page 5: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Anderson Impurity Model

Usffs HHHHH cond.-

elf-el hybridization

Vsf

on-site Coulomb

repulsion Uff

Formation of an (Abrikosov-Suhl) resonance at EF of width kBT*

extremely high N(EF) heavy fermions

Page 6: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Landau Fermi liquid

Lev Landau ´57

Excitations of system with strongly

interacting electrons

Freeelectron gas

1:1correspondence

Page 7: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Magnetic instability in Heavy Fermion systems

Fermi-surface:

Doniach 1977

Page 8: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Itinerant (conventional) scenario

Moriya, Hertz, Millis, Lonzarich, …

g

T

TN

gc

TK

NFL

FLSDW 2/3

00 )/ln(/

32

TT

TTTTC

dd

OP fluctuations in space and timeAF: z=2 (deff = d+z)

Heavy quasiparticles stay intact at QCP, scattering off critical SDW NFL

“unconventional” quantum criticality (Coleman, Pépin, Senthil, Si):

• Internal structure of heavy quasiparticles important: 4f-electrons localize

• Energy scales beyond those associated with slowing down of OP fluctuations

Page 9: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeCu6-xAux: xc=0.1 inelastic neutron scattering

O. Stockert et al., PRL 80 (1998): critical fluctuations quasi-2D !

A. Schröder et al., Nature 407 (2000): E/T

S(q,)T0.75

0T0.75

H/T

1/(q)

T0.75

non-Curie-Weiss behavior

q-independent local !!

CeCu6-xAux

Page 10: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

FLAF

= p, x, B

NFL

T

Thermal expansion = –1/V ∂S/∂p = V-1 dV/dT

Specific heat: C/T = ∂S/∂T

p

E

EVTST

pS

VC molp

T

mol

*

*

1

/

/1~

! QCP at

Itinerant theory: ~ Tz ~ T-1

(L. Zhu, M. Garst, A. Rosch, Q. Si, PRL 2003)

Grüneisen ratio analysis

1

2

3

4

5

6

7

8

9

10

Resolution: < 0.01Ål/l = 10-10 (l = 5 mm)for T 20 mK, B 20 Tesla

Page 11: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Experimental classification:

conventionalconventional

CeNi2Ge2

CeIn3-xSnx

CeCuCeCu22SiSi22

CeCoInCeCoIn55

……

unconventionalunconventional

CeCuCeCu6-x6-xAuAuxx

YbRh2Si2

……

Page 12: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeNi2Ge2: very clean system close to zero-field QCP

P. Gegenwart, F. Kromer, M. Lang, G. Sparn, C. Geibel, F. Steglich, Phys. Rev. Lett. 82, 1293 (1999)

See also: F.M. Grosche, P. Agarwal, S.R. Julian, N.J. Wilson, R.K.W. Haselwimmer,

S.J.S. Lister, N.D. Mathur, F.V. Carter, S.S. Saxena, G.G. Lonzarich, J. Phys. Cond. Matt. 12 (2000) L533–

L540

0 1 2 3T (K)

0.3

0.5

0.5

2.8

3

(cm)

1.51.5

1.401.40

1.371.37

CeNi2Ge2CeNi2Ge2

B (T)B (T)

~ T1/2 ~ T1/2

~ T~ T

TK = 30 K, paramagnetic ground state

Page 13: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

0 1 2 3 4 5 60

2

4

6

8

10

12

14

16

II a

II c

CeNi2Ge

2

(1

0-6K

-1)

T (K)

0 2 40

5

10

-1 0 2 4 6

0

5

10

/ T

(10

-6K

-2)

T (K)

~ aT1/2+bT

CeNi2Ge2: thermal expansion

R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier, O. Tegus, C. Geibel, J.A. Mydosh, F.

