photon radiation in sqgp

33
Photon radiation in sQGP Máté Csanád , Imre Májer Eötvös University Budapest WPCF 2011, Tokyo

Upload: claude

Post on 24-Feb-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Photon radiation in sQGP. Máté Csanád , Imre Májer Eötvös University Budapest WPCF 2011, Tokyo. The Little Bang. thermalization. Milestones @ RHIC. Jet suppression in Au+Au : new phenomenon Phys. Rev. Lett . 88, 022301 (2002) No jet suppression in d+Au : new form of matter - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Photon radiation in sQGP

Photon radiation in sQGPMáté Csanád, Imre Májer

Eötvös University BudapestWPCF 2011, Tokyo

Page 2: Photon radiation in sQGP

2VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

The Little Bang

freeze-outexpansion, cooling

Photon spectrum: information on the time development of the sQGP

Thermalization time

Equation of state

Initial temperature

•Freeze-out time•Freeze-out

temperature•Expansion at freeze-

out

Hadronic spectrum

information on the final state

thermalization

Page 3: Photon radiation in sQGP

3VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Milestones @ RHICJet suppression in Au+Au: new phenomenon

Phys. Rev. Lett. 88, 022301 (2002)No jet suppression in d+Au: new form of matter

Phys. Rev. Lett. 91, 072303 (2003)Summary of the results: matter is a liquid

Nucl. Phys. A 757, 184-283 (2005)Elliptic flow scaling: quark degrees of freedom

Phys. Rev. Lett. 98, 162301 (2007)Heavy quark flow: nearly perfect fluid

Phys. Rev. Lett. 98, 172301 (2007)Direct photon spectrum: high initial temperature

Phys. Rev. Lett. 104, 132301 (2010)

Page 4: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 4

Direct photon spectra measured @ PHENIXBackground from hggIdea: thermal & virtual

photons and dielectronsX → e+e−

X → g and X → g* → e+e−

e+e- and g relatedDirect and inclusive alsoDirect photons calculableThermal below 3 GeV!Initial temperature? EoS?Hydrodynamics! Phys. Rev. Lett. 104, 132301 (2010)

from same process

Page 5: Photon radiation in sQGP

5VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

1.•Hydrodynamics gives um(x), T(x), p(x) etc.•Famous: Landau, Hwa-Bjorken (1D); few 3D

known

2.•Source function S(x,p) based on flow,

temperature etc.•E.g. a Bose-Einstein or a simple thermal

distribution

3. •Calculate observables•N1(pt), v2(pt) etc. come from integrals of S(x,p)

4.•Compare to data: determine model

parameters•Final state: hadrons; Initial state, EoS:

photons

Method of exact hydrodynamics

Page 6: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 6

The solution we investigateBy Csörgő, Csernai, Hama, Kodama, 2004

Only available 3D relativistic and realistic solutionHubble-flow: um=xm/t

In the Universe: v=Hr, Hubble constant ~ (time)-1

Ellipsoidal symmetry:

Thermodynamic quantities const. on the s=const. ellipsoidX, Y, Z describe the expanding ellipsoid here

Gaussian temperatureprofile, expanding andshrinking over time:

2 2 2

2 2 2( ) ( ) ( )

x y zsX t Y t Z t

TIME

Page 7: Photon radiation in sQGP

7VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Momentum distribution & correlation radii0-30% centrality, Au+Au, PHENIX data [PRC69 &

PRL91]

T0 199 ± 3 MeV central freeze-out temp.

e 0.80 ± 0.02 momentum space ecc. ut

2/b -0.84± 0.1 (b<0)transv. flow/temp. grad

t0 7.7 ± 0.1 freeze-out proper time

Eur. Phys. J. A 44,473–478 (2010)

Eur. Phys. J. A 44,473–478 (2010)

Page 8: Photon radiation in sQGP

8VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Elliptic flow0-92% centrality, Au+Au, PHENIX data [PRL93]

T0 204 ± 7 MeV f.o. temperature e 0.34 ± 0.01 eccentricity ut

2/b -0.34 ± 0.07 (b<0) transv. flow/temp. grad.

Eur. Phys. J. A 44, 473–478 (2010)

Page 9: Photon radiation in sQGP

9VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Temperature versus timeFrom hadronic observables:

Hadronic observables cannot decide!EoS & Tini from penetrating probes!

