phy103a: lecture # 3

15
Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 3 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 08-Jan-2018

Upload: others

Post on 26-Jan-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 3

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 08-Jan-2018

2

Notes โ€ข The first tutorial is tomorrow (Tuesday).

โ€ข Course Webpage: http://home.iitk.ac.in/~akjha/PHY103.htm

โ€ข Tutorial Sections have been finalized and put up on the webpage.

โ€ข Phone: 7014(Off); 962-142-3993(Mobile) [email protected]; [email protected]

โ€ข Office Hour โ€“ Friday 2:30-3:30 pm

โ€ข Updated lecture notes will be uploaded right after the class.

3

Summary of Lecture # 2:

๐›๐›๐‘‡๐‘‡ โ‰ก๐œ•๐œ•๐‘‡๐‘‡๐œ•๐œ•๐œ•๐œ•

๐’™๐’™๏ฟฝ +๐œ•๐œ•๐‘‡๐‘‡๐œ•๐œ•๐œ•๐œ•

๐’š๐’š๏ฟฝ +๐œ•๐œ•๐‘‡๐‘‡๐œ•๐œ•๐œ•๐œ•

๐’›๐’›๏ฟฝ

Gradient of a scalar ๐›๐›๐‘‡๐‘‡

Divergence of a vector ๐›๐› โ‹… ๐•๐•

๐›๐› โ‹… ๐•๐• =๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ๐œ•๐œ•๐œ•๐œ•

+๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ๐œ•๐œ•๐œ•๐œ•

+๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

Curl of a vector ๐›๐› ร— ๐•๐•

๐›๐› ร— ๐•๐• =

๐’™๐’™๏ฟฝ ๐’š๐’š๏ฟฝ ๐’›๐’›๏ฟฝ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•

๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ ๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ ๐‘ฃ๐‘ฃ๐‘ง๐‘ง

=๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ• โˆ’

๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ๐œ•๐œ•๐œ•๐œ• ๐’™๐’™๏ฟฝ +

๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ๐œ•๐œ•๐œ•๐œ• โˆ’

๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ• ๐’š๐’š๏ฟฝ +

๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ๐œ•๐œ•๐œ•๐œ• โˆ’

๐œ•๐œ•๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ๐œ•๐œ•๐œ•๐œ• ๐’›๐’›๏ฟฝ

3 2 1 0 1 2 3

3

2

1

0

1

2

3

2 1 0 1 2

2

1

0

1

2

2 1 0 1 2

2

1

0

1

2

Integral Calculus:

Line Integral:

The ordinary integral that we know of is of the form: โˆซ ๐‘“๐‘“ ๐œ•๐œ• ๐‘‘๐‘‘๐œ•๐œ•๐‘๐‘๐‘Ž๐‘Ž

In vector calculus we encounter many other types of integrals.

๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐‘๐‘

๐‘Ž๐‘Ž

Vector field Infinitesimal Displacement vector Or Line element

๏ฟฝ๐•๐• โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ

4

If the path is a closed loop then the line integral is written as

Work done by a force along a given path involves line integral.

โ€ข When do we need line integrals?

Example (G: Ex. 1.6)

Q: ๐•๐• = ๐œ•๐œ•2 ๐’™๐’™๏ฟฝ + 2๐œ•๐œ•(๐œ•๐œ• + 1)๐’š๐’š๏ฟฝ ? What is the line integral from A to B along path (1) and (2)?