Steglich, L. Zhu, Q. Si, Phys. Rev. Lett. 91, 066405 (2003)

~ aT1/2+b In accordance with prediction of itinerant theory

Page 14: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

30 T

dT

T

C

0 1 2 3 4 50.2

0.3

0.4

0.5

B (T) 0

CeNi2Ge

2

C

/ T

(Jm

ol-1

K-2)

T (K)

0 1 2 3 4 50.2

0.3

0.4

0.5

B (T) 0 2

CeNi2Ge

2

C

/ T

(Jm

ol-1

K-2)

T (K)

for T 0

0 1 2 3 4 50.2

0.3

0.4

0.5

0 2 4

100

150

B (T) 0 2

CeNi2Ge

2

C

/ T

(Jm

ol-1

K-2)

T (K)

T (K)

CeNi2Ge2: specific heat

R. Küchler et al., PRL 91, 066405 (2003).

T. Cichorek et al., Acta. Phys. Pol. B34, 371 (2003).

Page 15: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeNi2Ge2: Grüneisen ratio

cr(T) ~ T−1/(z)

prediction:

= ½, z = 2 x = 1 observations in accordance with

itinerant scenario

INS: no hints for 2D critical fluct.

Remaining problem:

QCP not identified (would require

negative pressure)

critical components: cr=(T)−bT

Ccr=C(T)−T

cr = Vmol/T cr/Ccr

0.1 1 5

100

1000

T (K)

cr

0.1 1 5

100

1000

T (K)

cr

cr ~ 1/Tx

with x=1 (−0.1 / +0.05)

Page 16: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Cubic CeIn3-xSnx

N.D. Mathur et al., Nature 394 (1998)

CeIn3

R. Küchler, P. Gegenwart, J. Custers, O. Stockert, N. Caroca-Canales, C. Geibel, J. Sereni, F. Steglich, PRL 96, 256403 (2006)

• Increase of Increase of JJ by Sn substitution by Sn substitution

• Volume change subdominantVolume change subdominant

• TTNN can be traced down to 20 mK ! can be traced down to 20 mK !

Page 17: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeIn3-xSnx

R. Küchler, P. Gegenwart, J. Custers, O. Stockert, N. Caroca-Canales, C. Geibel, J. Sereni, F. Steglich, PRL 96, 256403 (2006)

• Thermodynamics in accordance with 3D-SDW scenarioThermodynamics in accordance with 3D-SDW scenario

• Electrical resistivity: Electrical resistivity: ((TT) = ) = 00 + + AA’’TT, however: large , however: large 00 ! !

Page 18: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeCu6-xMx

C/T ~ log T(universal!)

H.v. Löhneysen et al., PRL 1994, 1996A. Rosch et al., PRL 1997O. Stockert et al., PRL 1998

2D-SDW scenario ?A. Schröder et al., Nature 2000

• E/T scaling in “(q,)

• (q) ~ {T(q)}0.75 for all q locally critical scenario

could we disprove 2D-SDW

scenario thermodynamically?

Page 19: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeCu6-xAgx

0.1 1 50

1

2

3

4

0 0.5 1.00.0

0.5

1.0

CeCu6-x

Agx

x

TN (

K)

CeCu6-x

Agx

x 0.2 0.3 0.4 0.48 0.8

C /

T (

J/m

ole

K2 )

T (K)

E.-W. Scheidt et al., Physica B 321, 133 (2002).

AF

QCP

Page 20: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeCu5.8Ag0.2

0.05 0.1 1 30.5

1.0

1.5

2.0

2.5

3.0

3.5

0.1 1 60

10

20

30

40

50

60

70

ba

/ T

(10

-6K2)

T (K)

B (T) 0 1.5 3 4 5 8

Cel /

T (

J / m

ole

K2 )

T (K)

CeCu5.8

Ag0.2

1

2

3

R. Küchler, P. Gegenwart, K. Heuser, E.-W. Scheidt, G.R. Stewart and F. Steglich, Phys. Rev. Lett. 93, 096402 (2004).

Page 21: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

CeCu5.8Ag0.2

R. Küchler et al., Phys. Rev. Lett. 93, 096402 (2004)

0 1 2 330

60

90

120

150

CeCu5.8

Ag0.2

T (K)

0.1 1 430

60

90

120

Incompatible

with itinerant

scenario!