Eur. Phys. J. A 44, 473 (2010) Fixed from hadronic

observables

Page 10: Photon radiation in sQGP

10VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Direct photon spectrumFits to 0-92% centrality PHENIX data

[PRL104]Parameters from hadronic fitImportant new parameter: k=7.7±0.8

cs=0.36±0.02Average EoS, compare Lacey et al.,

nucl-ex/0610029

arXiv: 1101.1279, 1101.1280(2010)

Page 11: Photon radiation in sQGP

11VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Temperature versus timeFrom hadronic observables:

EoS from photon spectra: k=7.7±0.8 orcs=0.36 ± 0.02

Initial temperature (at t=1 fm/c)Ti > 519 ± 12 MeV

Eur. Phys. J. A 44, 473 (2010) Fixed from hadronic

observables

Determined from photon spectra

Page 12: Photon radiation in sQGP

12VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Elliptic flow from PHENIX data [arXiv:1105.4126]Early times more importantMany models fail to describeNon-hydro effects kick in >2 GeVSign change possible here!

Photon elliptic flow

Page 13: Photon radiation in sQGP

13VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Bose-Einstein correlationsRout/Rside = 1 for hadronsRout» Rside here!Large t!

Photon HBT

Evol

utio

n tim

e

Page 14: Photon radiation in sQGP

14VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

SummaryRevival of interest in perfect hydroOur model: 3+1d relativistic model w/o

acceleration

Calculated hadronic source → N1, v2, HBT

Calculated photon source → N1, v2, HBT

Compared successfully to data, cs=0.36±0.02

Ti≈520 MeV

Compared to fresh photon v2 data

Prediction on Bose-Einstein correlations

Page 15: Photon radiation in sQGP

Thank you for your attention

Page 16: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 16

Perfect hydro pictureNo data

point even near the kinematic viscosity of 4He (10/4p)

Close to AdS/CFT minimum, (1/4p)

Page 17: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 17

How to measure direct photons?PHENIX measurement done: PRL 104, 132301

(2010)Problem: huge background from h → ggIdea: thermal + virtual photon production parralel

X → e+e−, X → g and X → g* → e+e−

from the same processDielectron and real photon production related as:

S process dependent, dng*/dng , for p0 and h e.g.:

For pt » mee » me: L, S → 1

2 2 2

2 2

4 22 1 ( ) ( ) , ( ) 1 13

ee e e

ee ee eeee t ee t ee ee

dnd n m mL m S m L mdm dp m dp m m

gp

322 2 2( ) ( ) 1 , ( ) 0 for ee ee ee h ee ee hS m F m m M S m m M

Page 18: Photon radiation in sQGP

Phys. Rev. Lett. 104, 132301 (2010)

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 18

Dielectron spectrum measurementMeasured electron pairs with pt of 1-5 GeVEasy via electron ID capabilitiesCompare to dielectrons from hadronic

cocktail

Excess seen above pion mass due to virtual g

Page 19: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 19

Direct photons versus decay photons

Excess: virtual direct photons (decaying into e+e− pairs)

Inclusive e+e−: hadronic + dir. virtual photon componentsHadronic electron pairs (fc), calculated from cocktail: p, h, w, h’, f

Electron pairs from direct virtual photons (fdir) calculated from fc via previous formula

Determine ratio r by fit for separate pt binsUse r to scale inclusive photon spectra

Page 20: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 20

Famous solutionsLandau’s solution (1D, developed for p+p):

Accelerating, implicit, complicated, 1DL.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51 I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955)

309Hwa-Bjorken solution:

Non-accelerating, explicit, simple, 1D, boost-invariantR.C. Hwa, Phys. Rev. D10, 2260 (1974) J.D. Bjorken, Phys. Rev. D27, 40(1983)

Others Chiu, Sudarshan and Wang Baym, Friman, Blaizot, Soyeur and Czyz Srivastava, Alam, Chakrabarty, Raha and Sinha

Page 21: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 21

Some known relativistic solutionsSolution Basic prop’s EoS Observables

Csörgő, Nagy, CsanádPhys.Lett.B 663:306-311, 2008 Phys.Rev.C77:024908,2008

Ellipsoidal, 1D accelerating

e-B=k(p+B)

dn/dy, e

LandauIzv. Acad. Nauk SSSR 81 (1953) 51

Cylindr., 1D, accelerating

e=kp none

Hwa-BjörkenR.C. Hwa, PRD10, 2260,1974J.D. Bjorken, PRD27, 40(1983)

Cylindr., 1D,non-

accelerating

e=kpdn/dy, e

Bialas et al.Phys. Rev. C76, 054901

(2007).

