photoelectrochemistryin organic synthesis

34
Photoelectrochemistry in Organic Synthesis Reporter :Gao Shiquan (高师泉) Supervisor: Prof. Zhang Junliang 2020-12-25 1

Upload: others

Post on 04-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Photoelectrochemistryin Organic Synthesis

Photoelectrochemistry in Organic Synthesis

Reporter :Gao Shiquan (高师泉)Supervisor: Prof. Zhang Junliang

2020-12-25

1

Page 2: Photoelectrochemistryin Organic Synthesis

1. Introduction1.1 Synthetic Organic Electrochemistry

1.2 Visible-Light Photoredox Catalysis

1.3 Photoelectrochemical Organic Synthesis

2. Photoelectrochemical Organic Synthesis 2.1 Electromediated Reaction with Photoredox Catalysis

2.1.1 Oxidation Reaction2.1.2 Reduction Reaction2.1.3 Redox Neutral Reaction

2.2 Electromediated Reaction involving Photo-induced Radical

2.3 Interfacial Photoelectrochemistry

3. Summary and Prospection

2

Contents

Page 3: Photoelectrochemistryin Organic Synthesis

1. Introduction1.1 Synthetic Organic Electrochemistry

1.2 Visible-Light Photoredox Catalysis

1.3 Photoelectrochemical Organic Synthesis

2. Photoelectrochemical Organic Synthesis 2.1 Electromediated Reaction with Photoredox Catalysis

2.1.1 Oxidation Reaction2.1.2 Reduction Reaction2.1.3 Redox Neutral Reaction

2.2 Electromediated Reaction involving Photo-induced Radical

2.3 Interfacial Photoelectrochemistry

3. Summary and Prospection

3

Contents

Page 4: Photoelectrochemistryin Organic Synthesis

IntroductionSynthetic Organic Electrochemistry

4

undivided cell divided cell (“H” cell)

workingelectrode

counterelectrode

power

constant current (cc)constant voltage (cv)

reference electrode

Electrochemical Cells

Modes of Operation

S. R. Waldvogel et al. Chem. Sci., 2020, 11, 12386.

Page 5: Photoelectrochemistryin Organic Synthesis

IntroductionSynthetic Organic Electrochemistry

5

low surface area(graphite Pt)

high surface area(Ni foam RVC)

sacrificial anode (Zn Mg Al)

THF DCM Acetone Methanol MeCN DMA H2O8 9 21 33 38 38 80

more resistance less resistanceε

Electrodes

Solution

P. S. Baran et al. Acc. Chem. Res. 2020, 53, 72.

Page 6: Photoelectrochemistryin Organic Synthesis

- -

+ 2

+

- -

-

n+

- -

-+

Redox-neutralReaction

OxidativeReaction

ReductiveReaction

6

Workingelectrode

Counterelectrode

Counterelectrode

Workingelectrode

Workingelectrode

Workingelectrode

IntroductionSynthetic Organic Electrochemistry

Page 7: Photoelectrochemistryin Organic Synthesis

R. D. Little et al. Chem. Soc. Rev., 2014, 43, 2492. 7

IntroductionSynthetic Organic Electrochemistry

Page 8: Photoelectrochemistryin Organic Synthesis

Mes-AcrIr[dFCF3ppy]2(bpy) Ru(bpy)3 4CzIPN Eosin Y

G. A. Molander et al. ACS Catal. 2017, 7, 2563. 8

Introduction

ReductiveReaction

OxidativeReaction

Redox NeutralReaction

Energy TransferReaction

Visible-Light Photoredox Catalysis

PC

*[PC]

PC-

Ox

Ox•-

sub

sub•+

PC

*[PC]

PC+

subb

suba

subb•-

suba•+

Page 9: Photoelectrochemistryin Organic Synthesis

• energy constrained• energy losses• equivalent oxidizing or reducing agent

• low conductivity of organic solvents • unselective redox processes• limited mediators potential

