phy 113 a general physics i 11 am-12:15 p m mwf olin 101 plan for lecture 6:

38
9/12/2013 PHY 113 C Fall 2013 -- Lecture 6 1 PHY 113 A General Physics I 11 AM-12:15 PM MWF Olin 101 Plan for Lecture 6: Chapters 5 & 6 – More applications of Newton’s laws 1.Friction and other dissipative forces 2.Forces in circular motion

Upload: nile

Post on 23-Feb-2016

49 views

Category:

Documents


0 download

DESCRIPTION

PHY 113 A General Physics I 11 AM-12:15 P M MWF Olin 101 Plan for Lecture 6: Chapters 5 & 6 – More a pplications of Newton’s laws Friction and other dissipative forces Forces in circular motion. Isaac Newton, English physicist and mathematician (1642—1727). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 19/12/2013

PHY 113 A General Physics I11 AM-12:15 PM MWF Olin 101

Plan for Lecture 6:

Chapters 5 & 6 – More applications of Newton’s laws

1. Friction and other dissipative forces

2. Forces in circular motion

Page 2: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 29/12/2013

Page 3: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 39/12/2013

Isaac Newton, English physicist and mathematician (1642—1727)

http://www.newton.ac.uk/newton.html

1. In the absence of a net force, an object remains at constant velocity or at rest.

2. In the presence of a net force F, the motion of an object of mass m is described by the form F=ma.

3. F12 =– F21.

Page 4: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 49/12/2013

Webassign question from assignment #5

Page 5: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 59/12/2013

Webassign question from assignment #5 – continued

)m. ˆ4.40+ ̂(1.60

at rest at initially is that kg 1.90 of particle aon act N, ) ˆ6.30 + ˆ(2.70 = and N ) ˆ4.45 + ˆ(2.80 = forces, Two

i

21

jir

jiFjiF

m

m

F1

F2 2

21

21

ttt

ttm

m

ii

i

net

net

avrr

avv

Fa

aFFF

Nˆ75.10ˆ50.5

Nˆ6.304.45ˆ2.702.80

N, ) ˆ6.30 + ̂(2.70 ) ˆ4.45 + ˆ(2.80 = 21

ji

ji

jijiFF

Page 6: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 69/12/2013

Webassign question from assignment #5 – continued

m

F1

F2

2

21

21

ttt

ttm

m

ii

i

net

net

avrr

avv

Fa

aFFF

sttt

s

/mˆ658.5ˆ895.20

/mˆ658.5ˆ895.2kg90.1

Nˆ75.10ˆ50.5

Nˆ75.10ˆ50.5=

2

21

jiv

jijia

jiFF

Page 7: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 79/12/2013

Webassign question from Assignment #4

T T

mg mg sin q

aa

amgmTamgmT

22

11

sin q

Page 8: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 89/12/2013

Newton’s second law aF mnet

applied

g

FnFTF

jF

:surface a tonormal forceSupport :rope masslessin tension todue Force

ˆ :surface sEarth'near Gravity

:known have weForces

n

mg

TaTF

:ssfrictionle is surface Ifmnet

Page 9: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 99/12/2013

mg

nT

Another example of motion along a frictionless surface

jiF

jnjiT

jnTF

ˆsinˆ cos

ˆ ˆ sinˆ cos

ˆ

mgnTT

nTT

mg

net

net

qq

qq

iF ˆ cos

0sin If

q

q

T

mgnT

net

Page 10: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 109/12/2013

mg

nT

iF ˆ cos

0sin If

q

q

T

mgnT

net

iclicker exercise:

Assuming T>0, how does the suitcase move along surface? A. It moves at constant

velocity.B. It accelerates.C. Whether it moves or

not depends on magnitude of T.

Page 11: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 119/12/2013

In presence of friction force:

mg

nT

f

j

iF

ijnTF

ˆsin

ˆ cos

ˆˆ

mgnT

fT

fmg

net

net

q

q

Page 12: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 129/12/2013

Friction forces

The term “friction” is used to describe the category of forces that oppose motion. One example is surface friction which acts on two touching solid objects. Another example is air friction. There are several reasonable models to quantify these phenomena.

Surface friction:

N

Ff applied

Material-dependent coefficient

Normal force between surfaces

Air friction:

speedhigh at speed lowat

2vKKv

D

K and K’ are materials and shape dependent constants

Page 13: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 139/12/2013

Models of surface friction forces

(applied force)

surfa

ce fr

ictio

n fo

rce

fs,max=sn

Coefficients s , k depend on the surfaces; usually, s > k

Page 14: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 149/12/2013

Page 15: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 159/12/2013

Surface friction models

F-fs = 0 if F < sn=smg

if F>sn=smg , then F-fk=ma (fk= kmg)

mmgFa k

Static friction case:

Kinetic friction case:

Page 16: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 169/12/2013

mg

f

n

qmg sin q

mg cos q

Consider a stationary block on an incline:

qq

qq

sin 0sin:surface along Forces

cos 0cos:surface tonormal Forces

mgfmgf

mgnmgn

Page 17: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 179/12/2013

mg

f

n

qmg sin q

mg cos q

Consider a stationary block on an incline:

What happens when f>fs,max?