1D, betweend Landau and

Hwa-Björken

e=kpdn/dy

Csörgő et al.Heavy Ion Phys. A 21, 73 (2004))

Ellipsoidal, 3D, non-

accelerating

e-B=k(p+B)

pt spectra, flow,

correlations

Page 22: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 22

The solution we investigateDensity, temperature, pressure

n(s) arbitrary, but realistic to choose Gaussian b<0 is realistic

Ellipsoidal symmetry

(thermodynamic quantities const. on the s=const. ellipsoid) Directional Hubble-flow

v=Hr or H=v/r, the Hubble-constants:

(T. Csörgő, L. P. Csernai, Y. Hama és T. Kodama, Heavy Ion Phys. A 21, 73 (2004))

30

0

(3/ )0

0

330

0

( )

1( )

( ) ( ) ( )1, , ,( ) ( ) ( )

n n s

T Ts

p p

X t Y t Z tu x y zX t Y t Z t

k

k

m

t nt

tt n

tt

g2 2 2

2 2 2( ) ( ) ( )

x y zsX t Y t Z t

/2( ) bss en

( ) ( ) ( ), ,( ) ( ) ( )

X t Y t Z tX t Y t Z t ( ), ( ), ( ) : .; , ,

tX t Y t Z t const X Y u e

Page 23: Photon radiation in sQGP

23VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Temperature versus timeFrom hadronic observables:

EoS from photon spectra: k=7.7±0.8Initial temperature (at t=1 fm/c)

Ti > 519 ± 12 MeV

Eur. Phys. J. A 44, 473 (2010)

Page 24: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 24

Insensitivity to the initial timeInitial time period: small contribution

Page 25: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 25

EoS dependenceSensitive to k with these level of errors

Page 26: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 26

Photon elliptic flow analysisEccentricity dependence EoS dependence

Initial time dependence

Page 27: Photon radiation in sQGP

27VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

• Source function: probability particle creation

• For hadrons: Maxwell-Boltzmann type

• H(t)dt freeze-out distribution (e.g. Dirac-d)

• pmd3Sm(x) Cooper-Fry prefactor (flux

term)• Photons are continously created, but not

thermalized• Thermal emission determins source functions

Source functions

4 3( )( , ) ( ) exp ( ) ( )

( ) S

p u x

S x p d x n x p d x H dT x

mm m

m t t

4 41( , )1

p u T

S x p d x Ed xe

mm

Page 28: Photon radiation in sQGP

VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011 28

Hadronic resultsSingle particle transverse momentum

spectrum

Elliptic flow (asymmetry in the transverse plane)

with , I: Bessel func.

Width of two-particle correlation functions:

2 2 2eff 0

1eff eff 0 0

2 20 00 0

0 0 eff

( )( ) exp

2 2

1 1 1 1, , ( ) ( ) 2

t t t tt t

t t t

x t y tx y

p T T p p mN p N V m

mT mT mT T

T TT T m X T T mYb T E b T E T T T

12

0

( )( )

I wvI w

2 1 14

t

Kt y x eff

pw Em T T T

e

0 0 , 0,

,

( ) x y

x yt x y

T T TR

mTt 2 20.5 out side x yR R R R

Page 29: Photon radiation in sQGP

29VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Photon spectra and photon v2Integration can be done analytically

A and B are:

3/

3/

/3/2

13/2 4 /31 0 /2

1/2

1

3 4 ,2 3

( ) (2 )3 1 4 ,

4 2 3

f i

f it t x y z

A A

N p p R R R AB A A

k

k

t t

kt t

k kp t

k 3/

3/

/

12 /2

1

1 4 ,2 3

2 3 4 ,2 3

f i

f i

ABvA

A

k

k

t t

t t

k

k

22

2 2

0 02 2

( 3)1 ,

2 ( 3) 2 ( 3)

t t t t

t t

b bp u p uA BT Tb b

u u

k ek k k

k k

Page 30: Photon radiation in sQGP

30VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Where we areRevival of interest, new solutions

Sinyukov, Karpenko, nucl-th/0505041 Pratt, nucl-th/0612010 Bialas et al.: Phys.Rev.C76:054901,2007 Borsch, Zhdanov: SIGMA 3:116,2007 Nagy et al.: J.Phys.G35:104128,2008 and arXiv/0909.4285 Liao et al.: arXiv/09092284 and Phys.Rev.C80:034904,2009 Mizoguchi et al.: Eur.Phys.J.A40:99-108,2009 Beuf et al.:Phys.Rev.C78:064909,2008 (dS/dy as well!)

Need for solutions that are:accelerating + relativistic+ 3 dimensionalexplicit + simple + compatible with the data

Need to calculate observables!

Page 31: Photon radiation in sQGP

31VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Correlation functions

Page 32: Photon radiation in sQGP

32VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Azimuthal dependence of HBT radii

Page 33: Photon radiation in sQGP

33VII Workshop on Particle Correlations and Femtoscopy, Tokyo, 2011

Azimuthal asymmetry