โˆฎ๐•๐• โ‹… ๐’…๐’…๐’…๐’…=11-10=1

Along path (1) We have ๐’…๐’…๐’…๐’… = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ. (i) ๐’…๐’…๐’…๐’… = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ; ๐œ•๐œ•=1; โˆซ๐•๐• โ‹… ๐’…๐’…๐’…๐’…=โˆซ๐œ•๐œ•2๐‘‘๐‘‘๐œ•๐œ• = 1 (ii) ๐’…๐’…๐’…๐’… = ๐‘‘๐‘‘๐œ•๐œ• ๐’š๐’š๏ฟฝ; ๐œ•๐œ•=2;โˆซ๐•๐• โ‹… ๐’…๐’…๐’…๐’…=โˆซ 4(๐œ•๐œ• + 1)๐‘‘๐‘‘๐œ•๐œ•2

1 =10

Along path (2): ๐’…๐’…๐’…๐’… = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ; ๐œ•๐œ• = ๐œ•๐œ•; ๐‘‘๐‘‘๐œ•๐œ• = ๐‘‘๐‘‘๐œ•๐œ• โˆซ๐•๐• โ‹… ๐’…๐’…๐’…๐’…=โˆซ (๐œ•๐œ•2 + 2๐œ•๐œ•2 + 2๐œ•๐œ•)๐‘‘๐‘‘๐œ•๐œ•2

1 =10

5

This means that if ๐•๐• represented the force vector, it would be a non-conservative force

Surface Integral:

๏ฟฝ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

Vector field Infinitesimal area vector

๏ฟฝ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š or

โ€ข For open surfaces, the direction of the area vector is decided based on a given problem.

6

Closed loop

Flux through a given area involves surface integral. โ€ข When do we need area integrals?

โ€ข For a closed surface, the area vector points outwards.

Example (Griffiths: Ex. 1.7)

Q: ๐•๐• = 2๐œ•๐œ•๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐œ•๐œ• + 2 ๐’š๐’š๏ฟฝ + ๐œ•๐œ• ๐œ•๐œ•2 โˆ’ 3 ๐’›๐’›๏ฟฝ? Calculate the Surface integral. โ€œupward and outwardโ€ is the positive direction

(i) x=2, ๐‘‘๐‘‘๐’‚๐’‚ = ๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ; ๐‘‰๐‘‰ โ‹… ๐‘‘๐‘‘๐’‚๐’‚ = 2๐œ•๐œ•๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ• = 4๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ• โˆซ๐‘ฝ๐‘ฝ โ‹… ๐‘‘๐‘‘๐’‚๐’‚ = โˆซ โˆซ 4๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•2

020 =16

(ii) โˆซ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š=0 (iii) โˆซ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š=12 (iv) โˆซ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š=-12 (v) โˆซ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š=4 (vi) โˆซ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š=-12

๏ฟฝ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š = 16 + 0 + 12 โˆ’ 12 + 4 โˆ’ 12 = 8 7

Volume Integral:

๏ฟฝ๐‘‡๐‘‡(๐œ•๐œ•,๐œ•๐œ•, ๐œ•๐œ•)๐‘‘๐‘‘๐‘‘๐‘‘

โ€ข In Cartesian coordinate system the volume element is given by ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•.

โ€ข One can have the volume integral of a vector function which V as โˆซ๐•๐•๐‘‘๐‘‘๐‘‘๐‘‘ = โˆซ๐•๐•๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘‘๐‘‘ ๐’™๐’™๏ฟฝ+ โˆซ๐•๐•๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘‘๐‘‘๐’š๐’š๏ฟฝ + โˆซ๐•๐•๐‘ง๐‘ง๐‘‘๐‘‘๐‘‘๐‘‘ ๐’›๐’›๏ฟฝ

Example (Griffiths: Ex. 1.8) Q: Calculate the volume integral of ๐‘‡๐‘‡ = ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•2 over the volume of the prism

We find that ๐œ•๐œ• integral runs from 0 to 3. The ๐œ•๐œ• integral runs from 0 to 1, but the ๐œ•๐œ• integral runs from 0 to 1 โˆ’ ๐œ•๐œ• only. Therefore, the volume integral is given by

๏ฟฝ ๏ฟฝ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•2๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ•3

0

1

0=

38

1โˆ’๐‘ฆ๐‘ฆ

0

8

Example

๏ฟฝ๐œ•๐œ•๐‘‘๐‘‘๐œ•๐œ• = ๏ฟฝ๐‘‘๐‘‘ ๐œ•๐œ•2

2๐‘‘๐‘‘๐œ•๐œ•

๐‘‘๐‘‘๐œ•๐œ• =๐œ•๐œ•2

2 ๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘

๐‘Ž๐‘Ž

๐‘๐‘

๐‘Ž๐‘Ž

=๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž2

2

โ€ข In vector calculus, we have three different types of derivative (gradient, divergence, and curl) and correspondingly three different types of regions and end points.