Page 18: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 189/12/2013

mg

f

n

qmg sin q

mg cos q

Consider a stationary block on an incline:

What happens when f=fs,max? qq

qqqqq

sincosThen

cos Ifsin 0sincos 0cos

max,

mgmg

mgnffmgfmgfmgnmgn

S

SSS

q tanS

Page 19: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 199/12/2013

V (constant)

iclicker exercise:Suppose you place a box on an inclined surface as shown in the figure and you notice that the box slides down the incline at constant velocity V. Which of the following best explains the phenomenon:

A. There is no net force acting on the box. B. There is a net force acting on the box.

q

Page 20: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 209/12/2013

V (constant)

q

mg

n

f=kn

Consider a block sliding down an inclined surface; constant velocity case

qqq

qqqq

sincosThen cos If

sin 0sincos 0cos

mgmgmgnf

mgfmgfmgnmgn

K

KK

q tanK

Page 21: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 219/12/2013

mg

f

n

qmg sin q

mg cos q

Summary

slip about tojust isblock when tanelocityconstant vat movesblock when tan

qq

S

K

Page 22: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 229/12/2013

A block of mass 3 kg is pushed up against a wall by a force P that makes an angle of q=50o

with the horizontal. s=0.25. Determine the possible values for the magnitude of P that allow the block to remain stationary.

0cos :forces Horizontal0sin :forces Vertical s

NPmgPN

qqf

mg

N

f

Page 23: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 239/12/2013

0cos :forces Horizontal0sin :forces Vertical s

NPmgPN

qqf

mg

N

f

N 48.57N 72.31

50cos25.050sinN 8.93

cossin :for Solving

0sincoscos

s

s

ooP

mgPP

mgPPPN

qq

qqq

Page 24: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 249/12/2013

Models of air friction forces

2

air

:ocitieslarger velFor

:s velocitiesmallFor

DvF

bvF

air

mg

bv

mamgbvv

:0 assuming and asdirection up Denoting

mbteb

mgtv

dtdvmmgbv

S

/1)(

:equation aldifferenti olution to

Page 25: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 259/12/2013

Recall: Uniform circular motion:

animation from http://mathworld.wolfram.com/UniformCircularMotion.html

Page 26: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 269/12/2013

Uniform circular motion – continued

ra ˆ

:ison accelerati lcentripeta theanddirection radial in the

onaccelerati then the, If

2

rv

vvv

c

fi

Page 27: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 279/12/2013

Uniform circular motion – continued

r

ra

ra

ra

ˆ2

ˆ2

ˆ

2

2

2

rf

rT

rv

c

c

c

Trv 2

In terms of time period T for one cycle:

In terms of the frequency f of complete cycles:πfrv

Tf 2 ;1

Page 28: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 289/12/2013

Uniform circular motion and Newton’s second law

r

ra

aF

ˆ2

rv

m

c

iclicker exercise:For uniform circular motion

A. Newton’s laws are repealedB. There is a force pointing radially outward from

the circleC. There is a force pointing radially inward to the

circle

Page 29: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 299/12/2013

http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page1.php

Example of uniform circular motion:

Page 30: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 309/12/2013

Example of uniform circular motion: Consider the moon in orbit about the Earth

NaMF

smRT

a

s. days.T

mR

kgM

cM

Mc

M

M

20

232

6

8

22

100.2 Law Second sNewton'

/1072.22

10362327 :Moon of period Rotational

1084.3 :Earth ofcenter from Distance

1035.7 :Moon of Mass

Page 31: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 319/12/2013

Example of uniform circular motion:

ra ˆ2

rv

c

qq

q

sinsin

:law second sNewton' ofcomponent (radial) Horizontal

0cos:law second sNewton' ofcomponent Vertical

22

Lmv

rmvmaT

mgT

c

Page 32: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 329/12/2013

Example of uniform circular motion:

mgnmgn 0:law second sNewton' ofcomponent Vertical

grμvr

mvmgμnμ

rmvmaf

sss

c

max

2

2

:condition Maximum

:law second sNewton' ofcomponent (radial) Horizontal

Page 33: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 339/12/2013

Curved road continued:

hrmim/s.smgrμv

mrμ

grμv

s

s

s

/29113 /358.95.0

35 5.0 :Example

max

max

Page 34: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 349/12/2013

Mass on a swing:

mg

q T

iclicker exercise:Which of these statements about the tension T in the rope is true?

A. T is the same for all q.B. T is smallest for q0.C. T is largest for q0.

LvmmgT

LvmmgT

2

2

:0For

cos

:rope thealongdirection in the laws sNewton'

q

q

L

Page 35: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 359/12/2013

Newton’s law in accelerating train car

ga

maθTmgT

q

q

tan

sin :direction Horizontal0cos :direction Vertical

Page 36: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 369/12/2013

Notion of fictitious forces

iclicker questionA. Fiction is for English class and not for

physics class.B. The concept of fictitious forces is a bad

idea.C. The concept of fictitious forces is

necessary for analyzing certain types of problems.

In analyzing motion in an inertial frame of reference, the notion of “fictitious force” does not appear.

Page 37: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 379/12/2013

Example of analysis of forces Ferris wheel moving at constant speed v

ac

ac

ctop

ctop

agmn

mamgn

cbottom

cbottom

agmnmamgn

Page 38: PHY 113 A General Physics I 11 AM-12:15  P M  MWF  Olin 101 Plan for Lecture 6:

PHY 113 C Fall 2013 -- Lecture 6 389/12/2013

Example of analysis of forces Mass moving in vertical circle

Analysis similar to Ferris wheel except that the speed v varies and the magnitude of the centripetal acceleration varies accordingly.