Page 22: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

YbRh2Si2: a clean system very close to a QCP

P. Gegenwart et al., PRL 89, 056402 (2002).

0.0 0.5 1.0 1.5 2.0 2.50

50

100

150

T*

LFL

NFL

TN

AF

T (

mK

)

B (T)

11 B c Bc

Page 23: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

0.02 0.1 1 20

1

2

3

TN

0.8

B c

0.4

0.2

0.1

B (T) 0 0.025 0.05

YbRh2 (Si

0.95 Ge

0.05 )

2

C

el /

T (

J m

ol -

1 K

-2 )

T (K)

0.02 0.1 1 20

1

2

3

TN

B c

B (T) 0

YbRh2 (Si

0.95 Ge

0.05 )

2

C

el /

T (

J m

ol -

1 K

-2 )

T (K)

0.02 0.1 1 20

1

2

3

TN

B c

B (T) 0 0.025

YbRh2 (Si

0.95 Ge

0.05 )

2

C

el /

T (

J m

ol -

1 K

-2 )

T (K)

=Bc

C/T ~ T-1/3

0(b)

J. Custers et al., Nature 424, 524 (2003)

YbRh2(Si0.95Ge0.05)2

Page 24: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

0.02 0.1 1 100

1

2

a

0 (J

mol

-1 K

-2 )

(B - Bc

) (T)

Stronger than logarithmic mass divergence

~b1/3

b=

0 YbRh2(Si.95Ge.05)2

• stronger than logarithmic mass

divergence incompatible with

itinerant theory

• T/b scaling

FLAF

NFL

T

1

2

J. Custers et al., Nature 424, 524 (2003)

Page 25: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thermal expansion and Grüneisen ratio

0.01 0.1 1 100

1

2

3

4

Cel /

T (

J /

K2 m

ol)

T (K)

0

5

10

15

20

25

YbRh2(Si

0.95Ge

0.05)2

/

T (

10-6

K-2)

0.1 110

100

x = 1

x = 0.7

cr

T (K)

R. Küchler et al.,PRL 91, 066405 (2003)

Prediction: cr(T) ~ T−1/(z)

(L. Zhu, M. Garst, A. Rosch, Q. Si, PRL

2003)

= ½, z=2 (AF) x = 1

= ½, z=3 (FM) x = ⅔

Page 26: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

0.01 0.1 1 100

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.50.1

0.2

0.3

~ T0.6

~ T2

0

B (T)

0.03

0.05

0.065

0.1

0.15

0.4

YbRh2(Si

0.95Ge

0.05)

2

(10-6

m3 m

ol-1)

T (K)

B (T) 0 0.03 0.05 0.065

1(1

06 mol

m-3)

T (K)

AF and FM critical fluctuations

P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, F. Steglich, Phys. Rev. Lett. 94, 076402 (2005).

B // c

Page 27: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Pauli-susceptibility

P. Gegenwart et al., PRL 2005

Page 28: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

29Si – NMR on YbRh2Si2

K. Ishida et al. Phys. Rev. Lett 89, 107202 (2002):

Knight shift K ~ ’(q=0) ~ bulk

Saturation in FL state at B > Bc

Spin-lattice relaxation rate

1/T1T ~ q-average of ’’(q,)

At B > 0.15 T:

Koringa –relation S 1/T1TK2

holds with dominating q=0 fluct.

B 0.15 T: disparate behavior

Competing AF (q0) and FM

(q=0) fluctuations

’’(q,) has a two component

spectrum

Page 29: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Comparison: YbRh2Si2 vs CeCu5.9Au0.1

q

q

q

q

Q

Q

0

CeCu5.9Au0.1

YbRh2Si2

AF and FM quantum critical fluct.