The limits of PRCThe limits of SOE

9

IntroductionPhotoelectrochemical Organic Synthesis

High selectivity/energy efficiencyAtom efficient Large redox window

redox energyfrom

photoexcitation

redox energyfrom

electrochemistry

Page 10: Photoelectrochemistryin Organic Synthesis

J. P. Barham et al. Angew. Chem. Int. Ed. 2020, 59, 2. 10

IntroductionPhotoelectrochemical Organic Synthesis

NH

S

CN

CN9,10-dicyanoanthracene

(DCA)

phenothiazine (PTZ)

PTZ

PTZ +

*PTZ

MO-1

MO-2

MO-3

HOMO-4

MO-1

MO-2

HOMO-3

SOMO-4

SOMO-1

MO-2

MO-3

HOMO-4

SOMO-1

HOMO-2

SOMO-2

HOMO-1

LUMO-2

HOMO-1

1

1

1

E = +0.70 V

E = 2.23 eV

Imax = 514, 772,864 nm

-e-

h

*E = 2.9 V

DCA

DCA

*DCA

Imax = 450, 480,510 nm

+e-

h

*E = -3.2 V

1

1

1

E = 2.43 eV

E = -0.82 V

E E

electromediatedphotoredox calatlyst (e-PRC)

SOMO-HOMO inversion SOMO-HOMO inversion

Page 11: Photoelectrochemistryin Organic Synthesis

J.-C. Moutet, G. Reverdy. Tetrahedron Lett. 1979, 20, 2389. J.-C. Moutet, G. Reverdy. J. Chem. Soc. Chem. Commun. 1982, 654. 11

IntroductionPhotoelectrochemical Organic Synthesis

PhPh

Ph Ph

Ph

O

Ph Ph

Ph Ph

PTZ (6 mol%)LiClO4

Pt rotating disk voltammetry0.79 V vs SCE

Hg Lamp (<400 nm)MeCN

+

1:1.3 by HPLC

(DPE)NH

S

phenothiazine (PTZ)1 2

H2H+

e-

*TPPD•+

TPPD

TPPD•+

OH

OH OH O

Page 12: Photoelectrochemistryin Organic Synthesis

Contents

1. Introduction1.1 Synthetic Organic Electrochemistry

1.2 Visible-Light Photoredox Catalysis

1.3 Photoelectrochemical Organic Synthesis

2. Photoelectrochemical Organic Synthesis 2.1 Electromediated Reaction with Photoredox Catalysis

2.1.1 Oxidation Reaction2.1.2 Reduction Reaction2.1.3 Redox Neutral Reaction

2.2 Electromediated Reaction involving Photo-induced Radical

2.3 Interfacial Photoelectrochemistry

3. Summary and Prospection

12

Page 13: Photoelectrochemistryin Organic Synthesis

13

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

B. Konig et al. Photochem. Photobiol. Sci., 2010, 9, 1367.B. Konig et al. Chem. Eur. J. 2008, 14, 1854.D. R. Carbery et al. Angew.Chem. Int.Ed. 2015, 54,8997.B. Konig et al. ChemCatChem. 2012, 4, 620.J. C. Gonzalez-Gomez et al. Organic Letters 2019 21 (5), 1368.

Flavin

Page 14: Photoelectrochemistryin Organic Synthesis

B. Konig et al. Chem. Eur. J. 2008, 14, 1854.S. Lin et al. Angew. Chem. Int. Ed. 2020, 59, 409.

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

14

1a: E ≈ 1.5 V1b: E > 1.9 VRFT*: E = 1.67 V

Fluorescence quenching of RFT with 1a Fluorescence quenching of RFT with 1b

Page 15: Photoelectrochemistryin Organic Synthesis

S. Lin et al. Angew. Chem. Int. Ed. 2020, 59, 409.

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

15

13C NMR of (A) TU-1-O2 (B) white precipitate (C) TU-1

Fluorescence quenching of RFT with TU-2

Page 16: Photoelectrochemistryin Organic Synthesis

S. Lin et al. Angew. Chem. Int. Ed. 2020, 59, 409. 16

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

OMe

Me

OMe

Me

1b (1 eq.), RFT (5 mol%)LiOTf (0.1 M CH3CN), H2O

C(+)/Pt(-), 2.5 Vblue LED, 22 °C, 1 h

OMe

Me

OMe

1b (1 eq.)RFT (5 mol%), TU-2 (10 mol%)