The fundamental Theorem of Calculus:

๏ฟฝ๐น๐น ๐œ•๐œ• ๐‘‘๐‘‘๐œ•๐œ• = ๏ฟฝ๐‘‘๐‘‘๐‘“๐‘“๐‘‘๐‘‘๐œ•๐œ•

๐‘‘๐‘‘๐œ•๐œ• = ๐‘“๐‘“ ๐‘๐‘ โˆ’ ๐‘“๐‘“(๐‘Ž๐‘Ž) ๐‘๐‘

๐‘Ž๐‘Ž

๐‘๐‘

๐‘Ž๐‘Ž

The integral of a derivative over a region is given by the value of the function at the boundaries

9

The fundamental Theorem of Calculus: The integral of a derivative over a region is given by the value of the function at the boundaries

The fundamental Theorem for Gradient:

๏ฟฝ ๐›ป๐›ป๐‘‡๐‘‡ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‡๐‘‡ ๐‘๐‘ โˆ’ ๐‘‡๐‘‡(๐‘Ž๐‘Ž) ๐‘๐‘

๐‘Ž๐‘Ž ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘ƒ๐‘ƒ๐‘ƒ

The integral of a derivative (gradient) over a region (path) is given by the value of the function at the boundaries (end-points)

The fundamental Theorem for Divergence The integral of a derivative (divergence) over a region (volume) is given by the value of the function at the boundaries (bounding surface)

๏ฟฝ ๐›ป๐›ป โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

๏ฟฝ ๐›ป๐›ป ร— ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘ƒ๐‘ƒ๐‘ƒ

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข The integral of a derivative (curl) over a

region (surface) is given by the value of the function at the boundaries (closed-path)

The fundamental Theorem for Curl

10

๏ฟฝ๐‘‘๐‘‘๐‘“๐‘“๐‘‘๐‘‘๐œ•๐œ•

๐‘‘๐‘‘๐œ•๐œ• = ๐‘“๐‘“ ๐‘๐‘ โˆ’ ๐‘“๐‘“(๐‘Ž๐‘Ž) ๐‘๐‘

๐‘Ž๐‘Ž

(Gaussโ€™s theorem):

(Stokesโ€™ theorem):

Spherical Polar Coordinates:

๐œ•๐œ• = ๐‘Ÿ๐‘Ÿ sin๐œƒ๐œƒ cos๐œ™๐œ™, ๐œ•๐œ• = ๐‘Ÿ๐‘Ÿsin๐œƒ๐œƒ sin๐œ™๐œ™, ๐œ•๐œ• = ๐‘Ÿ๐‘Ÿ cos๐œƒ๐œƒ

๐€๐€ = A๐’“๐’“๐’“๐’“๏ฟฝ + A๐œฝ๐œฝ๐œฝ๐œฝ๏ฟฝ + A๐“๐“๐“๐“๏ฟฝ A vector in the spherical polar coordinate is given by

๐’“๐’“๏ฟฝ = sin๐œƒ๐œƒ cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + sin๐œƒ๐œƒ sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ + cos๐œƒ๐œƒ๐ณ๐ณ๏ฟฝ