YRS

Spin-Ising symmetry

Easy-plane symmetry

Page 30: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Hall effect evolution

S. Paschen et al., Nature 432 (2004) 881:

P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, J. Phys. Condes. Matter 13 R723 (2001).

Large change of H though tiny ordered!

SDW: continuous evolution of H

Page 31: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thermodynamic evidence for multiple energy scales at QCP

Fermi surface change clear

signatures in thermodynamics

Multiple energy scales at QCP

P. Gegenwart et al., cond-mat/0604571.

Page 32: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Conclusions of part 1

There exist HF systems which display itinerant (conventional)

quantum critical behavior: CeNi2Ge2, CeIn3-xSnx, …

YbRh2Si2: incompatible with itinerant scenario:

- Stronger than logarithmic mass divergence

- Grüneisen ratio divergence ~ T0.7

- Hall effect change

- Multiple energy scales vanish at quantum critical point

QC fluctuations have a very strong FM component:

- Divergence of bulk susceptibility

- Highly enhanced SW ratio, small Korringa ratio, A/02 scaling

- Relation to spin anisotropy (easy-plane)?

Page 33: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Metallic ferromagnetic QCPs ?

Itinerant ferromagnets: QPT becomes generically first-order at low-T

Experiments on ZrZn2, MnSi, UGe2, …

M. Uhlarz, C. Pfleiderer, S.M. Hayden, PRL ´04

D. Belitz and T.R. Kirkpatrick, PRL ´99

1) New route towards FM quantum criticality: metamagnetic QC(E)P e.g. in

URu2Si2, Sr3Ru2O7, …

2) What happens if disorder broadens the first-order QPT?

Page 34: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Layered perovskite ruthenates Srn+1RunO3n+1

n=1: unconventional superconductor

n=2: strongly enhanced paramagnet

(SWR = 10)

metamagnetic transition!

n=3: itinerant el. Ferromagnet

(Tc = 105 K)

n=: itinerant el. Ferromagnet

(Tc = 160 K)

Page 35: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Field angle phase diagram on “second-generation” samples(RRR ~ 80)

020

4060

80100

0

200

400

600

800

1000

1200

1400

5

6

78

Field

[tesla

]

Tem

pera

ture

[mK

]

angle from ab [degrees]S.A. Grigera et al. PRB 67, 214427 (2003)

QCEP @ 8 T // c-axis

Evidence for QC fluctuations: Diverging A(H) at Hc (S.A. Grigera et al, Science 2001)

Page 36: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thermal expansion

P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, Y. Maeno,Phys. Rev. Lett. 96, 136402 (2006)

cHH

c

mol

HHhdP

dH

h

S

P

SV

c

~,with Calculation for itinerant metamagnetic QCEP

Page 37: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Behavior consistent with 2D QCEP scenario

P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, Y. Maeno, Phys. Rev. Lett. 96, 136402 (2006)

Page 38: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thermal expansion on Sr3Ru2O7

Compatible with underlying

2D QCEP at Hc = 7.85 T

=0 marks accumulation

points of entropy

Page 39: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

6.5 7.0 7.5 8.0 8.5 9.0

1.2

1.6

2.1 T (K)

0.1

0.3

0.6

0.9

1.2

0.2

0.4 0.5

0.7 0.8

1.0 1.1

1.3

cm)

B (T)

Dominant elastic scattering Formation of domains!

Fine-structure near 8 Tesla

S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J. Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A.G. Green and A.P. Mackenzie, SCIENCE 306 (2004), 1154.

7.6 7.8 8.0 8.20.0

0.5

1.0

Field (tesla)

T (

K)

Page 40: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Thermodynamic analysis of fine-structure

1) No clear phase transitions2) Signatures of quantum criticality

survive in QC regime

also: 1/(T1T)~1/T @7.9T down to

0.3K!! (Ishida group)

3) First-order transitions have

slopes pointing away from

bounded state

Clausius-Clapyeron:

dT

dHMS c

Enhanced entropy in bounded

regime!