LiOTf (0.1 M CH3CN), H2OC(+)/Pt(-), 2.5 V

blue LED, 22 °C, 1 h

Me

Z:E = 6:1 71% recovered, Z:E = 10:1100% 1b recovered

75% recovered, Z:E = 1:100100% 1b recovered

Z:E = 6:1

Page 17: Photoelectrochemistryin Organic Synthesis

S. Lin et al. Angew. Chem. Int. Ed. 2020, 59, 409. 17

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

N

N

NH

N O

O

OAc

AcOOAc

OAc

Me

Me

RFT

Selected Substrates

H2

H+RFT-H2

RFTRFT*

RFT•-H

e-

OHtBu OtBu

NH

S

NH

R R

N

S

NH

R R

S

NHR

RNS NR

NHR

OHtBu

OHtBu

H2S +

E 0.8 V

NH

S

NH

R R

PhS

O O

Me

O

75%

O

Me Me

H

MeO

Me H

Me

H

H HO

O

96% 89%88%

Page 18: Photoelectrochemistryin Organic Synthesis

T. H. Lambert et al. Angew. Chem. Int. Ed. 2019, 58, 13318. 18

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

N N

CHO

N NN

N N

COOEt

Cl

Cl

Me

MeMe

Me

MeMe

Br

65% 42% 75% 71%

NN

COOEt

Page 19: Photoelectrochemistryin Organic Synthesis

T. H. Lambert et al. J. Am. Chem. Soc. 2020, 142, 1698. 19

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

*TAC2+

N

N N

Me MeMe

Me Me

Me

*

SO2Ph HNN

CHO

NBr

O NO

CHO

MeO

SO2Ph

89%72%40%80%

O NN

CHO

+ +

Page 20: Photoelectrochemistryin Organic Synthesis

H.-C. Xu et al. Angew. Chem. Int. Ed. 2019, 58,4592. 20

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

H2H+

e-

Mes-Acr•

*Mes-Acr+

Mes-Acr+

F3B Me

Me

Me

Me+ BF3

NH

Me

NH

Me

Me

Me

H+

Mes-Acr+ Mes-Acr•NH

Me

Me

2 mA

E = 2.06 VEp/2 = -1.19 V

Ep/2 = -0.57 V

Me

Page 21: Photoelectrochemistryin Organic Synthesis

H.-C. Xu et al. Angew. Chem. Int. Ed. 2020, 59, 10626. 21

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

Page 22: Photoelectrochemistryin Organic Synthesis

L. Ackermann. et al. Chem. Eur. J. 2020, 26, 3241. 22

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

Me Me

Me

CF3

79%with [Mes-Acr]ClO4

iPr

iPr

CF3

67%with [Ru(bpy)3](PF6)2

OMeCF3

MeO2C

71%with [Ru(bpy)3](PF6)2

SnBu

CF312

64% (1:2 = 14:1)with [Mes-Acr]ClO4

Page 23: Photoelectrochemistryin Organic Synthesis

A.-W. Lei et al. J. Am. Chem. Soc. 2020, 142, 17693. 23

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

Page 24: Photoelectrochemistryin Organic Synthesis

S. Lin et al. J. Am. Chem. Soc. 2020,142, 2087. 24

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

CN

CNDCA

DCA

*DCA•-

DCA•-

Cl

MeO

MeO

B2pin2Bpin

MeO

E = -3.2 V

Zn2+

E = -1.0 Ve-

Page 25: Photoelectrochemistryin Organic Synthesis

T. H. Lambert et al. Angew. Chem. Int. Ed. 2020, 59, 658. 25

Photoelectrochemical Organic Synthesis Electromediated Reaction with Photoredox Catalysis