๐œฝ๐œฝ๏ฟฝ = cos๐œƒ๐œƒ cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + cos๐œƒ๐œƒ sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ โˆ’ sin๐œƒ๐œƒ๐ณ๐ณ๏ฟฝ ๐“๐“๏ฟฝ = โˆ’sin๐œ™๐œ™๐ฑ๐ฑ๏ฟฝ + cos๐œ™๐œ™๐ฒ๐ฒ๏ฟฝ

dl= ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“๐’“๐’“๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐œฝ๐œฝ๐œฝ๐œฝ๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐“๐“๏ฟฝ The infinitesimal displacement vector in the spherical polar coordinate is given by

Griffiths: Prob 1.37

(In Cartesian system we have ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ )

0 โ‰ค ๐‘Ÿ๐‘Ÿ โ‰ค โˆž; 0 โ‰ค ๐œƒ๐œƒ โ‰ค ๐œ‹๐œ‹; 0 โ‰ค ๐œ™๐œ™ โ‰ค 2๐œ‹๐œ‹

11

Spherical Polar Coordinates:

๐œ•๐œ• = ๐‘Ÿ๐‘Ÿ sin๐œƒ๐œƒ cos๐œ™๐œ™, ๐œ•๐œ• = ๐‘Ÿ๐‘Ÿsin๐œƒ๐œƒ sin๐œ™๐œ™, ๐œ•๐œ• = ๐‘Ÿ๐‘Ÿ cos๐œƒ๐œƒ

๐€๐€ = A๐’“๐’“๐’“๐’“๏ฟฝ + A๐œฝ๐œฝ๐œฝ๐œฝ๏ฟฝ + A๐“๐“๐“๐“๏ฟฝ A vector in the spherical polar coordinate is given by

๐’“๐’“๏ฟฝ = sin๐œƒ๐œƒ cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + sin๐œƒ๐œƒ sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ + cos๐œƒ๐œƒ๐ณ๐ณ๏ฟฝ

๐œฝ๐œฝ๏ฟฝ = cos๐œƒ๐œƒ cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + cos๐œƒ๐œƒ sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ โˆ’ sin๐œƒ๐œƒ๐ณ๐ณ๏ฟฝ ๐“๐“๏ฟฝ = โˆ’sin๐œ™๐œ™๐ฑ๐ฑ๏ฟฝ + cos๐œ™๐œ™๐ฒ๐ฒ๏ฟฝ

dl= ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“๐’“๐’“๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐œฝ๐œฝ๐œฝ๐œฝ๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐“๐“๏ฟฝ The infinitesimal displacement vector in the spherical polar coordinate is given by

(In Cartesian system we have ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ )

dl= ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐’“๐’“๏ฟฝ + ๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐œƒ๐œƒ๐œฝ๐œฝ๏ฟฝ + ๐‘Ÿ๐‘Ÿsin๐œƒ๐œƒ๐‘‘๐‘‘๐œ™๐œ™๐“๐“๏ฟฝ

The infinitesimal volume element: ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“๐‘‘๐‘‘๐‘‘๐‘‘๐œฝ๐œฝ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“ = ๐‘Ÿ๐‘Ÿ2sin๐œƒ๐œƒ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐œƒ๐œƒ๐‘‘๐‘‘๐œ™๐œ™

The infinitesimal area element (it depends): ๐‘‘๐‘‘๐š๐š = ๐‘‘๐‘‘๐‘‘๐‘‘๐œฝ๐œฝ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐’“๐’“๏ฟฝ = ๐‘Ÿ๐‘Ÿ2sin๐œƒ๐œƒ๐‘‘๐‘‘๐œƒ๐œƒ๐‘‘๐‘‘๐œ™๐œ™๐’“๐’“๏ฟฝ

(over the surface of a sphere) 12

Griffiths: Prob 1.37

Cylindrical Coordinates:

๐œ•๐œ• = s cos๐œ™๐œ™, ๐œ•๐œ• = ๐‘ ๐‘  sin๐œ™๐œ™, ๐œ•๐œ• = ๐œ•๐œ•

๐€๐€ = A๐’”๐’”๐’”๐’”๏ฟฝ + A๐“๐“๐“๐“๏ฟฝ + A๐’›๐’›๐’›๐’›๏ฟฝ A vector in the cylindrical coordinates is given by

