photonics technologiesphotonics technologies for low

42
Photonics technologies Photonics technologies Photonics technologies for low-energy networks at AIST Photonics technologies for low-energy networks at AIST Shu Namiki National Institute of Advanced Industrial Science and Technology (AIST) Network Photonics Research Center Shu Namiki National Institute of Advanced Industrial Science and Technology (AIST) Network Photonics Research Center Network Photonics Research Center Network Photonics Research Center ISUPT 2013, Oct. 21, 2013 At University of Rochester Part of this work is supported by -Special Coordination Funds for Promoting Science and Technology of Ministry of 1 Education, Culture, Sports, Science and Technology (MEXT). - New Energy and Industrial Technology Development Organization (NEDO)

Upload: others

Post on 23-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Photonics technologiesPhotonics technologiesPhotonics technologiesfor low-energy networks at AIST

Photonics technologiesfor low-energy networks at AIST

Shu NamikiNational Institute of Advanced Industrial Science and Technology (AIST)

Network Photonics Research Center

Shu NamikiNational Institute of Advanced Industrial Science and Technology (AIST)

Network Photonics Research CenterNetwork Photonics Research CenterNetwork Photonics Research Center

ISUPT 2013, Oct. 21, 2013At University of Rochester

Part of this work is supported by - Special Coordination Funds for Promoting Science and Technology of Ministry of

1

p g gy yEducation, Culture, Sports, Science and Technology (MEXT).

- New Energy and Industrial Technology Development Organization (NEDO)

TeamTeam• Network Architecture• Network Architecture

– Kiyo Ishii– Junya Kurumida– Tomohiro Kudoh

• Silicon Photonics and Devices– Hitoshi Kawashima– Keijiro Suzuki– G. W. Cong– Ken Tanizawa– Sang-Hun Kim

Haruhiko Kuwatsuka– Haruhiko Kuwatsuka– Hiroyuki Matsuura– Aaron Albores-Mejia

• Transmission and Node SubsystemsTransmission and Node Subsystems– Takayuki Kurosu– Takashi Inoue– Hung Nguyen Tan– Karen Solis-Trapala– Mingyi Gao

2 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

OutlineOutline

• Introduction:– Scalability, and now is endangered!

• Opportunity for optical switches– Distinct energy scaling and bandwidth– AIST project called “VICTORIES”– Development of 32 x 32 silicon switches

D i O ti l P th N t k• Dynamic Optical Path Network• Inter-Data Center Network• Summary

3 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Network traffic keeps on increasingNetwork traffic keeps on increasing

450,000 40% CAGR

But, how sustainable is it for the future?

250 000

300,000 

350,000 

400,000  AT&T

Verizon

Traffic (A.U.)($m

illion

s)

Gap

40% CAGR

100,000 

150,000 

200,000 

250,000 

Rev

enue

Gap

50,000 

2007 2008 2009 2010 2011 2012 2013

YearYearSource: Fortune 500

4 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

After T.J.Xia (Verizon) at WIN 2012, Inuyama

Data-centricity of TrafficData-centricity of Traffic

678

arwithin DCD2D (such as VPN)

456

bytes/Yea

Grobal IP DCGrobal IP non‐DC

123

Zettab

01

2011 2012 2013 2014 2015 2016Year

And, most of the contents are video.

http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.htmlhttp://www.cisco.com/en/US/netsol/ns1175/networking_solutions_sub_solution.html

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester5

How have we scaled the transport capacity?How have we scaled the transport capacity?

• 1960s– Copper wire for telephony

• 1970s1970s– Use optical fibers, LDs, PDs

• 1980s– Use ETDM (Sonet/SDH)Use ETDM (Sonet/SDH)

• 1990s– Use EDFAs, Internet revolution!!!

• 2000s• 2000s– Use WDM, Raman amplifiers, FEC, the Bubble!!!

• 2010sUse advanced modulation formats digital coherent technology– Use advanced modulation formats, digital coherent technology

• 2020s– Use Space and/or Mode-Division-Multiplexing

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

• We’ve been so acclimated to scalable technology, but…6

What we are learning from HPCWhat we are learning from HPC

• Because chips are no longer as scalable, Moore’s law may finally be ending unless the network scales.