Selected Substrates

ONC

NC

Cl

ClO

DDQ

Cl

e-

*DDQ

DDQ•-

DDQ

F

Cl

Cl

F

NHN

CHOH+

Cl

Cl

F-

E = 3.18 V

FNN

CHO

FNN

CHO N N

CHO

E = 1.5 V

DDQ•-

DDQ

Page 26: Photoelectrochemistryin Organic Synthesis

H.-C. Xu et al. Angew. Chem. Int. Ed. 2020, 59, 10626. 26

Electromediated Reaction involving Photo-induced RadicalPhotoelectrochemical Organic Synthesis

Selected Substrates

Page 27: Photoelectrochemistryin Organic Synthesis

H.-C. Xu et al. Angew. Chem. Int. Ed. 2020, 59, 14275. 27

Electromediated Reaction involving Photo-induced RadicalPhotoelectrochemical Organic Synthesis

Selected Substrates

N

HCl (6 eq.)Et4NCl (0.3 eq.)C(+) Pt(-), 2 mAblue LED (10 W)

MeCN N

C(sp3)

+ H C(sp3)R1 R1

H

Page 28: Photoelectrochemistryin Organic Synthesis

S. Stahl et al. Angew. Chem. Int. Ed. 2019, 58, 6385. 28

Electromediated Reaction involving Photo-induced RadicalPhotoelectrochemical Organic Synthesis

Selected Substrates

Page 29: Photoelectrochemistryin Organic Synthesis

X.-L. Hu et al. Nat. Catal. 2019, 2, 366.

Interfacial Photoelectrochemistry

29

Photoelectrochemical Organic Synthesis

Selected Substrates

CB

VBh+

e-

photoanode(semiconductor)

h

e-

sub

sub•+

VB:valence bandCB:conduction bandh:hole conduction

H2H+

e-

OMeNHN

OMe

•-H+

OMe

OMe -e-

-H+NN

OMe

H H

HN

N N

N

N NH

E = 0.73 V

OMe

MeO CO2Me

N N

N

Cl

OOEt

O

Me Me

87%(P1:P2=3:1)

1

2

82%

N

NNOMe

77%o:p = 6:1

NNOMe

58%o:p = 14:1

Cl

Page 30: Photoelectrochemistryin Organic Synthesis

C. P. Berlinguette et al. Nat. Commun. 2017, 8, 390. 30

Interfacial PhotoelectrochemistryPhotoelectrochemical Organic Synthesis

NO O

OH

(NHS)

Page 31: Photoelectrochemistryin Organic Synthesis

Contents

1. Introduction1.1 Synthetic Organic Electrochemistry

1.2 Visible-Light Photoredox Catalysis

1.3 Photoelectrochemical Organic Synthesis

2. Photoelectrochemical Organic Synthesis 2.1 Electromediated Reaction with Photoredox Catalysis

2.1.1 Oxidation Reaction2.1.2 Reduction Reaction2.1.3 Redox Neutral Reaction

2.2 Electromediated Reaction involving Photo-induced Radical

2.3 Interfacial Photoelectrochemistry

3. Summary and Prospection

31

Page 32: Photoelectrochemistryin Organic Synthesis

Summary and Prospection

32

OxidativeNMe

Me

Me Me

ONC

NC

Cl

ClO

Reductive

HAT

4czIPN

4czIPN

TAC Mes-Acr

DDQ

DCA

RFT TAC

NN

Ru

N

N

NN

Ru(bpy)3

ONC

NC

Cl

ClO

DDQ

9-fluorenone

Page 33: Photoelectrochemistryin Organic Synthesis

• Rigorous control experiments• Interelectrode ohmic drop• Mass transfer

Summary and Prospection

33

The limits of Photoelectrochemistry

a

b

c

d

pump

e-

reactants

products

a:borosilicate glass coverb:working electrode platewith groove channelsc:ion-exchange membraned:counter electrode plate

New reaction ?New mediator ?Chiral reaction ?

Page 34: Photoelectrochemistryin Organic Synthesis

Thanks for your kind attention

34