๐ฌ๐ฌ๏ฟฝ = cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ

๐ณ๐ณ๏ฟฝ = ๐ณ๐ณ๏ฟฝ

๐“๐“๏ฟฝ = โˆ’sin๐œ™๐œ™๐ฑ๐ฑ๏ฟฝ + cos๐œ™๐œ™๐ฒ๐ฒ๏ฟฝ

dl= ๐‘‘๐‘‘๐‘‘๐‘‘๐’”๐’”๐’”๐’”๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐“๐“๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐’›๐’›๐’›๐’›๏ฟฝ The infinitesimal displacement vector in the cylindrical coordinates is given by

Griffiths: Prob 1.41

(In Cartesian system we have ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ )

0 โ‰ค ๐‘ ๐‘  โ‰ค โˆž; 0 โ‰ค ๐œ™๐œ™ โ‰ค 2๐œ‹๐œ‹; โˆ’โˆž โ‰ค ๐œ•๐œ• โ‰ค โˆž

13

๐€๐€

Cylindrical Coordinates:

๐œ•๐œ• = s cos๐œ™๐œ™, ๐œ•๐œ• = ๐‘ ๐‘  sin๐œ™๐œ™, ๐œ•๐œ• = ๐œ•๐œ•

๐€๐€ = A๐’”๐’”๐’”๐’”๏ฟฝ + A๐“๐“๐“๐“๏ฟฝ + A๐’›๐’›๐’›๐’›๏ฟฝ A vector in the cylindrical coordinates is given by

๐ฌ๐ฌ๏ฟฝ = cos๐œ™๐œ™ ๐ฑ๐ฑ๏ฟฝ + sin๐œ™๐œ™ ๐ฒ๐ฒ๏ฟฝ

๐ณ๐ณ๏ฟฝ = ๐ณ๐ณ๏ฟฝ

๐“๐“๏ฟฝ = โˆ’sin๐œ™๐œ™๐ฑ๐ฑ๏ฟฝ + cos๐œ™๐œ™๐ฒ๐ฒ๏ฟฝ

dl= ๐‘‘๐‘‘๐‘‘๐‘‘๐’”๐’”๐’”๐’”๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐“๐“๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐’›๐’›๐’›๐’›๏ฟฝ The infinitesimal displacement vector in the cylindrical coordinates is given by

(In Cartesian system we have ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐œ•๐œ• ๐’™๐’™๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’š๐’š๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ )

dl= ๐‘‘๐‘‘๐‘ ๐‘ ๐’”๐’”๏ฟฝ + ๐‘ ๐‘ ๐‘‘๐‘‘๐œ™๐œ™๐“๐“๏ฟฝ + ๐‘‘๐‘‘๐œ•๐œ•๐’›๐’›๏ฟฝ

The infinitesimal volume element:

The infinitesimal area element (it depends): ๐‘‘๐‘‘๐š๐š = ๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐‘‘๐‘‘๐‘‘๐‘‘๐’›๐’›๐’”๐’”๏ฟฝ = ๐‘ ๐‘  ๐‘‘๐‘‘๐œ™๐œ™๐‘‘๐‘‘๐œ•๐œ•๐’”๐’”๏ฟฝ

(over the surface of a cylinder)

๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘๐‘‘๐‘‘๐’”๐’”๐‘‘๐‘‘๐‘‘๐‘‘๐“๐“๐‘‘๐‘‘๐‘‘๐‘‘๐’›๐’› = ๐‘ ๐‘  ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐œ™๐œ™๐‘‘๐‘‘๐œ•๐œ•

14

Griffiths: Prob 1.41

๐€๐€

Gradient, Divergence and Curl in Cartesian, Spherical-polar and Cylindrical Coordinate systems:

โ€ข See the formulas listed inside the front cover of Griffiths

15