A Benner (IBM) OFC 2012A. Benner (IBM), OFC 2012 Tutorial

7 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

http://www.extremetech.com/computing/165331-intels-former-chief-architect-moores-law-will-be-dead-within-a-decade

Can data centers scale out?Can data centers scale out?

• The role of network gets more important.

8 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

OIDA Workshop Report April 2013

Fundamental limits being faced!Fundamental limits being faced!• Quantum Limit• Quantum Limit

– Distributed Raman amplifiers with 3.1 dB noise figure– E-FEC allows error free transmission with only several photons per bit

at receiverat receiver• Rayleigh Scattering Limit of Fiber

– ~0.15 dB/kmShannon Limit• Shannon Limit– A few dB away from E-FEC technologies– Non-linear Shannon limit is about 100 Tbps/fiber

El i l B d id h Li i Th Li i f P ll li• Electrical Bandwidth Limits = The Limit of Parallelism– Radiation loss– Thermal jitter– Bandwidth density = energy consumption / bit

• TCP/IP Limits– Increasing inefficiency for larger Delay-Bandwidth products– QoS limitations– IP routers consumes energy proportional to the amount of traffic

9 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Energy issue will eventually take over everythingEnergy issue will eventually take over everything

• Green of ICT, then Green by ICT 1,000

100,000

10,000Japan’s Case

100,000

tion

of IP

Rou

ters

1,000

10,000

(Tb

ps)

• Disaster proof10

1

100Mostly High-

Definition Video Transmissions

l ene

rgy

cons

umpt

(TW

h)

1.0

10

100

tal I

nter

net T

raffi

c Japan’s TotalElectricity Generation

In 2005

p– Communications is the

‘Lifeline’.2000 2010 205020402020 2030

0.1

• The current technologies can’t scale to the increasing traffic in future.• 3-4 digit energy saving is necessary, which means we need a new paradigm.

Ann

ual

0.1 To

– Energy supply will be limited when disasters occur.

10 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Almost all of the traffic will be due to video transferAlmost all of the traffic will be due to video transfer

Consumer Internet Traffic1.5

Traffic Growth Projected by CISCOTraffic Growth Projected by CISCO

Web, Email, and DataFile Sharing(P2P)VideoGamingVoice/M

onth

)

Percentage from 2008 to 2013

ffic

(EB

/

VideoCAGR=1.70 CAGR=1.39

1.022.8%→61.6%

from 2008 to 2013

0.5

net T

raf

File ExchangeCAGR=1.21 50 8%→24 7%

After MIC(0.32 EB)

Video

0

Inte

r

14.9%→8.2%Web, CAGR=1.24

7 8%→1 8%3.7%→3.7%

50.8%→24.7%

02008 2009 2010 2011 2012 2013

7.8%→1.8%

source: Cisco Visual Networking Index: Forecast and Methodology, 2008-2013

11 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Packet switching versus circuit switchingPacket switching versus circuit switching

IP: Process every packet for routingy p g

Which suits better for video?

12 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Optical Path: Set up end-to-end paths

Switches: photonics vs. electronicsSwitches: photonics vs. electronicsO ti l it h El t i l S it hOptical switches Electrical Switches

Type of switching Circuit switching(requires a control plane)

Packet switching

Granularity Coarse and inflexible Fine and flexibleBandwidth scaling Transparent Transceivers and LSIPhysical I/F Optical connectors TransceiversEnergy scaling < W/port (incl. amp) 0.3 nJ/bit (Infiniband)

6 nJ/bit (IP router)Energy consumption < 1 kW 300 kW (Infiniband)gy pfor 1,000 ports x 1Tbps

( )6,000 kW (IP router)

Scalability issue Number of ports Moore’s lawQoS Physically guaranteed DependsQoS Physically guaranteed DependsSuitable apps Video Packetized data

Optical switch can save energy by several orders of magnitude!!

13 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Optical switch can save energy by several orders of magnitude!!The hybrid use of packet and optical switching will be the key.

Difference at the network level..Difference at the network level..C ti ll h di it l k t A t d T t• Conventionally exchange digital packets: Aggregate and Transport

10 100 GbE 100-1000 GbEA few lines between Routers

Bottle10-100 GbE

Statistical

100 1000 GbEBottle-neck Bottle-

neck

A N S h E h d t d fib i ll l!!

Statistical Multiplexing

Statistical Multiplexing

Many CRS-3 required!!