Page 41: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Conclusion Sr3Ru2O7

• Quantum criticality in accordance with itinerant scenario for

metamagentic quantum critical end point (d=2)

• Fine-structure close to 8 Tesla due to domain formation

• Formation of symmetry-broken

phase (Pomeranchuk instability)?

Unlikely because of enhanced entropy

Real-space

phase separation?

(C. Honerkamp, PRB 2005)

liquid

gastwo-phase

Page 42: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Smeared Ferromagnetic Quantum Phase Transition

Theoretical prediction: FM QPT generically first order at T = 0[D. Belitz et al, PRL 1999]

QCEP

Sharp QPT can be destroyed by disorder exponential tail[T. Vojta, PRL 2003][M. Uhlarz et al, PRL 2004 ]

Page 43: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

The Alloy CePd1-xRhx

Orthorhombic CrB structure

CePd is ferromagnetic with TC = 6.6 K CeRh has an intermediate valent ground state

c

Ce

Pd,Rh

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

TC

(K

)

x

Cp,max

M '-ac "-ac

CePd1-x

Rhx

FM High T measurements suggested quantum critical point (dotted red line) Detailed low T investigation: tail

Page 44: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

x = 0.8, = 113 Hz

single crystal

CePd1-xRhx

' (1

0-6

m3

/mo

l)

T (K)

AC Susceptibility in the Tail Region

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

x = 0.8, = 113 Hz

single crystal

CePd1-xRhx

' (1

0-6

m3

/mo

l)

T (K)

B = 0 mTB = 5 mTB = 10 mTB = 15 mT

0.75 0.80 0.85 0.90 0.95 1.000

100

200

300

400

500 CePd1-xRhx

T (m

K)

Rh content x

single crystals polycrystals

= 13 Hz

Crossover transition for x > 0.6indicated by sharp cusps in AC‘ down to mK temperatures

Frequency dependence at low frequencies and high sensitivity on tinymagnetic DC fields no long range order

Maxima of ‘(T) in phase diagram‘(T) in DC field

Page 45: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Spin Glass-like Behavior

0.15 0.20 0.25 0.30 0.35

2.0

2.5

3.0

' (1

0-6m

3/m

ol)

T (K)

13 Hz113 Hz1113 Hz

x=0.85

CePd1-xRhxsingle crystal

0.1 0.4 1 100.0

0.2

0.4

0.6

0.8

1.0

1.2

x = 0.80 x = 0.85 x = 0.87 x = 0.90

CePd1–x

Rhx

C/T

(J/

(mo

l K2 ))

T (K)

Frequency shift (e.g. x=0.85: TC/[TC log()] of 5%)

Spin glass-like behavior

No maximum in specific heatbut NFL behavior for x ≥ 0.85

0.1 0.4 1 100.0

0.2

0.4

0.6

0.8

1.0

1.2

x = 0.85

CePd1–x

Rhx

C/T

(J/

(mo

l K2 ))

T (K)

Page 46: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Grüneisen parameter shows no divergence

Page 47: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

”Kondo Cluster Glass“

Strong increase of TK for x ≥ 0.6 indicated by Weiss temperature P, evolution of entropy and lattice parameters

Possible reason forspin glass-like state:

Variation of TK for Ce ionsdepending on Rh or Pdnearest neighborsleading distribution oflocal Kondo temperatures

”Kondo cluster glass“

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

7

xcr

300

30

CePd1-x

Rhx

TC

(K)

x (Rh conc)

TC from

M(T)

'ac

- He3

C

max

'ac

- He3/He4

100

P (K

)

Page 48: Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany

Conclusion & Outlook

• Classification of different types of QCPs in HF systems

(conventional vs unconventional)

• Importance of frustration in the spin interaction?

• Role of disorder? – e.g.: smearing of sharp 1st order trans.