• → A New Scheme: Exchange end-to-end numerous fibers in parallel!!・ SDM rather than TDM・ Full mesh connections

rather than

N usersTransmission lines in parallel space

rather than Aggregate and transport

S Namiki et al ECOC 2010 Mo 2 A 4N x m

m paths

14 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

S. Namiki et al., ECOC 2010, Mo.2.A.4.S. Namiki et al., JSTQE, 17, 446 (2011).

N x m Matrix Switch Optical switches:

Transparent and Green

It calls for new network technologiesIt calls for new network technologies

Energy and CostEfficiency

AgilityResilience

L3 (IP) Routing

L2 (Ethernet) Switching Poor

Good

L2 (Ethernet) Switching

L1 (ODU) SwitchingDynamic

Wavelength Path Switching

Poor

Good Control Plane at

upper layers

Dynamic

Optical PathWave Band Path Switching

Optical Path Switching

GoodPoorpp y

&Good Optical

Devices

p

Network

15 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Optical Path Switching Devices(DOPN)

Toward Optical Cut-Through of Everything (OCE)Toward Optical Cut-Through of Everything (OCE)

• TodayAggrAggr

CoreCoreEdge Edge

Aggr.Aggr. Aggr.

Aggr.AccessAccess AccessAccess

OLT OLT

pSplitterpSplitter

ONUONU ONUONU

16 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Toward Optical Cut-Through of Everything (OCE)Toward Optical Cut-Through of Everything (OCE)

• TomorrowAggrAggr

CoreCoreEdge Edge

Aggr.Aggr. Aggr.

Aggr.AccessAccess AccessAccess

OLT OLT

pSplitterpSplitter

ONUONU ONUONUOptical Cut-through of Core Routers

17 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Toward Optical Cut-Through of Everything (OCE)Toward Optical Cut-Through of Everything (OCE)

• Ideally Energy-Saving DOPNAggrAggr

CoreCoreEdge Edge

Aggr.Aggr. Aggr.

Aggr.AccessAccess AccessAccess

pSplitterpSplitter

OLTDOPN-FE

OLTDOPN-FE

ONUONU ONUONUOptical Cut-through of Core + Edge Routers

Global Control Plane and Resource Management are necessary

18 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Global Control Plane and Resource Management are necessary.

Jump from Optical Cut-through to DOPNJump from Optical Cut-through to DOPNModel for Dynamic Optical Path Network (DOPN)Core

IE

Big Datacenter

Model for Dynamic Optical Path Network (DOPN)

ODU-SWL2

Transponder

WSS

制御I/F

Core

Data Center

Core router15.4nJ/bit

Edge router

Transponder42W/10Gbps149W/40Gbps351W/100Gbps(DC)

Optical amplifier138W/fiber/60km

REG

Regenerator(comparable energy

consumption with TPND)

Link distances: 150~850km

・Avg. hop number is 4.2.

Logically, 4x4 regular lattice in corewith multi-granular switching.

IESmall DC orContent server

SW

Metro-core

Aggregation

OLTOLT Access

Edge router19.0nJ/bit

Edge switch 30nJ/bit**Considering low utilization of down-link side ports

Optical Node86W/degree

400W/equipmentA d ti 410 ONU

ONU

Splitter

Intelligent edge (IE)

OLT ODU Agg.OpenFlowSW

ONU ONU ONU

Splitter

IE IEPath requests

OLT OLT

Splitter

ONU ONU

Splitter

ONUONU

OLTOLT

Splitter

ONU ONU

Splitter

ONUONUTraffic distribution defined as a function

of population distribution

AccessAccommodating 410 ONUs(80% utilization)

5W/equipment

Calculation by K. Ishii (AIST),Under the NEDO Green IT project.

Calculation by K. Ishii (AIST),Under the VICTOIRES project.Details in Photonics West 2013.

100

1000

on [TWh/year]

Extrapolation of the present modelOptical cut‐through in coreDynamic optical path network

Yr 2030150

200

250

300

tion [TWh/year]

Level 1

Level 2

Aggregation

OLT

ONU

Optical cut-through in core

jDetails to appear in ECOC2013.

1

10En

ergy Con

sumptio Yr. 2030

Yr. 2024

0

50

100

150

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Energy Con

sumpt

Extrapolation of the present model

19 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

10 10 20 30 40

Total Traffic [Pbps]

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030Year

Traffic CAGR: 40%The energy reduction by optical cut-through is not large enough.The energy consumption at edge routers is dominant.

Some initiatives have already startedSome initiatives have already started

• GreenTouch Consortium • VICTORIES

http://www.greentouch.org/

IEC’s Megatrend: Energy Sustainability of optical communication networks

20 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

http://www.aist-victories.org/

IEC s Megatrend: Energy Sustainability of optical communication networksand their driver: Dynamic Optical Path Network

Digital Optical Path Processor using Silicon PhotonicsDigital Optical Path Processor using Silicon Photonics

32 32 M t i S it h• 32x32 Matrix Switch– Energy: Need only a few Ws– Footprint: Within 2 cm x 1 cm Chip

Switching time• Switching time– ~ sec by thermo-optical switching – ~ nsec by plasma-effect switching

• Integration with control circuitsCourtesy of Y. Shoji, K. Kintaka, et al.

• Integration with control circuits for black-box operations

TO-SwitchOpitcal Fiber Array

Control Circuit

p y

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester21

Why 32 x 32 matrix switches?Why 32 x 32 matrix switches?

• 32 x 32 SWs make a 512 x 512 Clos SW.• 100,000 CPU nodes can be accommodated by 675 450x450

(simplex) switches A 450x450 SW consists of 96 32x32 SWs(simplex) switches. A 450x450 SW consists of 96 32x32 SWs, leading to a total of 64,800 32x32 SWs.

• Each port can carry a bandwidth > Tbps.

22--stage Fat tree Switch Fabric for 100,000 nodesstage Fat tree Switch Fabric for 100,000 nodes

450x450 450x450450x450 225 switches450(d)

450x450 450x450 450x450 450x450 450 switches

duplex 225 portssimplex 450 ports

Total: 101250 CPU nodes

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester22

Roadmap of Si-photonics matrix switch at AISTRoadmap of Si-photonics matrix switch at AIST2014

32×322014

2013

Mach-Zehnder Interferometer based TO switching

2012PILOSS8 x 8

2013

PILOSS4×4

2011~20 mm

4×42010

20 mm

2×2

23 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

K. Suzuki et al., ECOC 2013, PDP

24 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

2×2 Polarization diversity2×2 Polarization diversity

PS PS2X2 Sw.Unit for TE

TE

Kim et al., in ECOC2013

PS PS

Intersection

2X2 Sw.Unit for TM

Orthogonal SOP Crossing(JP 2011-158030 )

TM

(JP 2011 158030 )

TETM

25 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Si-ph. SW integrated with CMOS driver circuitsSi-ph. SW integrated with CMOS driver circuits

• OXC: 2x2 TO switch with MOSFET– G. W. Cong et al., OE March 2013 (AIST)

• Interconnect SW: 4x4/8x8 p-i-n switch with CMOS driver– B.G. Lee et al., OFC NFOEC PDP 5C3, 2013 (IBM)

26 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Realizing 32 x 32 chip scaleRealizing 32 x 32 chip scale

20 mm×10 mm

Drawing time using Spot-Beam EB Lithography System (JEOL6000FS/E (50kV)) 32×32

8×811 mm×7 mm

8×8128 hrs. (~5 days) by EB

6 mm×3 mm4×4

8 hrs.

DUV photolithographyEB

27 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

2 hrs. ArF Immersion Lithography facilitySuper Clean Room (SCR) 12 inch line @AIST

Hierarchical multi-granularity in routing

• Various path granularities– From fine to coarse - node that can handle such

Fiber

1GE

10GE

Sub-lambda path

10GE pathOTNODU

ODU

ODU

100Gbit/s~

制御I/F

光パスFiber path

Control I/F

path

pathOTN

ODU-SWL2

Transponder

WSS 10~100 Gbit/s

電気スイッチ

光スイッチ

波長パスLambda pathOptical SW

Electrical SW

ODUSW

Lambda SW(WSS)

Fiber path SW(Matrix SW)

SW

1~10 Gbit/s サブ・ウェーブレングス・パスSub-lambda path~1Gbit/s

MPLS-TP

• Network topology based on hierarchical routingL ti S l bilit t ti l l

K. Ishii et al., Photonics West 2013

28

– Low energy consumption -Scalability to national scale

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

CDC-ROADM using Silicon Photonics (NEC+AIST)

次世代ROADM1:8 Splitter 8x1 Switches

λ1~λ8

BER

10-5

10-6

10-7

10-8

… …

WSS/Splitter

WSS/Splitter

Next Gen. ROADM

λ1~λ8

In-Port 1 In-Port 8

λ1 λ843.018 Gbps  DPSK signalOSNR 21 dB @ res 2 nmReceived Power: ‐9dBm

Out-Port 3 Out-Port 4 Out-Port 5

Out-Port 6 Out-Port 7

10-9

10-10

10-11

48 transponders

…..

48 transponders

…..

/Splitter /Splitter

1 x 8 CPL 1 x 8 CPL

Drop AddSi-TPA transmission card

… … … … … …

16 mm1:8 Splitter 8x1 Switches

48 transponders 48 transponders

8 Input/outputfibers

Transponder

TPAmodule

TPAmodule

TPAmodule

TPAmodule

TPAmodule

TPAmodule

.. .. ..

… … … … … …

.. .. ..

SWDrivers

12 mm

Gate / SelectorSplitterTo input/output fibers

(8-port)

To transponders(8-port)

152 switch elementsintegrated

FPGASwitch drivers

48 transponders

TPA module x3 / daughter card(8 x 8 Si switch module)

TPA module x12

T. Hino et al., ECOC2012 Invited:Tu.3.A.5

29 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Feature of ODU XC (Fujitsu+AIST)Feature of ODU XC (Fujitsu+AIST)

• ODU XC (Cross Connect) is a digital cross connect for ODU (Optical Data Unit) that defined by ITU-T G.709.

ODU XC has capability of switching traffic with

OpticalFibre

OTN

OTNODUODUODU

1GbE1GbE10GbE

λPath

λ• ODU XC has capability of switching traffic with 1.25Gbps granularity. It is very efficient to switch 1Gbps-40Gbps stream.

• ODU XC has 1/3 power consumption and 1/100

OTN λPath

ODU XCODU XC has 1/3 power consumption and 1/100 latency compared to core router.

• AIST and Fujitsu are developing the ODU XC chip and this chip will be available in 2013 .

ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)

…ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)ODUk(k=0,1,2,3,4,flex)

p

λ 40GEODUODUXCXCODUflex#1Packet#1

ODU210GE ODUODUXCXCR t

Packet#1ODUflex#1Packet#3ODUflex#3 Router

OTN is effective and efficient f G

λλ

λXC  XC  nodenodeODUflex#2

ODUflex#1Packet#1Packet#2100GE

XC  XC  nodenode

Router Packet#3ODUflex#3 Routerfor operating >1 GbE. Fujitsu plans to incorporate the OTN switch fabric into Fujitsu products.

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

λODUODUXC  XC  

nodenode

ODUODUXC  XC  nodenode

ODU2ODUflex#2

10GERouterODUflex#3

Packet#240GE

Packet#310GERouter

products.

30

Slide courtesy of H. Honmaand H. Onaka, Fujitsu

32 x 32 SWs make up a nationwide Dynamic Optical Path Network

32 x 32 SWs make up a nationwide Dynamic Optical Path Network

R l IP t b ti l it h !!

Wavelength path terminal

Sub- aggregating node

Sub- and wavelength cross-connect node

Hierarchical multi-granular node

Replace IP routers by optical switches!!

WSS

100Gbit/s~

10~100 Gbit/s

C-plane I/F

Fiber path

-path

………

…………n

Sub- path terminal

Core

Multi-granular aggregating node

Content server

ODU-SWL2

Transponder

WSS

1~10 Gbit/s

Electrical

Optical

Sub- path1 2 3 …

…………

1 k

j11j

Category-core

K. Ishii, et al.(AIST), Photonics West 2013j

1

jCategory 12

3 … ……k

12

3 … ……k

11

23 … …

…k

12

3 … ……k

1 mx mmx

… … … …

1 mx+1

m

1 2 i

mx

1 2 i

1 mx+1

m

1 2 i

mx

1 2 i

1 mx+1

m

1 2 i

mx

1 2 iGroup

PassiveDouble Star

OLT

31S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Regular mesh in Core; Full Mesh in Metro; Complete bipartite graph in AccessFlex-Grid compatible, ODU-XC for sub- granularity

Inter-datacenter network: challengesInter-datacenter network: challengesCh k f ti ll t d d t• Chunk of continually generated data

• Ultra-coarse granularity• Low latency data transfer• High capacity and efficiency• Strict QoS with scheduled connections

Datacenters

DistributedDistributedDatacenters

• Seamless connections to intra-datacenter networkSeamless connections to intra datacenter network• Resilience for disaster

32 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Multi-Tbps Elastic Transmitter : WDM vs. OTDMMulti-Tbps Elastic Transmitter : WDM vs. OTDM

S h l N i /OFDM WDM• Super-channel Nyquist/OFDM WDMMod.xN carriers

・・・

CombGen.

NxmMatrix

SW

Mod.

Combiner・・・

AWG

PDM

• Nyquist OTDM WDM

Mod.Combiner

DSP hungry

• Nyquist-OTDM WDM0xMod.xN symbol slots

CombGen.

1x

Splitter Combiner・・・

Mod.

M d

・・・

Wave-shaper+ PDM

33 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

mxMod. Optical processing needed?

Optical comb generator (OCG) for Tbps elastic Tx/RxOptical comb generator (OCG) for Tbps elastic Tx/Rx

• High spectral efficiency through superchannel (OFDM or Nyquist)• High quality optical comb/ultra-short pulse through highly nonlinear fibers

– V. Ataite et al. (UCSD), OFC NFOEC 2013, PDP5C.1V. Ataite et al. (UCSD), OFC NFOEC 2013, PDP5C.1

C+L-band40 dB OSNR

– T Inoue and S Namiki Laser & Photon Rev 2: 83–99 (2008)T. Inoue and S. Namiki, Laser & Photon. Rev., 2: 83 99 (2008).

< 400 fsecTunableTunable

• R&D on Tbps elastic transceivers using OCG is highly expected.

34 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Research on Nyquist OTDM‐WDM signalsResearch on Nyquist OTDM‐WDM signals

oHigh spectral efficiency up to 1 symbol/s/HzoUltrahigh yet flexible baudrates (up to 1T)

Features of Nyquist OTDMFeatures of Nyquist OTDM

oGeneration in optics, high energy efficiencyo Eliminating guard‐bands in WDM systemo Better transmission perf. than OTDM

T Hi k t l O t E 20 2012

M. Nakazawa et al., Opt. Express, 20, 2012.

o T. Hirooka et al., Opt. Express, 20, 2012.o K. Harako et al., OFC 2013, JW2A.38.o H. Hu et. al., CLEO 2013, CTh5D.5.

G. Bosco et al., J. Lightw. Technol., 29, 2011.

i i ki i koGranularity will grow to be more than ~100G in the future big‐data centric era

o Especially traffic between data‐centers

Nyquist OTDM‐WDM in networkNyquist OTDM‐WDM in network

o Especially, traffic between data‐centers

oHighly efficient, ultra‐coarse yet flexible granular inter‐datacenter network based on 

35 O. Gerstel, et al., Comm. Magazine, 50, 2012.

all‐optical elastic network Nyquist OTDM‐WDM signals

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Nyquist filtering using WaveshaperNyquist filtering using Waveshaper

Ultra‐coarse granularNyquist signalsyq g

Ultra coarse granular Nyquist signals (>40G) can be generated by WaveshaperoUltra‐coarse granular Nyquist signals (>40G) can be generated by WaveshaperoWaveshaper‐based WSS can efficiently add‐drop WDM channels of Nyquist OTDMs with almost no guard‐band

o Pass drop over cascaded WSSs: H Nguyen Tan et al OFC 2013 JW2A 50

36

o Pass‐drop over cascaded WSSs: H. Nguyen Tan et al., OFC 2013, JW2A.50 This paper: transmission and pass‐drop operations in full elasticity

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Experimental setupExperimental setup

oBaudrate/pol. : 43Gbaud, 86Gbaud, 172Gbaud, and 344GbaudoClock recovery by optical null‐header (ONH): Kurosu et al., Opt. Express, 21, 2013.oTransmission 4 spans of 80km SLA+IDF and WSS nodes

37

oTransmission 4 spans of 80km SLA+IDF and WSS nodesoWSSs elastically pass‐drop WDM channels of Nyquist OTDMs

S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Optical spectra of Nyquist OTDM WDMOptical spectra of Nyquist OTDM WDMH. Nguyen Tan et al., OECC 2013, PDP / ECOC We.1.C.5Details to appear in OE.

WSS nodeINPUT

PASS

DROP

o Simple generation of different baudrate signals by Waveshaper

oWSS efficiently add‐drop WDM channels of Nyquist OTDMs with almost no guard‐band

38 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

BER performance of Nyquist OTDMsBER performance of Nyquist OTDMs

ONH

ONH

ONH

39 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

VICTORIES Test Bed DEMO2014VICTORIES Test Bed DEMO2014O t 2014 i T k b J• Oct. 2014 in Tsukuba, Japan

• Co-located with a 3-day international symposium• Demonstrate 4k/8k video apps over DOPN• Demonstrate 4k/8k video apps over DOPN

N2:ダイナミック波長パス

N1:多粒度ダイナミック・ノード(AIST)

P1, P2:シリコンフォトニクスTOスイッチ(AIST)(富士通研)

ネットワークリソースマネージメント I1:ストレージ資源管理(AIST) I2:ストレージ・ネットワーク統合資源管理(NTT)

P5:集積デバイス実装(古河電工)

TL‐1

ITRI M i NPRC EAST1Di ti 3 Direction 2

TL‐1 TL‐1

N2:ダイナミック波長パス・ノード技術(NEC)

N3:サブウェーブレングス・パス・ノード(富士通)

N4:ダイナミック波長可変光源(住友電工)

P3:トラポン・アグリゲータ(NEC)

配信サーバB(10G, HD)視聴者SA (8K)

コンテンツ集積拠点(HD)

Mon.

P4:次世代WSS(日立電線)ODU SW

TransponderAgg.

ODU SW

TransponderAgg.

(古河電工)

TV会議SYS2

配信サーバC(10G, HD)

視聴者B視聴者A

C5:超高速波形観測技術(Alnair) C4:集積型分散モニタ技術(フジクラ)

ITRI‐Main NPRC‐Main

ITRI‐Main‐TKB‐WEST(NS1)

配信サーバA(1G, HD)

Agg.

NPRC‐EAST1Direction: 3 Direction: 2Direction: 3

ODU SW

C1:自律制御光パス・コンディショナ開発(AIST)

C2:高速制御技術(Trimatiz)

C3:特殊ファイバ、高密度線路技術(古河電工)

拠点(HD)サーバS

MUX

Agg.

視聴者CC6:光パス多重技術(富士通研)

Agg.

AIST情報棟

AIST デモ会場視聴者D

ITRI‐WEST NPRC‐CTRDirection: 3

Direction: 4Agg.

視聴者E

NPRC‐EAST2

視聴者SB (8K)

Direction: 3

制御 素 確 波 帯域 ポ

Agg.

TV会議SYS1 視聴者Fつくば地区

デ 会場視聴者D

TKB‐SUB2

視聴者SC (8K)

Agg.

TKB‐SHV Direction: 2

Direction: 2

TKB‐SUB1Direction: 3

40 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

配信サーバ(8K, SHV)

・制御要素の明確化(波長,帯域,ポート#,フォーマット,ビットレート,ファイバ種,分散量) 協力機関

SummarySummary• The energy consumption of the IP network is becoming a serious bottleneck,

calling for a paradigm shift.• For disaster survivability, resilience under limited energy supply is of critical

importanceimportance.• Dynamic Optical Path Network may be the only option in the sense of both

energy, capacity, and suitability for video services, thus has been recognized by IEC as a driver of this megatrend.y g

• In order to realize this, some R&D initiatives have been put into action.• We have reviewed some of the activities under VICTORIES project at AIST.• An extensive effort on developing 32 x 32 silicon photonics switches wasAn extensive effort on developing 32 x 32 silicon photonics switches was

reviewed.• All optical Nyquist filtering works well higher bandwidths than 40 Gbaud

signals.

• Jump from ongoing optical cut-through to Dynamic Optical Path Network must be assisted through academic activities and standardization!

• Orchestration of different layers and/or standardization bodies is essential.

41 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester

Thank you!Thank [email protected]@aist.go.jp

42S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester