phylogenetic diversity of sponge-associated fungi ......amp pcr system 2700 with 25 μl of reaction...

32
ORIGINAL ARTICLE Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors Jessica Bolaños 1 & Luis Fernando De León 1 & Edgardo Ochoa 2 & José Darias 3 & Huzefa A. Raja 4 & Carol A. Shearer 5 & Andrew N. Miller 6 & Patrick Vanderheyden 7 & Andrea Porras-Alfaro 8 & Catherina Caballero-George 1 Received: 9 September 2014 /Accepted: 17 April 2015 /Published online: 31 May 2015 # Springer Science+Business Media New York 2015 Abstract Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and deter- mines their potential to produce secondary metabolites capa- ble of interacting with mammalian G-protein-coupled recep- tors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58 % repre- sented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6 %) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found dur- ing phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cul- tures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50 % of the control and seven others inhibited between 30 and 45 %. Our results indicate that marine sponges from Panama are a Bhot spot^ of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances pres- ent in previously undiscovered fungi associated with ma- rine sponges. Keywords Fungi . Marine ecosystem . Sponge . Diversity . Blood pressure . Panama Introduction Fungi occupy an important ecological niche in the marine environment as revealed by phylogenetic analysis of increas- Electronic supplementary material The online version of this article (doi:10.1007/s10126-015-9634-z) contains supplementary material, which is available to authorized users. * Catherina Caballero-George [email protected]; [email protected] 1 Institute of Scientific Research and High Technology Services, Bld. 219, City of Knowledge, Clayton, Panama, Republic of Panama 2 Conservation International, 2011 Crystal Dr. Suite 500, 22202 Arlington, VA, USA 3 Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain 4 Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, 435 Sullivan Science Building, 301 McIver Street, Greensboro, NC 27412, USA 5 Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801, USA 6 Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA 7 Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Building E, Room E7.09, Pleinlaan 2, B-1050 Brussels, Belgium 8 Department of Biological Sciences, Western Illinois University, Waggoner Hall 372, 1 University Circle, Macomb, IL 61455, USA Mar Biotechnol (2015) 17:533564 DOI 10.1007/s10126-015-9634-z

Upload: others

Post on 27-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

ORIGINAL ARTICLE

Phylogenetic Diversity of Sponge-Associated Fungifrom the Caribbean and the Pacific of Panama and Their In VitroEffect on Angiotensin and Endothelin Receptors

Jessica Bolaños1 & Luis Fernando De León1& Edgardo Ochoa2 & José Darias3 &

Huzefa A. Raja4 & Carol A. Shearer5 & Andrew N. Miller6 & Patrick Vanderheyden7&

Andrea Porras-Alfaro8 & Catherina Caballero-George1

Received: 9 September 2014 /Accepted: 17 April 2015 /Published online: 31 May 2015# Springer Science+Business Media New York 2015

Abstract Fungi occupy an important ecological niche in themarine environment, and marine fungi possess an immensebiotechnological potential. This study documents the fungaldiversity associated with 39 species of sponges and deter-mines their potential to produce secondary metabolites capa-ble of interacting with mammalian G-protein-coupled recep-tors involved in blood pressure regulation. Total genomicDNA was extracted from 563 representative fungal strainsobtained from marine sponges collected by SCUBA fromthe Caribbean and the Pacific regions of Panama. A total of194 operational taxonomic units were found with 58 % repre-sented by singletons based on the internal transcribed spacer(ITS) and partial large subunit (LSU) rDNA regions. Marinesponges were highly dominated by Ascomycota fungi (95.6 %)and represented by two major classes, Sordariomycetes andDothideomycetes. Rarefaction curves showed no saturation,indicating that further efforts are needed to reveal the entirediversity at this site. Several unique clades were found dur-ing phylogenetic analysis with the highest diversity ofunique clades in the order Pleosporales. From the 65 cul-

tures tested to determine their in vitro effect on angiotensinand endothelin receptors, the extracts of Fusarium sp. andPhoma sp. blocked the activation of these receptors bymore than 50 % of the control and seven others inhibitedbetween 30 and 45 %. Our results indicate that marinesponges from Panama are a Bhot spot^ of fungal diversityas well as a rich resource for capturing, cataloguing, andassessing the pharmacological potential of substances pres-ent in previously undiscovered fungi associated with ma-rine sponges.

Keywords Fungi . Marine ecosystem . Sponge . Diversity .

Blood pressure . Panama

Introduction

Fungi occupy an important ecological niche in the marineenvironment as revealed by phylogenetic analysis of increas-

Electronic supplementary material The online version of this article(doi:10.1007/s10126-015-9634-z) contains supplementary material,which is available to authorized users.

* Catherina [email protected]; [email protected]

1 Institute of Scientific Research and High Technology Services, Bld.219, City of Knowledge, Clayton, Panama, Republic of Panama

2 Conservation International, 2011 Crystal Dr. Suite 500,22202 Arlington, VA, USA

3 Instituto de Productos Naturales y Agrobiología (IPNA), ConsejoSuperior de Investigaciones Científicas, Avda. Astrofísico Fco.Sánchez, 3, 38206 La Laguna, Tenerife, Spain

4 Department of Chemistry and Biochemistry, The University of NorthCarolina at Greensboro, 435 Sullivan Science Building, 301 McIverStreet, Greensboro, NC 27412, USA

5 Department of Plant Biology, University of Illinois, 505 SouthGoodwin Avenue, Urbana, IL 61801, USA

6 Illinois Natural History Survey, University of Illinois, 1816 SouthOak Street, Champaign, IL 61820, USA

7 Faculty of Sciences and Bioengineering Sciences, Vrije UniversiteitBrussel, Building E, Room E7.09, Pleinlaan 2,B-1050 Brussels, Belgium

8 Department of Biological Sciences, Western Illinois University,Waggoner Hall 372, 1 University Circle, Macomb, IL 61455, USA

Mar Biotechnol (2015) 17:533–564DOI 10.1007/s10126-015-9634-z

Page 2: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

ingly available molecular data which promise to unravel theyet to be described marine fungal diversity (Manohar andRaghukumar 2013). Sponges can harbor microorganisms thatare either acquired from the surrounding waters or by parentalsponges through reproductive stages (Taylor et al. 2007).These microorganisms, which represent members from allthree domains of life, Bacteria, Archaea, and Eukarya, occupy35 % of sponge biomass and can influence sponge defenseresponses and metabolism (Simister et al. 2012).

Interactions between sponges and bacteria are well studiedand characterized in terms of host specificity and bacterial diver-sity (Taylor et al. 2013; Simister et al. 2012; Taylor et al. 2007),but there have been few studies regarding Archaea and fungiinteracting with sponges. Culture-based and isolation-independent methods have shown a large diversity of fungi as-sociated with sponges and have demonstrated that fungal com-munity composition differs between sponge species and the sur-rounding water (Li and Wang 2009; Gao et al. 2008). The ma-jority of the identified cultivable fungi associated with spongesbelongs to the phylum Ascomycota with Eurotiales andHypocreales as the most abundant orders within the phylum(Li and Wang 2009; Baker et al. 2009; Liu et al. 2010; Dinget al. 2011;Wiese et al. 2011). In addition, the order Capnodialeswas the major representative in two sponge species classified inthe order Haplosclerida collected in the South China Sea (Liuet al. 2010). Overall, there is strong evidence that the diversity ofgenera and the number of isolates per sponge varies greatlyamong different locations. Although it has been suggested thatculture-based methods overlook a large diversity of fungi(Richards et al. 2012), culture-based methods continue to befavored by research programs aimed at studying the biotechno-logical potential of fungi (Caballero-George et al. 2010; Kjeret al. 2010; Liu et al. 2010; Blunt et al. 2009).

Panama is home to high diversity of terrestrial and marineecosystems that together represent a tremendous richness ofmac-roscopic and microscopic species (Ziegler and Leigh 2002;Ridgely and Gwynne 1989; Myers et al. 2000). Following therise of the Isthmus of Panama approximately 3.5 MYA, coastalocean environments became strikingly different at both sides ofthe isthmus (Jackson and D’Croz 2003; Coates 2001). High-range semi-diurnal tides and high-nutrient and high-planktonwaters became the norm for the Pacific side, in contrast to thesmall-range diurnal tides and nutrient- and plankton-poor warmwaters in the Caribbean side. In the Panamanian Pacific coast, theGulf of Panama is exposed to the seasonal upwelling of cold andnutrient-rich waters during the boreal winter, whereas the adja-cent Gulf of Chiriquí is not (D’Croz and Robertson 1997;D’Croz and O’Dea 2007). We used these widely differentiatedoceanographic zones within a relatively short distance to docu-ment fungal communities associated with 39 species of spongescollected in areas of high biodiversity.

We have evaluated the capacity of a representative numberof the isolated fungal species to produce secondary metabolites

capable of interacting with three G-protein receptors (GPCRs)involved in blood pressure regulation including angiotensinAT1 (AT1) (Timmermans et al. 1992), endothelin ETA (ETA),and endothelin ETB (ETB) (Takigawa et al. 1995). For thispurpose, we investigated whether crude organic extracts of the-se species interfere with the activation of GPCRs for the endog-enous peptides endothelin-1 and angiotensin II. Both mediatorsplay an important role in cardiovascular homoeostasis byinfluencing vascular tone and fluid and electrolyte balance(Timmermans et al. 1992; Masaki 1989). Activation of thesereceptors is linked via interaction with Gq/GTP-binding pro-teins to the PIP2/phospholipase C pathway, which by increasingintracellular calcium mediates contraction of vascular smoothmuscle cells, leading to vasoconstriction (Timmermans et al.1992; Takigawa et al. 1995). The major effects of angiotensinII, which include peripheral vasoconstriction of vascularsmooth muscle cells, increased release of noradrenalin fromsympathetic nerve terminals, increase of sodium reabsorptionin the kidney, increase secretion of the mineralocorticoid hor-mone aldosterone, and enhanced growth of vascular smoothmuscle cells and cardiomyocytes, are mediated via AT1 recep-tors (Dostal et al. 1997).With respect to endothelin-1, both ETAand ETB receptors mediate vascular smooth muscle cell con-traction also leading to vasoconstriction (Takigawa et al. 1995).To investigate whether the selected fungal extracts are able toblock the responses for these three receptors, wemake use of anaequorin-based bioluminescence cellular read-out system. Thissystem is a very convenient functional screening for GPCRs asit is a non-radioactive method, has a very favorable signal-to-noise ratio, and can be easily measured in 96-well plates (Deoand Daunert 2001).

Materials and Methods

Sponge Collection and Site Description

One hundred living, apparently healthy marine sponges werecollected by SCUBA from 12 sites (Fig. 1) along the Caribbean(54 sponge specimens) and Pacific (28 sponge specimens in theGulf of Chiriquí and 28 sponge specimens in the Gulf ofPanama) of the Republic of Panama at depths between 3 and30 m. Three individuals of each species of sponges were col-lected in an area of ca. 3 m2 at each site from 2006 until 2010(Appendix 2). To prevent cross contamination among samples,each sponge was sealed in situ in an individual plastic bag afterremoving excessive water and was processed for fungal isola-tion (below) within 2 h. Sponges were identified following Zea(1987), Hooper and Van Soest (2002), and Collin et al. (2005).Fungi were isolated from sponges belonging to nine taxonomicorders namely Chondrosida (n=2), Dictyoceratida (n=5),Hadromerida (n=8), Halichondrida (n=7), Haplosclerida (n=22), Homosclerophorida (n=3), Poecilosclerida (n=12),

534 Mar Biotechnol (2015) 17:533–564

Page 3: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Spirophorida (n=3), Verongida (n=34) and 14 unidentifiedsponge specimens from the class Desmospongia.

Isolation and Molecular Analyses of Sponge-AssociatedFungi

The collected material was treated as described by Caballero-George et al. (2010). Briefly, under sterile conditions in a portablelaminar flow cabinet (Portable Clean Air Unit, LibertyIndustries), whole fresh sponges were placed on a sterilizedstrainer and washed thoroughly with sterile artificial seawater(adjusted to 36 g/l for Caribbean sites and 32 g/l for Pacific sites).Samples were pressed on sterile, absorbent paper and cut with asterile scalpel into ca. 1×0.5-cm pieces, making a cross sectionfrom the osculum to the holdfast. Pieces were washed three timeswith sterile artificial saline water and dried as above. From thecleaned mesohyl of each sample, 60 cubes of 2–3mm3were cut.Ten cubes were placed onto each of six solid pre-sterilized iso-lation media. These media were selected mainly because of theircommon use in isolation of endophytic fungi, availability, andvariation in nutrient composition: P15: 1.25 g/l peptone, 1.25 g/lyeast extract, 3 g/l D-glucose, 20 g/l agar, 15 g/l marine salt; P30:1.25 g/l peptone, 1.25 g/l yeast extract, 3 g/l D-glucose, 20 g/lagar, 30 g/l marine salt; EM: 10 g/l malt extract, 20 g/l agar; PD:20 g/l potato dextrose agar, 10.00 g/l agar; M1D: 0.28 g/lCa(NO3)2·4H2O, 0.07 g/l KNO3, 0.065 g/l KCl, 0.36 g/lMgSO4, 0.017 g/l NaH2PO4, 30 g/l sucrose, 4.99 g/l ammoniumtartrate, 0.002 g/l FeCl3·6H2O, 0.0045 g/l MnSO4, 0.0014 g/lZnSO4, 0.0014 g/l H3BO3, 0.00074 g/l KI, 38 g/l marine salt,20 g/l agar (Caballero-George et al. 2010); and SNA (Höller et al.1999). All plates were monitored daily for hyphal growth for8 weeks, and emergent fungi were transferred to axenic cultureson the same isolation media. Negative controls to detect contam-ination from seawater were prepared using a sterilized syringe toobtain 3 ml of seawater from within sponges at the site of col-lection. This water was spread on a Petri dish containing EM

isolation media and allowed to stand at room temperature for12 weeks.

Total genomic DNA was extracted from representative iso-lates following Arnold and Lutzoni (2007). The complete inter-nal transcribed spacer (ITS) and partial large subunit (LSU) of thenuclear ribosomal DNAwere amplified in a single reaction usingITS5 (or ITS1) and LR3 (or ITS4) primers (White et al. 1990;Gardes and Bruns 1993). Reactions were performed in a GeneAmp PCR System 2700 with 25 μl of reaction per sample: 1 μlof DNA template (1:10 dilution of extracted genomic DNA),9.5 μl of DNAse- and RNAse-free ultrapure water, 1 μl of eachprimer (10 μmol), and 12.5 μl of RedTaq® Ready Mix™ PCRreaction mix. A non-template control was included in each run.The cycling parameters were 3 min at 94 °C, 34 cycles of 30 s at94 °C, 30 s at 54 °C, and 1min at 72 °C, with a final extension at72 °C for 10min (Arnold and Lutzoni 2007). PCRproductswereresolved by electrophoresis in a 1.5 % agarose gel (Promega,USA) stained with 0.5 μg/ml ethidium bromide. Positive prod-ucts showing single bands were sequenced bidirectionally at theUniversity of Arizona Genomic Core facility on an ABI 3700.Base calls and assembly were performed by phred and phrap(Ewing and Green 1998; Ewing et al. 1998) with orchestrationby Mesquite (Maddison and Maddison 2009: http://www.mesquiteproject.org), and contigs were edited by eye inSequencher 4.8 (Gene Codes, USA). Consensus sequenceswere compared against the NCBI GenBank database usingBLAST to determine the closest relatives. Fungal ITS-LSUrDNA sequences obtained in this study were deposited inGenBank under accession numbers listed inAppendix 1. In orderto define operational taxonomic units (OTUs), sequences weregrouped at 97 % similarity, 40 % overlap in Sequencher 4.8 as aproxy for species definition (Porras-Alfaro et al. 2011). OTUswere confirmed comparing only the ITS region of the ITS-LSUsequences against the NCBI GenBank database using nBLASTanalysis. The following criteria were used to select the closestrelatives of the sequences in the GenBank database: if the

Fig. 1 Distribution of sponge collection sites in the Republic of Panama.1 Secas Islands, Gulf of Chiriquí; 2 Ranchería Island, Coiba NationalPark; 3 Bahía Damas, Coiba National Park; 4 Jicarón and JicaritaIslands, Coiba National Park; 5 West of Cébaco Island, Veraguas; 6

Frailes and Monjas Islands, Los Santos; 7 Las Perlas, Gulf of Panama;8 Otoque and Boná, Gulf of Panama; 9 Airport, Bocas del Toro; 10STRI’s Point, Bocas del Toro; 11 Punta Caracol, Bocas del Toro; 12Wild Cane Key, Bocas del Toro

Mar Biotechnol (2015) 17:533–564 535

Page 4: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

sequence identity was ≥97 %, the genus and species were ac-cepted; if the sequence identities were between 91 and 96 %,only the genus was accepted; and if sequence identities were≤90 %, isolates were labeled with the order or family name.All three criteria were defined on the basis of sequence similarityover shared sequence lengths with ≥80 % overlap.

Statistical Analysis

Phylogenetic Analyses

The newly obtained sequences were aligned with sequencesfrom GenBank using the multiple sequence alignment pro-gram MUSCLE® (Edgar 2004) with default parameters inoperation. MUSCLE® was implemented using SeaView v.4.1 (Gouy et al. 2010). Prior to maximum likelihood (ML)analyses, we excluded the ambiguous regions from the align-ment using Gblocks (Castresana 2000; Talavera andCastresana 2007). Maximum likelihood analyses usingPhyML were run on each dataset (Dothideomycetes,Sordariomycetes) using a GTR model including invariablesites and discrete gamma shape distribution with combinedNNI and SPR tree searches in effect (Guindon and Gascuel2003). Maximum likelihood bootstrap analyses were per-formed using RAxML v. 7.0.4 (Stamatakis et al. 2008), whichwere ran on the CIPRES Portal v. 2.0 (Miller et al. 2010) withthe default rapid hill-climbing algorithm and GTR modelemploying 1000 fast bootstrap searches. Clades with boot-strap values (BV) ≥70 % were considered significant andstrongly supported (Hills and Bull 1993).

Fungal Diversity and Abundance

We used Fisher’s alpha index in order to estimate thediversity of isolated fungal species from different ocean-ographic zones (Caribbean, Gulf of Panama, and Gulfof Chiriquí) and from different sponge orders. We per-formed a Kruskal-Wallis test to compare the relativeabundance of fungal species among zones and spongeorders. We also performed an analysis of similarity(ANOSIM) to compare species composition betweenzones and among sponge orders. Finally, we generatedrarefaction curves to test for the cumulative number offungal species in relation to our sampling effort. Theseanalyses were performed using R (R Development CoreTeam 2008).

Receptor Functional Assay

Culture Extracts

Unique OTUs representing diverse orders within theAscomycota and Basidiomycota were selected and grown on

liquidmedia for chemical extraction. Subsequently, these extractswere evaluated for their in vitro effect on angiotensin andendothelin receptors. Organic extracts from 65 fungal isolateswere prepared as previously described by Caballero-Georgeet al. (2010). Briefly, fungi were cultivated in 150 ml of liquidmedia (prepared as above, but without agar) on an orbital shaker(Thermo, USA) at 175 rpm for 15 days at 28 °C. Those isolatesthat did not change the color of the liquid media while grownunder agitation were further grown as stationary cultures (onshelves) in the same media at room temperature (22 °C) for3 weeks. At harvest, each culture was homogenized using alaboratory blender (Waring, USA) for 1 min, and the resultantmixture exhaustively extracted with ethyl acetate. Organic frac-tions were combined and the solvent was removed at reducedpressure at <40 °C. Dried extracts were dissolved in DMSO/water with a final concentration of 100 μg/ml (1 % DMSO) forthe assays described below (Caballero-George et al. 2010).

Cell Culture and Transfection with Human AT1, ETA, and ETBReceptors

CHO-AEQ cells were cultured in Dulbecco’s ModifiedEagle’s Medium (DMEM) growth medium containing 10 %fetal bovine serum (Life Technologies Europe B.V., Gent,Belgium) as previously described (Vanderheyden et al.1999). At 75 % confluency, these cells were transientlytransfected with pcDNA3.1+ (Invitrogen) plasmid DNA inwhich the coding region for human AT1, ETA, or ETB receptorwas inserted and which was obtained from Missouri S&TcDNA Resource Center (Missouri University of Science andTechnology, USA). The transient transfection was performedwith Fugene HD® (Promega, Leiden, The Netherlands) fol-lowing manufacturers’ instructions, at a ratio of 2 μg DNA to7 μl Fugene HD® in Opti-MEM® medium (Invitrogen,Merelbeke, Belgium). After transfection, the cells were cul-tured for one more day, after which they were harvested andloaded with coelenterazine-h (see next section). Stable AT1

receptor-transfected CHO-AEQ cells were obtained by trans-ferring the transiently transfected cell to medium containing1 mg/ml geneticin and subsequent selection of single cellclones after serial dilution in 96-well plates. The single cellclone that was used in subsequent experiments was selectedon the basis of the size of the angiotensin II-induced AT1

receptor responses in the aequorin bioluminescence assay (da-ta not shown) (Nikolaou et al. 2013).

Effects of Extracts on the AT1, ETA, or ETB Receptor-MediatedCellular Responses: Aequorin Bioluminescence Assay

A functional bioluminescence assay was performed with theCHO-AEQ cell line (kindly donated by Dr. M. Detheux;Euroscreen S.A., Gosselies, Belgium), stably transfected withthe human AT1 receptor or transiently transfected with human

536 Mar Biotechnol (2015) 17:533–564

Page 5: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

ETA or human ETB receptors. Binding of the agonists (0.1 μMangiotensin II or 10 nMendothelin-1) for these receptors causes atransient rise in cytosolic calcium.Detection of the calcium signalis based on the interaction of calcium ions with the calcium-binding bioluminescent complex aequorin. Upon calcium bind-ing, aequorin oxidizes coelenterazine-h into coelenteramide withproduction of CO2 and emission of light (466 nm) (Le Poul et al.2002). Confluent CHO-AEQ cells that were grown andtransfected in 75-cm2 culture flasks were harvested by a brieftreatment with Trypsin/EDTA solution, centrifuged, and resus-pended in DMEM-F12 cell culture medium (Life TechnologiesEurope B.V., Gent, Belgium) containing 0.1 % BSA (Sigma,Bornem, Belgium) and denoted as assay buffer, at a cell densityof 2.5×106 cells/ml. Subsequently, coelenterazine-h (GentaurEurope BVBA, Kampenhout, Belgium) was added to the cellsuspension to obtain a concentration of 5 μM. Cells were thenincubated between 14 and 18 h at room temperature in the darkunder gentle shaking. After this loading step, 15 ml assay bufferwas added to the cells and then centrifuged for 7min at 1100 rpmin a swinging bucket centrifuge. The obtained cell pellets weregently resuspended in assay buffer containing 1 μMcoelenterazine-h at a cell density of 5×105 cells/ml. After a fur-ther incubation of 1.5 h at room temperature, the cell suspensionwas distributed at 100 μl/well in white Cellstar 96-well plates(Greiner Bio One, Wemmel, Belgium). To assess the ability toinhibit the agonist responses, the lyophilized extracts were dis-solved in DMSO at 1 mg/ml, further diluted in assay buffer to100μg/ml (final concentration), and 50 μl/well of these dilutionswas added to the cells. To measure the agonist responses, thecontrol peptides were diluted in assay buffer to obtain a finalconcentration of 0.1 μM angiotensin II or 10 nM endothelin-1.For this purpose, the agonist solutions were loaded in the cellinjector of a TECAN® M200 spectrophotometer (Tecan GroupLtd., Mechelen, Belgium), and a 96-well plate was inserted.Measurements were initiated by injecting 50 μl agonist

solution/well, and the bioluminescence was recorded every200 ms during 120 cycles. To account for slight variations in cellnumber, a final concentration of 10 μM ATP (adenosine 5′-tri-phosphate, Sigma, Bornem, Belgium) was added by a secondinjector to the cells (50 μl/well) and the resulting response wasmeasured. The effects of the peptides and ATP were quantifiedby calculation of the area under the curves by integration of theobtained transient responses using GraphPad Prism 5™. Theactivation of the AT1, ETA, or ETB receptors was expressed asa fractional response. This is obtained by dividing the agonistresponse by the sum of the agonist and ATP response for eachwell (i.e., agonist response/(ATP+agonist response)). The frac-tional response is used to normalize the agonist response in eachwell for the amount of living cells in the well (that is proportionalto the ATP response) (Nikolaou et al. 2013).

The effect of the evaluated extracts was calculated as per-cent inhibition of the control responses and is given as theaverage±standard error of three determinations. In order tovalidate the three receptor assays, the agonist responses weremeasured after pre-incubation with 1 μM BQ123, 0.1 μMBQ788, or 1 μM candesartan which are selective antagonistfor ETA, ETB, and AT1 receptors, respectively.

Results

Diversity of Culturable Sponge-Associated Fungi

To evaluate the diversity of sponge-associated fungi from theselected areas in Panama, a total of 1412 fungal isolates wereobtained from six different culture media and 546 fungi wereselected for sequencing of the ITS-LSU region for identification.The highest diversity was isolated in EM and P30 media, but ingeneral, with the exception of M1D, most media provided morethan 50 different OTUs (Fig. 2). The highest number of OTUs

Fig. 2 Number of distinct fungalOTUs obtained by different typesof culture media

Mar Biotechnol (2015) 17:533–564 537

Page 6: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

was isolated in EM (23 %, n=80) and P30 (22 %, n=77) media followed by P15 (19 %, n=64), PD (17 %,n=57), and SNA (16 %, n=56). In spite of the lowpercentage (3 %, n=10) of OTUs and isolates with theM1D medium, this was the only media whereMarasmius exu s to ide s was found . S im i l a r l y,Co l l e t o t r i c hum s p . , Coch l i obo l u s n i s i k ado i ,Corynespora cas s i i co la , Eu type l l a koch iana ,Microdiplodia miyakei, Munkovalsaria appendiculata,and Nigrograna mackinnonii were only found in PDmedia. In this study, the highest number of distinctOTUs occurred within the order Hypocreales (27 %,n = 26), par t icular ly the genera Hypocrea , andAcremonium were obtained from P30. Interestingly,more OTUs were obtained from the genus Fusarium,in P15. Furthermore, within the order Pleosporales, themajority of OTUs obtained (28 %, n=22) were fromcultures in EM. Additionally, no media was significantlymore suitable than any other to isolate distinct OTUswithin the order Xylariales.

Fisher’s alpha index revealed some variation in richnessof culturable fungal species among the three oceanographiczones (32.07 for Caribbean, 17.77 for the Gulf of Panama,21.45 for the Gulf of Chiriquí). The richness of fungi iso-lated from different sponge orders also differed:Spirophorida (64.11), unidentified sponges from thePacific (27.38), Haplosclerida (26.31), Verongida (27.12),Poec i l o sc l e r i da (33 .19 ) , Chondros ida (26 .51 ) ,Homosclerophorida (1.59), Hadromerida (16.54), unidenti-fied sponges from the Caribbean (13. 27), Dictyoceratida(8.28), and Halichondrida (21.61). The Kruskal-Wallis testindicated significant differences in the relative abundanceof fungal species both among oceanographic zones (X2

(2)=58.63, P<0.001) and sponge orders (X2

(9)=19.61, P=0.02). Regarding species composition, the analysis of sim-ilarity (ANOSIM) found no differences among zones (R=0.034, P=0.077) or among sponge orders (R=0.07, P=0.062). Finally, rarefaction curves for both oceanographiczones and sponge orders revealed an increasing number ofspecies yet to be discovered with no evidence for saturation(data are given in Online Resource 1); this was also evidentby the large number of unique morphotypes found in eachsponge, most of them representing more than 30 % of theisolates per sponge specimen (Appendix 2).

Phylogenetic Analysis of Dominant Taxa

We sequenced a total of 563 isolates obtained from 115individual sponges from nine taxonomic orders and 12sites. A total of 203 different OTUs at 97 % similarity werefound, and 60 % of the OTUs were found only once (sin-gletons). The majority (95.6 %) of the identified fungibelonged to the phylum Ascomycota. Fungi identified as

Basidiomycota were represented by 2.7 % of the sequences,and 1.8 % could only be identified as Fungi incertae sedis(Appendix 1). The phylum Basidiomycota was represented bya small number of fungi (15 isolates) within the ordersAgaricales, Corticales, Hymenochaetales, Russulales, andPolyporales isolated from sponges from diverse orders includingAplysinidae, Axinellidae, Chalinidae, Niphatidae, Tedaniidae,Tetillidae, and Suberitidae, collected both in the Caribbean(depth between 0.3 and 10.67m) and the Pacific (depth between17.37 and 20.73 m).

Ascomycota was represented by two dominant majorlineages: Sordariomycetes (67.2 %) and Dothideomycetes(26.5 %) (Fig. 3). The orders Hypocreales and Xylarialeswere represented by 45 and 42 %, respectively, of all thesequences within the Sordariomycetes (Fig. 3b). The dom-inant representative genera were Eutypella (Xylariales),Acremonium (Hypocreales), and Hypocrea (Hypocreales)with 11.4, 6.6, and 4.8 % of the total of all sequences,respectively (Table 1). The order Pleosporales was highlydominant with 83 % of the sequenced isolates within theclass Dothideomycetes (Fig. 3a). The order Pleosporaleswas represented by 11 different genera based on nBLASTanalysis; however, these 11 genera only represent 18 % ofthe sequences within this order because 72 % of the se-quences could not be identified at the genus level.

Phylogenetic analysis revealed that fungal taxa associat-ed with sponges include a very diverse group representedby multiple unique clades with strong bootstrap support(F i g s . 4 and 5 ) . Phy l ogene t i c ana l y s i s o f t h eDothideomycetes was based on an alignment of 3332 bpand 86 taxa. After the 5′ and 3′ ends were delimited due

Table 1 Number of sequences obtainedfor the most common isolated OTUs

Most common OTUs(order, family, genus)

Number (%)of total sequences

Hypocreales 156 (28.6)

Hypocreaceae 65 (11.9)

Acremonium 36 (6.6)

Hypocrea 26 (4.8)

Nectriaceae 30 (5.5)

Fusarium 15 (2.7)

Pleosporales 114 (20.9)

Pleosporaceae 14 (2.5)

Phoma 7 (1.3)

Xylariales 145 (26.6)

Diatrypaceae 76 (13.9)

Eutypella 62 (11.4)

Xylariaceae 58 (10.6)

Xylaria 13 (2.4)

538 Mar Biotechnol (2015) 17:533–564

Page 7: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

to missing data in many sequences and after the removal ofamb i g u o u s r e g i o n s w i t h G b l o c k s , t h e f i n a lDothideomycetes dataset consisted of 1336 characters(Fig. 4). The Sordariomycetes alignment consisted of 121taxa and 1395 bp, which was reduced to 1277 charactersafter the removal of ambiguous regions (Fig. 5). The largenumber of unique clades with strong bootstrap supportfrom our study suggests that marine sponges may be a hotspot for species discovery (Fig. 4, clades A–I; Fig. 5, cladesA–F). Within Dothideomycetes, ten clades have uniquerepresentative sequences from the Caribbean and thePacific and a few seem to be highly specific for thePacific (clades C, E, G, H, and J) or the Caribbean (cladesB and D) coasts alone (Fig. 4). Fungi closely related toMicrosphaeropsis arundinis EF094551 were common,showed low specificity, and were obtained from the spongeorders Chondrosida, Hadromerida, Halichondrida,Haplosclerida, and Verongida. Within Sordariomycetes,six unique clades were found. The majority of the cladesshowed low specificity for the host or collection site with

the exception of clade B that was highly specific for theCaribbean and clade F that was highly specific for thePacific coast (Fig. 5).

In Vitro Effect of the Extracts on Angiotensinand Endothelin Receptors

The effect of 65 fungal extracts obtained from different typesof cultures and culture conditions for 61 isolates was tested fortheir ability to block the calcium response of the AT1, ETA, orETB receptors (Table 2 and Appendix 3). Activity that rangedbetween 20.2 and 67.9 % was observed in 24 isolates. Amongthe most active, Phoma sp. P1060-3-PD1 (Pleosporales)blocked 55.8 % of the calcium response of the ETA receptor,and Fusarium sp. B1a020-5b1-PD2 (Hypocreales) blocked67.9 % of the response of the ETB receptor and 49.7 % ofthe AT1 receptor. Interestingly, the culture technique appearedto influence the biological activity of the fungi. For instance,Fusarium sp. B1a020-5b1-PD2 produced a very active extract(see above) when cultured on PD on a shelf, while this inhib-itory activity was lost when compared to its PD culture in anorbital shaker at controlled temperature. Culturing the samegenus in P15 and P30 media resulted in inactive extracts. Inaddition, the other 22 extracts obtained from fungal isolatesblocked between 20.2 and 44.8 % of the calcium responsesmediated either by AT1 and/or ETA and/or ETB receptors. Themajority of the tested fungal extracts obtained fromHypocreales blocked the AT1 receptor, and those fromPleosporales, Sordariales, and Xylariales blocked theendothelin receptors (Table 2).

Discussion

Diversity of Fungal Isolates

Very little is known about the diversity, nature of theassociations, or the ecological significance of sponge-associated fungi. It is crucial to improve knowledge inthese areas to more precisely estimate fungal diversityvalues (Richards et al. 2012) and to maximize theirpotential biotechnological applications (Suryanarayanan2012).

Our data suggest that marine sponges from Panama couldrepresent a diverse hot spot to study marine fungi. This issupported by the large number of unique clades found in thephylogenetic analyses and the low similarity of 7 % (n=38) ofthe sequences to their closest match in NCBI, suggesting nov-elty in our study.

Themajority of the fungi isolated in this study belong to thephylum Ascomycota, and many taxa clustered close to cladesof known terrestrial fungi. Marine ascomycetes have beendescribed as primary or secondary inhabitants of marine

Fig. 3 Lineages and orders represented within the phylum Ascomycota

Mar Biotechnol (2015) 17:533–564 539

Page 8: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

environments (Kohlmeyer 1986). Primary marine species arehypothesized to be derived from ancestral lineages that origi-nated in marine environments, while secondary marine spe-cies represent the reintroduction of fungi into the marineenvironment and are suggested to share a more recent com-mon ancestry with terrestrial lineages (Spatafora et al.

Fig. 4 RAxML phylogenetic analysis of the Dothideomycetes based oncombined ITS and LSU. Numbers on the branches indicate bootstrapsupport. Purple asterisks represent samples from the Pacific, and

orange asterisks represent samples from the Caribbean. Boxes andletters indicate potential novel clades (ln likelihood for theDothideomycetes PhyML tree=14,518.7)

�Fig. 5 RAxML phylogenetic analysis of Sordariomycetes based oncombined ITS and LSU. Numbers on the branches indicate bootstrapsupport. Purple asterisks represent samples from the Pacific, andorange asterisks represent samples from the Caribbean. Boxes andletters indicate potential novel clades (ln likelihood for theSordariomycetes PhyML tree=16,047)

540 Mar Biotechnol (2015) 17:533–564

Page 9: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Mar Biotechnol (2015) 17:533–564 541

Page 10: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

1998). Many of our taxa were related to other species de-scribed in terrestrial ecosystems, but we also found a largenumber of unique clades in our study, suggesting that ma-rine sponges contain a mixture of primary and secondarymarine species.

Our findings are in agreement with previous publica-tions about marine Basidiomycota (mainly in the orderAgaricales) occurring at low abundance in marine eco-systems (Jones and Choeyklin 2008). Interestingly, ma-rine species of basidiomycetes have been described fromwood, mangrove, feathers, and marine grass; floating inthe sea; and to a lower extent within marine sponges(Ding et al. 2011; Gao et al. 2008; Jones and Choeyklin2008).

Distribution of Fungal Taxa Associated with MarineSponges

In this study, eight genera of fungi found in sponges havebeen previously isolated from sponges elsewhere (Table 3).

For instance, Acremonium strictum has been previously iso-lated from a Choristida sponge (Julianti et al. 2011),Clonostachys sp. from Tethya aurantium (Hadromerida)(Wiese et al. 2011) and Halicondria japonica (Halichondrida),Leptosphaerulina chartarum from Gelliodes fibrosa(Haplosclerida) (Wang et al. 2008), Letendraea helminthicolafrom Acanthella cavernosa (Halichondrida) (Yang et al.2007), M. arundinis from Gelliodes carnosa (Haplosclerida)(Liu et al. 2010), Phoma sp. from T. aurantium (Wiese et al.2011), Hypocrea sp. from T. aurantium (Hadromerida)(Wiese et al. 2011), and Psammocinia sp. (Dictyoceratida)(Gal-Hemed et al. 2011), G. fibrosa (Haplosclerida) (Wanget al. 2008), and Fusarium sp. from T. aurantium(Hadromerida) (Wiese et al. 2011). These findingssuggest that at least these eight fungal genera tendto be sponge generalists. Li and Wang (2009) classi-fied these commonly occurring fungal taxa as spongeassociates. Additional discussion on fungi associatedwith specific sponge orders are given in OnlineResource 2.

Table 2 Percentage of receptor inhibition by 100 μg/ml fungal extracts. Data represents the average and the standard deviation of three independentexperiments

Phylum Class Order Family Specie Media; culture ETA ETB AT1

Ascomycota Dothideomycetes Capnodiales Davidiellaceae Cladosporium sp. EM; shaker 16.71±0.61 20.88±13.16 1.32±2.13

Ascomycota Sordariomycetes Diaporthales Valsaceae Cytospora rhizophorae P30; shaker −0.18±10.38 31.55±3.80 30.61±0.43

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Acremonium implicatum P15; shaker 21.35±14.28 −36.87±8.22 30.23±3.73

Ascomycota Sordariomycetes Hypocreales Bionectriaceae Bionectria sp. P15; shaker 16.36±0.23 6.90±7.70 20.71±1.51

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium sp. PD; shaker 11.49±0.53 −0.08±0.10 20.95±1.38

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium sp. PD; shelf 3.74±2.88 67.93±2.31 49.74±2.59

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium sp. P30; shaker 20.61±4.06 9.07±1.50 23.02±1.36

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Hypocrea jecorina EM; shaker 23.88±3.39 22.44±7.82 24.48±5.93

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Hypocrea jecorina EM; shelf 20.15±4.17 24.16±2.21 2.55±4.24

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Hypocrea sp. P30; shaker 0.59±1.82 34.99±6.14 3.34±15.48

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Tolypocladium inflatum M1D; shaker 18.99±23.30 −100.35±62.6 40.24±0.78

Ascomycota NI NI NI NI P15; shaker 28.87±10.82 6.78±20.61 9.60±1.51

Ascomycota Dothideomycetes NI NI NI P30; shaker 16.04±5.06 35.50±10.10 16.08±5.93

Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae NI EM; shaker 22.06±1.94 37.03±23.08 −8.57±3.79Ascomycota Dothideomycetes Pleosporales Pleosporaceae Phoma sp. PD; shaker 55.84±0.60 39.47±3.50 29.39±4.21

Ascomycota Dothideomycetes Pleosporales NI NI EM; shaker 20.90±6.93 9.45±4.76 15.66±0.06

Ascomycota Sordariomycetes Sordariales Apiosporaceae Arthrinium sp. PD; shaker 23.39±31.36 −14.28±15.51 −5.64±20.14Ascomycota Dothideomycetes Venturiales Sympoventuriaceae Fusicladium sp. P30; shaker 18.78±6.44 20.61±15.51 20.28±5.93

Ascomycota Sordariomycetes Xylariales Diatrypaceae Eutypella scoparia EM; shaker 31.10±33.70 44.86±7.44 36.40±2.27

Ascomycota Sordariomycetes Xylariales Diatrypaceae Eutypella scoparia EM; shaker 29.12±23.18 −3.59±2.95 26.02±5.46

Ascomycota Sordariomycetes Xylariales Diatrypaceae Eutypella sp. P15; shaker 10.89±22.78 23.53±3.26 19.79±11.10

Basidiomycota Agaricomycetes Agaricales NI NI P15; shaker 23.68±6.92 −0.10±0.98 −5.54±4.48Basidiomycota Agaricomycetes Corticiales Corticiaceae NI EM; shaker 23.52±7.18 23.34±5.71 15.98±1.17

Basidiomycota Agaricomycetes Russulales Wrightoporiaceae Wrightoporia tropicalis P15; shaker 19.04±14.18 25.82±15.41 25.49±3.06

BQ123* 91.76±6.92 −0.22±8.28 nm

BQ788* 8.51±4.37 99.03±0.14 nm

Candesartan* nm nm 90.91±3.15

shaker culture in orbital shaker at 150 rpm and 28 °C, shelf culture on bench at 22 °C, * reference ligand, NI not identified, nm not measured

542 Mar Biotechnol (2015) 17:533–564

Page 11: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Table 3 Associations of fungal isolates with the marine environment

Fungal species Sponge host in Panama—order (species) Other reported hosts; location Reference

Fusarium sp. Hadromerida(P. intermedia, Spirastrella sp.)

Hadromerida (Tethya aurantium);Adriatic Sea

Wiese et al. 2011

Halichondrida (Axinella sp.) Marine fish and shellfish; Japan Hatai 2012

Haplosclerida(Xestospongia sp., N. erecta)

Hippocampus erectus; USA Salter et al. 2012

Dictyoceratida(H. cf intestinalis)

Salter et al. 2012

Poecilosclerida(Mycale sp., T. ignis)

Salter et al. 2012

Microsphaeropsisarundinis

Chondrosida Haplosclerida (Gelliodes carnosa);south of China

Liu et al. 2010

Hadromerida (P. intermedia) Liu et al. 2010

Halichondrida (Axinella sp.) Liu et al. 2010

Haplosclerida (N. erecta) Liu et al. 2010

Verongida (A. cauliformis) Liu et al. 2010

Acremoniumstrictum

Halichondrida (Axinella sp.) Choristida sponge; Korea Julianti et al. 2011

Haplosclerida(A. viridis, H. caerulea)

Julianti et al. 2011

Poecilosclerida (D. anchorata) Julianti et al. 2011

Verongida (A. fulva) Julianti et al. 2011

Letendraeahelminthicola

Haplosclerida (A. compressa) Halichondrida(Acanthella cavernosa);Hainan Island, China

Yang et al. 2007

Spirophorida (C. alloclada) Yang et al. 2007

Leptosphaerulinachartarum

Halichondrida (Axinella sp.) Haplosclerida (Gelliodes fibrosa);Hawaii

Wang et al. 2008

Spirophorida (C. alloclada) Wang et al. 2008

Phoma sp. Spirophorida (C. alloclada) Hadromerida (Tethya aurantium);Adriatic Sea

Wiese et al. 2011

Verongida(Aplysina sp., V. reiswigi)

Wiese et al. 2011

Hypocrea Hadromerida(P. intermedia, Spirastrella sp.)

Hadromerida (Tethya aurantium);Adriatic Sea

Wiese et al. 2011

Halichondrida (Axinella sp.) Dictyoceratida (Psammocinia sp.);Israel

Gal-Hemed et al. 2011

Haplosclerida (Haliclona sp.) Haplosclerida (Gelliodes fibrosa);Hawaii

Wang et al. 2008

Poecilosclerida(L. colombiensis, Mycale sp.)

Wang et al. 2008

Verongida (Aplysina sp.) Wang et al. 2008

Clonostachys sp. Hadromerida (C. delitrix) Hadromerida (Tethya aurantium);Adriatic Sea

Wiese et al. 2011

Halichondrida(Halicondria japonica);Japan

Adachi et al. 2005

Cruz et al. 2006

Bionectriaochroleuca

Hadromerida (Spirastrella sp.) Sonneratia caseolaris;Hainan Island, China

Ebrahim et al. 2012

Halichondrida (Axinella sp.) Ebrahim et al. 2012

Haplosclerida (N. erecta) Ebrahim et al. 2012

Cochlioboluslunatus

Hadromerida (Laxosuberites sp.) Dichotella gemmacea;South China Sea

Shao et al. 2011

Halichondrida (Axinella sp.) Shao et al. 2011

Arthrinium Hadromerida (Suberitidae) Seawater in a mangrove habitat;Hong Kong

Miao et al. 2006

Halichondrida (Axinella sp.) Miao et al. 2006

Verongida(A. chiriquensis, A. gerardogreeni)

Miao et al. 2006

Eutypella sp. Haplosclerida (Haliclona sp.),Xestospongia sp., N. erecta, A. viridis

Cnidarians(scleractinian coral and zoanthids);Brazil

Da Silva et al. 2008

Homosclerophorida (P. onkodes) Marine sediment;South China Sea

Sun et al. 2013

Verongida (Aplysina sp., V. reiswigi) Sun et al. 2013

Dictyoceratida (I. strobilina) Sun et al. 2013

Mar Biotechnol (2015) 17:533–564 543

Page 12: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Associations of Fungal Isolates with Other Organismsand the Marine Environment

Members of the Dothideomycetes, which we isolated fromsponges belonging to the orders Dictyocerat ida,Halichondrida, Poecilosclerida, and Verongida, have been re-ported previously from marine environments, not only as par-asites or symbionts of sea grasses or marine algae but also assaprobes on woody material (Richards et al. 2012).

A reasonable number of fungi from our study have beenpreviously isolated in the marine environment. For example,Bionectria ochroleuca was found in the mangrove plantSonneratia caseolaris (Ebrahim et al. 2012), Cochlioboluslunatus was obtained from the gorgonian Dichotellagemmacea (Shao et al. 2011), and Arthrinium sp. was isolatedfrom seawater in a mangrove habitat (Miao et al. 2006).Interestingly, Fusarium is a widespread genus in marine envi-ronments, where it has been associated with fungal diseases ofmarine animals caused by F. solani (Salter et al. 2012; Hatai2012), and is known to play a role in anaerobic denitrificationinmarine environments (Richards et al. 2012). The large num-ber of taxa also found in other marine substrates and hosts(Table 3) suggests that the fungal community in spongesmight have been acquired through horizontal transmission.

Although the majority of the identified fungal species havepreviously been associated with other marine organisms, it isstill unclear from these data whether the fungi reported hererepresent mutualistic organisms or parasites. We detected atleast one fungicolous species, Cosmospora vilior, which liveson Xylariaceae (Pearman et al. 2010).Cosmosporawas foundin the sponges from the genus Amphimedom, Placospongia,and Mycale sp. where, in fact, fungi from the Xylariaceaefamily were also found.

Most of the current knowledge about fungal diversityof sponge-associated fungi comes from culture-basedstudies that aim at discovering pharmacologically activemetabolites within individual strains. Although thesestudies are conservative and might not be truly repre-sentative of natural diversity (Richards et al. 2012), theyprove to be very useful to detect bioactive compoundsfrom fungi. This is why special efforts have been madeto expand culture media in order to isolate the largestpossible diversity. In this study, media based on maltextract were suitable to isolate a large number of fungiwi th the highest number of di fferent species .Nevertheless, singletons like Marasmius sp. M188I-1-M1D (JN601434 ID 93 %) and BotryosphaerialesC4071-2-P30 (HQ622105 ID 100 %) came from isolat-ing media such as M1D and P30, respectively, suggest-ing that the use of a diverse range of media increasesthe potential to capture a larger diversity of fungi andthat fungi from different taxonomic orders might showpreferences regarding culture media.

Inhibition of ETA, ETB, and/or AT1 Receptor-MediatedSignaling by Fungal Extracts

In the present study, we investigate the cardioprotective potentialof fungal extracts, an area of research that is largely unexplored.For this purpose, we measured the ability of 65 extracts from 61isolates to prevent ligand-mediated activation of ETA, ETB, and/or AT1 receptors by using the CHO cells that express these re-ceptors in addition to the calcium-sensitive bioluminescentapoaequroin. Interestingly, we found that 24 extracts containcomponents that prevent ligand-mediated activation of ETA,ETB, and/or AT1 receptors with inhibition ranging between20.2 and 67.9 %. A similar degree of inhibition was previouslyreported for a number of plant extracts like Guazuma ulmifoliawhich produced at 100 μg/ml less than 50 % inhibition of [3H]-angiotensin II binding to AT1 receptor expressed in CHO cells(Caballero-George et al. 2001). Further fractionation and purifi-cation of these extracts led to the isolation of compounds thatproduced inhibitory activity that was correlated with the degreeof procyanidin polymerization and that increased up to 99 %inhibition (at 100 μg/ml) of the [3H]-angiotensin II binding(Caballero-George et al. 2002).

Although, very little information is known on fungal ex-tract effects on GPCRs, available literature reveals that verydifferent chemical entities like drimane sesquiterpenes,azaphilones, and diphenyl ethers have been tested and shownto interact with endothelin receptors (Nakamura et al. 1995;Ogawa et al. 1995; Pairet et al. 1995). Taken together with thepresent study, these results suggest that marine fungi mayrepresent an unanticipated source of potentially novel interest-ing agents in the treatment of cardiovascular diseases.Obviously, further work is required to characterize and definethe structure of the compound(s) involved in these processes.

Together, these results suggest that there is a high diversity ofsponge-associated fungal species in neotropical waters and thatthis diversity varies both between geographical regions andamong host sponge species. Interestingly, our results also indicatethat a more systematic effort could help in a better understandingof the species richness and diversity of sponge-associated fungi.

Acknowledgments The authors thank the National Secretariat of Sci-ence and Technology of the Republic of Panama for financial support bygrants of international collaboration number COL08-014 and COL10-070 and by a partnership program between the Organization for the Pro-hibition of Chemical Weapons (The Hague, Netherlands) and the Inter-national Foundation for Science (Stockholm, Sweden). The College ofAgriculture and Life Sciences at The University of Arizona is gratefullyacknowledge for technical and logistical support for molecular analyses,Prof. Dr. Luis D’Croz for critically reviewing this work, Juan B. DelRosario for research assistance, and the Smithsonian Tropical ResearchInstitute for laboratory facilities, boats, and technical support. The authorsalso want to thank the Panamanian Authority of the Environment(ANAM) for their collaboration.

Conflict of Interest The authors declare that they have no competinginterests.

544 Mar Biotechnol (2015) 17:533–564

Page 13: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

Affiliationof

thefungalisolates

from

spongescollected

intheRepublic

ofPanama

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

Sn

Dpt

(m)

Ord

Fam

Species

Ph

Cl

Ord

Fam

Assignedtaxon

Ch

Chd

Chondrilla

sp.

C4091-3-EM1

JQ922240

AS

Xyl

Dty

Diatrypella

sp.

FJ800508

99100

P5

Dr

17.7

Ch

Chd

Chondrilla

sp.

C4091-6-EM1

KP1

43685

AD

Cpn

Dvd

Cladosporiumsp.

KC339216

100

100

P5

Dr

17.7

Ch

Chd

NI

P5025-9-P3

0JQ

344345

AD

Pls

Mnt

Microsphaeropsisarundinis

HQ607976

99100

P8

Rn

16.8

Dic

Ptr

Hyatella

cfintestinalis

C4015B-1-PD1

KP1

43686

AD

Pls

Ple

Cochliobolusnisikadoi

JN943428

98100

P5

Dr

17.68

Dic

Ptr

Hyatella

cfintestinalis

C4015B-3-PD

JQ388945

AD

Cpn

Dvd

Cladosporiumsp.

HM535372

100

100

P5

Dr

17.68

Dic

Ptr

Hyatella

cfintestinalis

C4015B-2-SNA2

KP1

43687

AS

Xyl

Xye

Xylaria

hypoxylon

EF4

23546

99100

P5

Dr

17.68

Dic

Ptr

Hyatella

cfintestinalis

C1039-1-EM1

JQ649384

AS

Hyp

Bio

Bionectriarossmaniae

AF3

58227

100

100

P2

Rn

11.58

Dic

Ptr

Hyatella

cfintestinalis

C1039-2-EM1

KP1

43688

AD

Cpn

Ter

Teratosphaeria

sp.

JN709043

93100

P2

Rn

11.58

Dic

Ptr

Hyatella

cfintestinalis

C1039-1-P15

KP1

43689

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

100

100

P2

Rn

11.58

Dic

Ptr

Hyatella

cfintestinalis

C3060-1a-EM1

JQ388937

AD

Pls

NI

Pleosporales

JX264157

9391

P5

Dr

29.57

Dic

Ptr

Hyatella

cfintestinalis

C3060-1b-EM1

JQ388938

AD

Pls

NI

Pleosporales

JX264157

9391

P5

Dr

29.57

Dic

Ptr

Hyatella

cfintestinalis

C3060-3-PD1

JQ922216

AS

Hyp

Nec

Fusariumsolani

HQ379686

99100

P5

Dr

29.57

Dic

Irc

Irciniastrobilina

B1b074-2-P3

0JQ

922188

AS

Hyp

Nec

Nectriaceae

HQ897828

8998

C9

Dr

10.67

Dic

Irc

Irciniastrobilina

B1a024-2-SN

A2

JQ411318

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C9

Rn

10.06

Had

Cln

Cliona

delitrix

B1b073-3-PD

2JQ

922128

AS

Hyp

Bio

Clonostachysdivergens

GU934587

100

100

C9

Dr

10.67

Had

Plc

Placospongiainterm

edia

B1a039-1-P3

0KP1

43690

AS

Hyp

Hyc

Acrem

oniummacroclavatum

HQ897806

99100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-2-P3

02KP1

43691

AS

Xyl

Xye

Hypoxylon

monticulosum

JN979435

97100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-4-P3

0KP1

43692

AS

Hyp

Hyc

Acrem

oniumfurcatum

JQ647429

9999

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-5-P3

02JQ

649375

AD

Pls

Ple

Pleosporales

HM992501

9594

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-1-P1

5JQ

411388

AS

Hyp

Nec

Fusariumculmorum

KC311482

99100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-3-P1

5KP1

43693

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-1-EM2

JQ922219

AS

Hyp

Hyc

Hypocr easp.

HE584898

99100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-3-EM2

KP1

43694

AS

Hyp

Nec

Cosmospora

vilior

JN541223

99100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-4-EM2

JQ649332

AS

Hyp

Hyc

Acrem

oniumimplicatum

GU189520

100

100

C9

Rn

10.06

Had

Plc

Placospongiainterm

edia

B1a039-5-EM2

JQ344353

AD

Pls

Mnt

Microsphaeropsisarundinis

EF0

94551

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a020A

-4-PD2

JQ411328

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1A

020A

-6-PD2

KP1

43695

AD

Bty

Bot

Microdiplodia

miyakei

HQ248187

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1A

020A

-6-EM2

KP1

43696

AD

Pls

Ple

Cochliobolussp.

JN207295

96100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a020A

-1-SNA2

JQ411381

AS

Hyp

Nec

Nectria

ipom

oeae

JQ717346

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a020A

-2-SNA2

KP1

43697

AD

Pls

NI

NI

JN545763

9960

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-1-EM2

KP1

43698

AD

Pls

Lep

Leptosphaeriaceae

FJ884103

9899

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-3-EM2

JQ388950

AD

Cpn

Dvd

Cladosporiumsp.

JQ988832

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-4-EM2

JQ411301

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-5-EM2

JQ411314

AS

Xyl

Dty

Eutypella

scoparia

JN601153

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-6-P152

JQ922174

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C9

Rn

10.06

App

endices

Append

ix1

Mar Biotechnol (2015) 17:533–564 545

Page 14: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Had

Spr

Spirastrella

sp.

B1a027A

-1-SNA1

KP143699

AE

Eur

Trc

Penicilliumpaxilli

JN617709

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-2-SNA2

JQ922210

AS

Hyp

Nec

Fusariumincarnatum

JX045848

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-5-SNA2

KP143700

AD

Pls

Mas

Massarina

sp.

JQ889692

9998

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-7a-SN

A2

JQ411383

AS

Hyp

Bio

Bionectriaochroleuca

JQ411383

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-8-SNA2

JQ922198

AS

Hyp

Nec

Nectria

ipom

oeae

JQ717346

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-9-SNA2

JQ922130

AS

Hyp

Bio

Bionectriaochroleuca

DQ674381

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-1-PD2

KP143701

AD

Pls

Spo

Preussiasp.

HQ607802

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1a027A

-2-PD2

JQ411325

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-1-EM2

KP143702

AS

Hyp

Hyc

Hypocreajecorina

JN704346

100

100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-1-PD2

KP143703

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-1-SNA2

JQ411360

AS

Hyp

Hyc

Hypocrealixii

JQ278697

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-3-SNA2

KP143704

AD

Pls

NI

Pleosporales

HQ649968

96100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-3B-P30

JQ922154

ANI

NI

NI

Ascom

ycota

HQ157161

9999

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-4-P30

KP143705

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-3-P152

JQ411385

AS

Hyp

Bio

Bionectriaochroleuca

HQ443202

9999

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-5-P15

KP143706

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Rn

10.06

Had

Spr

Spirastrella

sp.

B1aA-7-P152

JQ411315

AS

Xyl

Dty

Eutypella

scoparia

HM751800

99100

C9

Rn

10.06

Had

Sbr

NI

X0016R-4-P30

JQ649331

AS

Hyp

Hyc

Acrem

oniumimplicatum

GU189520

99100

P7

Dr

5.18

Had

Sbr

NI

X0016R-P153

JQ922209

AS

Hyp

Nec

Fusariumsp.

JN092584

100

100

P7

Dr

5.18

Had

Sbr

NI

X0016R-5-PD1

JQ411349

AS

Srd

Api

Arthriniumsp.

AY513945

9999

P7

Dr

5.18

Had

Sbr

NI

X0016R-4-SNA1

JQ411348

AS

Srd

Api

Arthriniumsp.

AB462755

99100

P7

Dr

5.18

Had

Sbr

Laxosuberitessp.

M2028-7-P30

JQ922124

ABa

Ply

Pol

Panus

sp.

JF741922

9299

P1

Rn

17.37

Had

Sbr

Laxosuberitessp.

M2017-1-P30

JQ388927

AD

Pls

Ple

Cochlioboluslunatus

HQ607991

99100

P6

Rn

21.34

Had

Sbr

Laxosuberitessp.

M2017-3-P30

KP143707

AS

Xyl

Xye

Biscogniauxia

sp.

FJ884075

100

100

P6

Rn

21.34

Had

Tth

Tethya

sp.

B1a110-8-EM2

JQ411322

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

97100

C11

Dr

5.18

Hal

Axn

Axinella

sp1

C4004-1b-P3

0JQ

922208

AS

Hyp

Nec

Fusariumsp.

JN092584

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4004-1-EM1

KP143708

AS

Srd

Api

Arthriniumphaeosperm

umHQ914942

96100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4004-2-EM2

KP143709

AS

Srd

Api

Arthriniumphaeosperm

umKC253945

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4004-5-EM1

KP143710

AS

Xyl

Xye

Xylariaceae

JQ862705

8998

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-1-EM1

KP143711

AD

Pls

Ple

Cochliobolussp.

HQ608077

95100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-2-EM1

KP143712

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-5-EM1

KP143713

AS

Xyl

Xye

Xylariaceae

EU009990

96100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-8-EM1

JQ388952

AD

Cpn

Dvd

Cladosporiumsp.

HM535372

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-1-PD1

KP143714

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-1a-PD

1JQ

922229

ANI

NI

NI

Ascom

ycota

EF0

60480

9799

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-2-PD1

JQ649365

AS

Srd

Api

Arthriniumsp.

JF817255

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-4-PD1

JQ649328

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-1-P15

JQ649329

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-4-P15

JQ922220

AS

Hyp

NI

Hypocreales

KC311493

100

98P

5Dr

17.68

Hal

Axn

Axinella

sp1

C4025-4-P301

JQ411382

AS

Hyp

Bio

Bionectriaochroleuca

DQ279793

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-2-SNA1

JQ649356

AS

Hyp

Hyc

Acrem

oniumstrictum

GU219467

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4025-3-SNA1

JQ649327

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

546 Mar Biotechnol (2015) 17:533–564

Page 15: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Hal

Axn

Axinella

sp1

C4006-2-SNA1

JQ388926

AD

Pls

Ple

Cochlioboluslunatus

HQ607991

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4006-10-P1

51KP2

63070

AD

Pls

NI

Pleosporales

JX264157

92100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4027-2-SNA1

KP2

63071

AD

Pls

Mnt

Microsphaeropsisarundinis

FJ798603

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4027-2-P15

KP2

63072

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4027-5-P15

JQ922212

AS

Hyp

Nec

Fusariumsolani

JQ723751

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4027-1a-P301

JQ411367

AS

Hyp

Hyc

Hypocreajecorina

JN704346

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4006-1-P30

KP2

63073

AS

Tri

NI

Nigrosporaoryzae

JF909550

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

C4006-5-P30

JQ411357

AS

Hyp

Hyc

Hypocrealixii

FR872742

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp1

P1057-1-P1

51KP2

63074

AS

Hyp

Nec

Nectria

sp.

HQ130677

99100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-1-EM1

JQ411351

AS

NI

NI

Sordariomycetes

JQ759196

83100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-2-EM1

KP2

63075

AS

NI

NI

Sordariomycetes

FJ799945

100

99P

8Rn

20.73

Hal

Axn

Axinella

sp1

P1057-3-EM1

KP2

63076

AS

NI

NI

Sordariomycetes

FJ799945

99100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-1-P3

0KP2

63077

AS

Xyl

Xye

Xylariaceae

JX624317

98100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-3-P3

0KP2

63078

AS

NI

NI

Sordariomycetes

FJ799946

99100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-2-PD

1JQ

922133

BAgm

Agr

Psa

Coprinellussp.

JN418793

99100

P8

Rn

20.73

Hal

Axn

Axinella

sp1

P1057-5-SN

A1

JQ411326

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

P8

Rn

20.73

Hal

Axn

Axinella

sp2

C4030-1a-EM1

KP2

63079

AD

Pls

Did

Leptosphaerulinachartarum

JN862799

9884

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-3-EM1

JQ922185

AS

Dia

Har

Harknessiasp.

DQ923532

92100

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-6-EM1

KP2

63080

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-1-P301

JQ922230

ANI

NI

NI

Ascom

ycota

EF060480

97100

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-3-P301

JQ649330

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-1-P15

JQ649349

AS

Hyp

Hyc

Acrem

oniumstrictum

GU219467

9999

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-1-SNA1

JQ922207

AS

Hyp

Nec

Fusariumsp.

GU233852

100

100

P5

Dr

17.68

Hal

Axn

Axinella

sp2

C4030-2-PD1

KP2

63081

AS

Xyl

Xye

Xylaria

sp.

HM535394

9782

P5

Dr

17.68

Hal

Dct

Scopalinasp.

C3060A-P301

JQ388939

AD

Pls

Spo

Preussiasp.

JN159709

99100

P5

Dr

29.57

Hal

Dct

Scopalinasp.

C3060A-2-P301

KP2

63082

AS

Hyp

Hyc

Acrem

oniumsp.

AY303601

92100

P5

Dr

29.57

Hal

Dct

Scopalinasp.

C3060A-3-P15

JQ649343

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

P5

Dr

29.57

Hap

Nph

Amphimedon

compressa

B1a013-6-EM2

JQ922238

AD

Pls

Mnt

Letendraea

helminthicola

JQ026217

100

100

C10

Rn

5.18

Hap

Nph

Amphimedon

compressa

M186T-2-M

IDKP2

63083

AS

Hyp

Cor

Beauveria

sp.

HQ880791

95100

C9

Dr

12.2

Hap

Nph

Amphimedon

compressa

M186T-4-M

IDKP2

63084

AD

Pls

NI

Pleosporales

KC248544

99100

C9

Dr

12.2

Hap

Nph

Amphimedon

compressa

M186T-3-EM2

JQ922189

AS

Hyp

Nec

Cosmospora

sp.

JN541223

96100

C9

Dr

12.2

Hap

Nph

Amphimedon

viridis

B1b068-3-PD

2KP2

63085

AS

Xyl

Dty

Eutypella

scoparia

JX049395

99100

C12

Dr

9.45

Hap

Nph

Amphimedon

viridis

B1b068-2-SN

A2

JQ649355

AS

Hyp

Hyc

Acrem

oniumstrictum

JQ717318

99100

C12

Dr

9.45

Hap

Chl

Haliclona

sp.

B1b052-2-P3

0JQ

922223

ANI

NI

NI

Ascom

ycota

HQ607850

98100

C10

Rn

5.18

Hap

Chl

Haliclona

sp.

B1b056-2-PD

2JQ

411335

AS

Xyl

Dty

Eutypella

sp.

EU702437

9699

C10

Rn

5.18

Hap

Chl

Haliclona

sp3

C4037-6-SNA1

JQ411387

AS

Hyp

Bio

Bionectriapityrodes

AY254158

99100

P3

Rn

10.98

Hap

Chl

Haliclona

sp2

P1055-1-SN

A1

JQ922132

ANI

NI

NI

Ascom

ycota

FJ556910

84100

P8

Rn

20.73

Hap

Chl

Haliclona

sp2

P1055-1-PD

1KP2

63086

AS

Xyl

Xye

Xylariaceae

AY315402

9697

P8

Rn

20.73

Hap

Chl

Haliclona

sp2

P1055-1-P1

5KP2

63087

AS

Hyp

Hyc

Hypocrea

HQ630960

99100

P8

Rn

20.73

Hap

Chl

Haliclona

sp.

M200T-4-EM

JQ922137

BAgm

Agr

Psa

Psathyrellaceae

AB564721

88100

C10

Dr

0.3

Hap

Chl

Haliclona

caerulea

C4015-3-EM1

JQ922195

AS

Hyp

Nec

Nectriaceae

JQ717346

100

100

P5

Dr

17.68

Hap

Chl

Haliclona

caerulea

M2030-1-EM1

JF894103

AS

Hyp

Hyc

Hypocreajecorina

JN704346

100

100

C10

Rn

4.88

Mar Biotechnol (2015) 17:533–564 547

Page 16: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Hap

Chl

Haliclona

caerulea

M2030-7-EM1

JQ411392

BAgm

Hym

Hye

Phellinus

AY558610

9599

C10

Rn

4.88

Hap

Chl

Haliclona

caerulea

M2030-3-P15

KP2

63088

ANI

NI

NI

Ascom

ycota

HQ731636

9538

C10

Rn

4.88

Hap

Chl

Haliclona

caerulea

M2030-7-P30

KP2

63089

ANI

NI

NI

Ascom

ycota

HQ731636

9539

C10

Rn

4.88

Hap

Chl

Haliclona

caerulea

M2031-2-EM2

JQ411369

AS

Hyp

Hyc

Hypocreajecorina

JN704346

100

100

C8

Rn

4.88

Hap

Chl

Haliclona

caerulea

M2031-7-P30

KP2

63090

AS

Hyp

Hyc

Hypocreaceae

HQ631064

90100

C8

Rn

4.88

Hap

Chl

Haliclona

caerulea

P1056-1-P3

0JQ

344354

AD

Pls

NI

Pleosporales

EF694666

99100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P1056-2-P1

5JQ

388946

AD

Cpn

Dvd

Cladosporiumsp.

EF029809

100

100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P1056-1-EM1

JQ649358

AS

Hyp

NI

Hypocreales

HQ607982

96100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P1056-2-EM1

KP2

63091

AD

Pls

NI

Pleosporales

JX264157

98100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P1056-4-EM1

JQ649350

AS

Hyp

Hyc

Acrem

oniumstrictum

GU219467

99100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-1a-P15

JQ922127

AD

Cpn

Dvd

Cladosporiumsp.

KC145175

99100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-1b-P15

KP2

63092

AS

NI

NI

Sordariomycetes

JQ760354

86100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-2-SN

A1

KP2

63093

AS

Hyp

NI

Hypocreales

JQ905759

97100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-3-SN

AKP2

63094

AD

Pls

NI

Pleosporales

HQ832823

100

100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-4-EM1

KP2

63095

AD

Pls

NI

Pleosporales

EF694666

99100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-2-PD

1KP2

63096

AD

Pls

NI

Pleosporales

HQ832823

100

100

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-5-EM1

KP2

63097

AD

Pls

NI

Pleosporales

JN851029

9798

P8

Rn

20.73

Hap

Chl

Haliclona

caerulea

P3004-1-P3

0KP2

63098

AD

Pls

NI

Pleosporales

EF694666

98100

P8

Rn

20.73

Hap

Nph

Niphateserecta

M2033-5-P30

JN837045

AD

Pls

Ven

Fusicladium

sp.

EU035424

100

20C

10Rn

4.88

Hap

Nph

Niphateserecta

B1a008-1-EM2

KP2

63099

AD

NI

NI

Dothideom

ycetes

JQ905824

100

91C

10Rn

5.18

Hap

Nph

Niphateserecta

B1a008-1-PD2

KP2

63100

AS

Dia

Dpe

Diaporthe

sp.

FJ037739

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a008-2-SNA2

KP2

63101

AS

Xyl

Xye

Annulohypoxylon

stygium

EU272517

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a008-3-SNA2

JQ922233

ANI

NI

NI

Ascom

ycota

EF060480

9799

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-1-SNA2

JQ922215

AS

Hyp

Nec

Fusariumsolani

GU355662

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-2-SNA2

JQ922125

AD

Pls

Mnt

Microsphaeropsisarundinis

JQ647902

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-4-SNA2

JQ922192

AS

Hyp

Nec

Cosmospora

vilio

rJN

541223

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-4-P152

JQ922179

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-5-P152

JQ922129

AS

Hyp

Bio

Bionectriasp.

GU166499

96100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-7-P152

JQ922139

AS

Hyp

Cor

Beauveria

sp.

JQ266171

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-2-P30

KP2

63102

AS

Hyp

Nec

Nectriaceae

AB513849

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-6-P30

JQ411338

AS

Xyl

Dty

Diatrypaceae

JF773650

90100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-7-P30

KP2

63103

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-8-P30

JQ922160

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-9-P30

KP2

63104

AS

Mcr

Mce

Pseudallescheriasp.

AB734453

9999

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-10A-P302

KP2

63105

AD

Pls

NI

Pleosporales

JN559399

9991

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-1-EM2

JQ922232

ANI

NI

NI

Ascom

ycota

EF060480

97100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-2-EM2

JQ411337

AS

Xyl

Dty

Diatrypaceae

FJ800508

90100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-6-EM2

KP2

63106

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-7-EM2

JQ649333

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-7a-EM2

JQ649379

AD

Pls

NI

Pleosporales

JN559399

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-1A

-PD2

KP2

63107

AS

NI

NI

Sordariomycetes

JQ761017

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-2-PD2

JQ411384

AS

Hyp

Bio

Bionectriaochroleuca

DQ279793

100

100

C10

Rn

5.18

548 Mar Biotechnol (2015) 17:533–564

Page 17: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Hap

Nph

Niphateserecta

B1a009-8-PD2

KP2

63108

ANI

NI

NI

Ascom

ycota

GU985214

9590

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a009-2-P152

JQ922168

AS

Xyl

Dty

Eutypella

scoparia

EU702437

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-2-P15

KP2

63109

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-3-P152

JQ649334

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-4-P15

KP2

63110

AD

Pls

NI

Pleosporales

HQ631015

97100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-5-P152

JQ922176

AS

Xyl

Dty

Eutypella

scoparia

EU702434

96100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-4-P30

KP2

63111

AS

Xyl

Dty

Eutypella

scoparia

JX049395

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-2-EM2

JQ922199

AS

Hyp

NI

Hypocreales

EF060508

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-4-EM2

JQ388936

AD

Pls

NI

Pleosporales

HM116750

98100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-5-EM2

JQ922148

AS

Dia

Val

Cytospora

sp.

DQ993620

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-6-EM2

JQ922146

AS

Dia

Val

Cytospora

sp.

DQ092502

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-7-EM2

JQ922142

AS

Xyl

Dty

Diatrypaceae

JX427039

99100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a001-3-SNA2

JQ649368

AD

Pls

NI

Pleosporales

JX264157

100

100

C10

Rn

5.18

Hap

Nph

Niphateserecta

B1a095-1-EM2

JQ649351

AS

Hyp

Nec

Fusariumsp.

HQ696081

99100

C12

Dr

5.18

Hap

Nph

Niphateserecta

M2033-8Y-P15

KP2

63112

AD

Pls

NI

Pleosporales

GQ254685

99100

C10

Rn

4.88

Hap

Nph

Niphateserecta

M2033-1b-P3

0JQ

922145

AS

Dia

Val

Cytospora

rhizophorae

DQ996040

99100

C10

Rn

4.88

Hap

Nph

Niphateserecta

B1b081-1-SN

A2

KP2

63113

AS

Xyl

Xye

Xylariaceae

EU010004

97100

C9

Dr

10.67

Hap

Nph

Niphateserecta

B1b081-3-P1

52JQ

922186

AS

Hyp

NI

Hypocreales

HM054153

100

100

C9

Dr

10.67

Hap

Nph

Niphateserecta

B1b086-3-P1

5JQ

649339

AS

Hyp

NI

Hypocreales

FJ375172

92100

C9

Dr

10.67

Hap

Nph

Niphateserecta

B1b086-1-SN

A2

JQ649382

BNI

NI

NI

Basidiomycota

HQ022514

9696

C9

Dr

10.67

Hap

Nph

Niphateserecta

B1b086-4-SN

A2

KP2

63114

AS

Xyl

Xye

Xylaria

sp.

EU009989

99100

C9

Dr

10.67

Hap

Nph

Niphateserecta

B1b086-2-EM2

KP2

63115

BNI

NI

NI

Basidiomycota

HQ022513

9996

C9

Dr

10.67

Hap

Nph

NI

B1b018-1-SN

A2

JQ922177

AD

Pls

NI

Pleosporales

EU049289

9187

C9

Rn

11.58

Hap

Ptr

Xestospongiasp.

B1a018-2-PD2

JQ922149

AS

Dia

Val

Cytospora

sp.

DQ993620

100

100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-4-PD2

KP2

63116

AD

Pls

Pleosporales

HQ832823

9599

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-5-PD2

JQ922147

AS

Dia

Val

Cytospora

rhizophorae

DQ996040

99100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-8-PD2

JQ922162

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-3-EM2

KP2

63117

AD

Pls

NI

Pleosporales

EF694666

98100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-2-P301

KP2

63118

AS

Hyp

Hyc

Acrem

oniumsp.

HQ914930

92100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-6-P30

KP2

63119

AS

Hyp

Nec

Fusariumsolani

HM992494

100

100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-2-P152

JQ411319

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-3-P152

JQ411303

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-5-P152

KP2

63120

AS

Hyp

Nec

Fusariumsolani

JX241656

100

100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-6-P152

JQ411327

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

Hap

Ptr

Xestospongiasp.

B1a018-6-SNA2

JQ411332

AS

Xyl

Dty

Eutypella

sp.

EU702437

96100

C10

Rn

5.18

Hap

Ptr

Xestospongiamuta

B1a105-4-SNA2

JQ411331

AS

Xyl

Dty

Eutypella

sp.

EU702437

96100

C11

Dr

5.18

Hap

Ptr

Xestospongiarosariensis

B1a054-3-P302

JQ922180

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C9

Rn

10.06

Hom

Plk

Plakinastrella

onkodes

B1a111-1-P1

5JQ

411389

AE

Cha

Her

Herpotrichiellaceae

HE605219

9396

C12

Dr

5.18

Hom

Plk

Plakinastrella

onkodes

B1b088-2-EM2

JQ922225

AS

Hyp

NI

Hypocreales

GU017486

96100

C9

Dr

10.67

Hom

Plk

Plakinastrella

onkodes

B1b088-3-EM2

JQ411309

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C9

Dr

10.67

Hom

Phl

Aka

coralliphagum

B1b009-1-P1

52JQ

649385

AS

Hyp

NI

Hypocreales

GU595042

99100

C10

Rn

5.18

NI

NI

NI

B1a006-1-EM2

JQ649372

AD

Pls

NI

Pleosporales

KC248544

9583

C10

Rn

5.18

Mar Biotechnol (2015) 17:533–564 549

Page 18: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

NI

NI

NI

B1a006-2-EM2

JQ411320

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

NI

NI

NI

B1a006-7-EM2

JQ922183

AS

Xyl

Dty

Eutypella

scoparia

EU436688

98100

C10

Rn

5.18

NI

NI

NI

B1a006-4-PD2

KP2

63121

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

NI

NI

NI

B1a006-7-PD2

JQ411333

AS

Xyl

Dty

Eutypella

scoparia

EU702437

96100

C10

Rn

5.18

NI

NI

NI

B1a006-8-PD2

JQ411324

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

NI

NI

NI

B1a006-2-P15

JQ922182

AS

Xyl

Dty

Eutypella

sp.

EF488380

99100

C10

Rn

5.18

NI

NI

NI

B1a006-3-P15

KP2

63122

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

NI

NI

NI

B1a006-4-P15

JQ922169

AS

Xyl

NI

Xylariales

HQ823756

8399

C10

Rn

5.18

NI

NI

NI

B1a006-5-P15

JQ411329

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C10

Rn

5.18

NI

NI

NI

B1a006-3-P30

JQ649347

AS

Hyp

NI

Hypocreales

JN851014

8898

C10

Rn

5.18

NI

NI

NI

B1a006-2-SNA2

KP2

63123

AD

Pls

Mnt

Letendraea

helminthicola

JQ026217

9990

C10

Rn

5.18

NI

NI

NI

B1a006-3-SNA1

JQ649354

AS

NI

NI

Sordariomycetes

JQ717349

99100

C10

Rn

5.18

NI

NI

NI

B1a006-4-SNA1

JQ922173

AS

Xyl

Dty

Eutypella

sp.

JQ717311

95100

C10

Rn

5.18

NI

NI

NI

B1a007-3-SNA2

KP2

63124

AS

Xyl

Xye

Xylariaceae

AB440109

99100

C10

Rn

5.18

NI

NI

NI

B1a010-2-SNA2

JQ388947

ANI

NI

NI

Ascom

ycota

JQ988832

99100

C10

Rn

5.18

NI

NI

NI

B1a027-1-EM2

JQ411379

AS

Hyp

NI

Hypocreales

JQ717346

99100

C9

Rn

10.06

NI

NI

NI

B1a027-2-EM2

KP2

63125

AS

Xyl

Amp

Pestalotiopsissp.

JF304634

99100

C9

Rn

10.06

NI

NI

NI

B1a027-3-EM2

JQ649338

AS

Hyp

NI

Hypocreales

EF060755

96100

C9

Rn

10.06

NI

NI

NI

B1a027-4-EM2

JQ922217

AS

Hyp

Nec

Fusariumsp.

JX891784

98100

C9

Rn

10.06

NI

NI

NI

B1a027-7-EM2

KP2

63126

AD

Pls

NI

Pleosporales

HQ649992

95100

C9

Rn

10.06

NI

NI

NI

B1a027-8-EM2

KP2

63127

ANI

NI

NI

Ascom

ycota

GU985214

9593

C9

Rn

10.06

NI

NI

NI

B1a027-1-PD2

KP3

22758

AS

Xyl

Xye

Xylariaceae

AB741620

98100

C9

Rn

10.06

NI

NI

NI

B1a027-2-SNA2

JQ922205

FNI

NI

NI

Fungalsp.

EU977299

98100

C9

Rn

10.06

NI

NI

NI

B1a027-4-SNA2

JQ388934

ANI

NI

NI

Ascom

ycota

HM052813

100

100

C9

Rn

10.06

NI

NI

NI

B1a027-6-SNA2

KP3

22759

ANI

NI

NI

Ascom

ycota

FJ884103

99100

C9

Rn

10.06

NI

NI

NI

B1a027-6-SNA2

KP3

22760

AS

NI

NI

Sordariomycetes

JX298932

100

100

C9

Rn

10.06

NI

NI

NI

B1a027-7-SNA2

JQ922152

AS

Xyl

Dty

Diatrypaceae

FR715523

91100

C9

Rn

10.06

NI

NI

NI

B1b004-3-PD

2JQ

649373

AD

Pls

Ple

Phomasp.

JQ621876

99100

C9

Rn

11.58

NI

NI

NI

B1b011-4-EM2

KP3

22761

FNI

NI

NI

Fungalsp.

EU558536

100

99C

9Rn

11.58

NI

NI

NI

B1b011-9b-EM2

KP3

22762

AS

Xyl

Amp

Pestalotiopsissp.

KC837100

100

100

C9

Rn

11.58

NI

NI

NI

B1b011-2-P3

02KP3

22763

AS

Xyl

Amp

Pestalotiopsissp.

KC837100

100

100

C9

Rn

11.58

NI

NI

NI

B1b011-4-P3

0JQ

922122

AS

Xyl

Xye

Biscogniauxia

sp.

FJ884075

99100

C9

Rn

11.58

NI

NI

NI

B1b011-5-P3

0JQ

649361

ANI

NI

NI

Ascom

ycete

EF632079

89100

C9

Rn

11.58

NI

NI

NI

B1b011-7-P3

02KP3

22764

AS

Xyl

Xye

Xylaria

cubensis

GU373810

98100

C9

Rn

11.58

NI

NI

NI

B1b011-2-PD

2JQ

922237

AS

Hyp

NI

Hypocreales

DQ682584

93100

C9

Rn

11.58

NI

NI

NI

B1b011-8A

-PD2

KP3

22765

AS

Hyp

NI

Hypocreales

EU164804

98100

C9

Rn

11.58

NI

NI

NI

B1b014-1-EM2

JQ922143

AS

Xyl

Dty

Diatrypaceae

AJ302456

92100

C9

Rn

11.58

NI

NI

NI

B1b072-3-EM2

JQ411363

AS

Hyp

Hyc

Hypocreasp.

HE608774

100

100

C9

Dr

10.67

NI

NI

NI

C3060B-1-SNA1

KP3

22766

AS

NI

NI

Sordariomycetes

AB685487

98100

P5

Dr

29.57

NI

NI

NI

C3060B-1-EM1

KP3

22767

AD

NI

NI

Dothideom

ycetes

HQ832837

8980

P5

Dr

29.57

NI

NI

NI

C3060B-4-P30

JQ922227

FNI

NI

NI

Fungalsp.

JQ747679

100

100

P5

Dr

29.57

NI

NI

NI

C3060C-1-EM1

JQ649348

AS

NI

NI

Sordariomycetes

JQ717349

99100

P5

Dr

29.57

550 Mar Biotechnol (2015) 17:533–564

Page 19: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

NI

NI

NI

C3060C-1-PD1

KP3

22768

AS

NI

NI

Sordariomycetes

JQ717349

99100

P5

Dr

29.57

NI

NI

NI

C3060C-1-SNA1

JQ922157

ANI

NI

NI

Ascom

ycota

GU017493

90100

P5

Dr

29.57

NI

NI

NI

C3060C-3-P15

KP3

22769

AS

Hyp

Hyc

Hypocreasp.

KC311472

9199

P5

Dr

29.57

NI

NI

NI

P1058-3-EM1

KP3

22770

AS

Xyl

Xye

Xylaria

sp.

DQ631944

98100

P8

Rn

20.73

NI

NI

NI

P1058-1-P1

5KP3

22771

ANI

NI

NI

Ascom

ycota

HQ636419

9998

P8

Rn

20.73

NI

NI

NI

P1058-2-P1

5JQ

649371

AD

Pls

NI

Pleosporales

JN545763

9680

P8

Rn

20.73

NI

NI

NI

P1058-2-P3

0JQ

922184

AS

Hyp

NI

Hypocreales

EF694655

94100

P8

Rn

20.73

NI

NI

NI

P1058-2-SN

A1

KP3

22772

AD

Pls

NI

NI

JN859348

7892

P8

Rn

20.73

NI

NI

NI

P1058-2-PD

1JQ

649366

AD

Pls

Dac

Dacam

piaceae

DQ435529

90100

P8

Rn

20.73

NI

NI

NI

P1053-2-EM1

KP3

22773

AD

Pls

Mas

Massarina

sp.

JQ889692

9998

P8

Rn

20.73

NI

NI

NI

P1053-4-EM1

JQ649378

AD

Pls

NI

Pleosporales

HM992807

87100

P8

Rn

20.73

NI

NI

NI

P1053-5-EM1

KP3

22774

AS

Xyl

Xye

Annulohypoxylon

stygium

KC771510

100

100

P8

Rn

20.73

NI

NI

NI

P1053-2-PD

1JQ

411343

AS

Xyl

Dty

Diatrypaceae

FR715523

92100

P8

Rn

20.73

NI

NI

NI

P1053-1-SN

A1

JQ344349

AD

Pls

NI

Pleosporales

EF694666

99100

P8

Rn

20.73

NI

NI

NI

P1053-1-P3

0KP3

22775

BAgm

NI

NI

Agaricomycetes

HQ022513

9995

P8

Rn

20.73

NI

NI

NI

P1054-1-EM1

KP3

22776

AD

Pls

NI

Pleosporales

KC771509

94100

P8

Rn

20.73

NI

NI

NI

P1054-2-EM1

KP3

22777

BAgm

Corticiales

Corticiaceae

Corticiaceae

JQ358801

8795

P8

Rn

20.73

NI

NI

NI

P1054-3-EM1

JQ649374

AD

Pls

NI

Pleosporales

KC248544

9598

P8

Rn

20.73

NI

NI

NI

P1054-1-PD

1JQ

411353

AS

Xyl

Xye

Xylariaceae

AB741596

83100

P8

Rn

20.73

NI

NI

NI

M2011-1-P30

JQ411362

AS

Hyp

Hyc

Hypocreasp.

HQ657316

99100

P6

Rn

21.34

NI

NI

NI

M2011-2-P30

JQ411371

AS

Hyp

Hyc

Hypocreasp.

JQ988820

99100

P6

Rn

21.34

Poe

Coe

Lissondendoryxcolombiensis

B1a019-1-EM2

JQ649335

AS

Hyp

NI

Hypocreales

EF060755

96100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-2-EM2

JQ411361

AS

Hyp

Hyc

Hypocrealixii

JF923807

99100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-4-EM2

JQ649336

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-6-EM2

JQ411391

AE

Eur

NI

Eurotialessp.

HQ207033

99100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-6-P15

KP3

22778

ANI

NI

NI

NI

EF632079

9299

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-8-P152

JQ388925

ANI

NI

NI

Ascom

ycota

FJ375137

9290

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-3-P302

JQ922234

ANI

NI

NI

Ascom

ycota

EF060480

9799

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-9-SNA2

KP3

22779

AD

Pls

NI

Pleosporales

JN559399

9949

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-1-PD2

JQ344352

AD

Pls

NI

Pleosporales

EF694666

98100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-1a-PD2

JQ922131

AS

Gls

Glo

Colletotrichumsp.

JX009429

100

100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-2-PD2

KP3

22780

AS

Hyp

Hyc

Hypocreasp.

JQ988834

99100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-3-PD2

KP3

22781

AS

Xyl

Xye

Xylariaceae

EU010001

97100

C10

Rn

5.18

Poe

Coe

Lissondendoryxcolombiensis

B1a019-4-PD2

KP3

22782

AS

Hyp

NI

Hypocreales

AJ301998

99100

C10

Rn

5.18

Poe

Iot

Iotrochota

birotulata

B1b057-3-PD

2JQ

922167

AS

Xyl

Dty

Diatrypaceae

AJ302462.1

7867

C10

Rn

5.18

Poe

Mic

Desmapsana

anchorata

B1a041-1-P30

JQ388931

ANI

NI

NI

Ascom

ycota

EU002909

99100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-3-P302

KP3

22783

AD

Pls

NI

Pleosporales

HM116750

89100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-3-P30

JQ649367

AS

Hyp

NI

Hypocreales

KC007132

85100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-P15

JQ922187

AS

Hyp

Nec

Nectriaceae

KC771494

99100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-5-P152

KP3

22784

AD

Pls

NI

Pleosporales

KC339242

98100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-3-EM2

JQ649352

AS

Hyp

Hyc

Acrem

oniumstrictum

GU219467

99100

C9

Rn

10.06

Poe

Mic

Desmapsana

anchorata

B1a041-3-SNA2

KP3

22785

AS

Xyl

Xye

Xylariaceae

AB440109

98100

C9

Rn

10.06

Mar Biotechnol (2015) 17:533–564 551

Page 20: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Poe

Myc

Mycalesp.

B1a020-2-EM2

JQ388918

AD

Pls

NI

Pleosporales

EF694666

99100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a020-5-P152

JQ922235

ANI

NI

NI

Ascom

ycota

EF060480

9799

C9

Rn

10.06

Poe

Myc

Mycalesp.

BIa020-6-P3

02JQ

344344

AD

Pls

NI

Pleosporales

HQ832823

100

100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a020-4-PD2

JQ411372

AS

Hyp

Hyc

Hypocreasp.

JQ988821

96100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a020-5b1-PD

2KP3

06895

AS

Hyp

Nec

Fusariumsp.

HQ630964

100

100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-1-P152

KP3

06896

AS

Xyl

Xye

Xylaria

sp.

JQ862705

97100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-3-P15

KP3

06897

AD

Pls

Art

Arthopyreniaceae

DQ682563

100

100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-4b-P152

KP3

06898

AS

Xyl

Xye

Xylariaceae

JF773597

96100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-4-P30

JQ649340

AS

Hyp

NI

Hypocreales

HQ248209

8899

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-4-P302

KP3

06899

AS

Hyp

NI

Hypocreales

HQ248209

87100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-5-P30

JQ922141

AS

Hyp

Nec

Cosmospora

sp.

JN995632

99100

C9

Rn

10.06

Poe

Myc

Mycalesp.

B1a047-1-PD2

JQ922221

AS

Hyp

Hyc

Hypocreasp.

JQ775562

100

100

C9

Rn

10.06

Poe

Rsp

NI

C3040-2-EM1

JQ649359

AS

Xyl

Xye

Xylariaceae

KC178661

100

100

P5

Dr

29.57

Poe

Rsp

NI

C3040-1-P15

KP3

06900

AS

Xyl

Xye

Xylariaceae

KC178664

99100

P5

Dr

29.57

Poe

Rsp

NI

C3040-1-PD1

KP3

06901

AS

Xyl

Xye

Xylariaceae

KC178664

9999

P5

Dr

29.57

Poe

Rsp

NI

C4092-2-PD1

JQ388949

AD

Cpn

Dvd

Cladosporiumsp.

JQ988832

100

100

P5

Dr

17.68

Poe

Rsp

NI

M2007-1-P15

KP3

06902

AS

Xyl

Xye

Xylariaceae

AB741621

9999

P6

Rn

21.34

Poe

Rsp

NI

M2007-1-P30

JQ922193

AS

Hyp

NI

Hypocreales

GU017508

99100

P6

Rn

21.34

Poe

Rsp

NI

M2038-4-EM1

JQ388932

AD

Pls

NI

Pleosporales

JX264157

99100

P8

Rn

25

Poe

Rsp

NI

M2038-1-M

IDKP3

06903

AD

Pls

NI

Pleosporales

JF288550

9399

P8

Rn

25

Poe

Rsp

NI

M2038-3-M

IDKP3

06904

AS

Xyl

Xye

Xylariaceae

AB440133

9097

P8

Rn

25

Poe

Rsp

NI

M2038-5-M

IDKP3

06905

AS

Xyl

Xye

Xylariaceae

AB741622

98100

P8

Rn

25

Poe

Rsp

NI

P5005-3-EM1

JQ922196

AS

Hyp

NI

Hypocreales

EF060508

98100

P7

Rn

12.8

Poe

Tdn

Tedaniaignis

B1a031-6-EM2

KP3

06906

AS

Hyp

NI

Hypocreales

KC311472

9199

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-1-P152

JQ411386

AS

Hyp

NI

Hypocreales

HQ649882

9999

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-3-P152

JQ922213

AS

Hyp

Nec

Fusariumsp.

FJ158122

100

100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-6-P152

JQ649369

AD

Pls

NI

Pleosporales

JX264157

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-3-P30

KP3

06907

AS

Xyl

Xye

Xylariales

KC181931

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-1-PD2

JQ411341

AS

Xyl

Dty

Diatrypaceae

JF773650

90100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-5-PD2

JQ649381

AE

Eur

Trc

Aspergillussp.

JQ717355

100

100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-1-SNA2

JQ922214

AS

Hyp

Nec

Fusariumsp.

AF178402

100

100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a031-2-SNA2

JQ922204

AS

Hyp

NI

Hypocreales

EF060553

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-2b-EM2

JQ649360

AS

Xyl

Xye

Annulohypoxylon

stygium

KC771510

100

100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-6-EM2

JQ388929

AD

Pls

NI

Pleosporales

HQ631051

94100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-7-EM2

JQ922150

AS

Dia

Val

Cytospora

sp.

DQ993620

100

100

C9

Rn

10.06

Poe

Tdn

T edaniaignis

B1a035-8-EM2

KP3

06908

AD

Pls

NI

Pleosporales

HQ832823

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-4-P15

JQ649341

AS

Hyp

NI

Hypocreales

HQ248209

8799

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-5-P30

KP3

06909

AS

Xyl

Xye

Xylariaceae

EU010001

96100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-1-PD2

JQ649344

AS

Hyp

NI

Hypocreales

KC311472

9199

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-2A

-PD2

KP3

06910

AS

NI

NI

Sordariomycetes

HQ117857

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-2B

-PD2

KP3

06911

AS

Dia

Dpe

Diaporthe

sp.

FJ037739

99100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-4-PD2

KP3

06912

AD

NI

NI

NI

JQ905824

100

87C

9Rn

10.06

552 Mar Biotechnol (2015) 17:533–564

Page 21: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Poe

Tdn

Tedaniaignis

B1a035-1-SNA2

JQ922202

AS

Hyp

NI

Hypocreales

EF060553

100

100

C9

Rn

10.06

Poe

Tdn

Tedaniaignis

B1a035-5-SNA2

JQ922138

BAgm

Agr

NI

Agaricales

GQ923956

8998

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-1-EM2

JQ922201

AS

Hyp

NI

Hypocreales

EF060508

98100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-3-EM2

JQ922134

BAgm

Agr

Psa

Coprinellussp.

JN418793

100

100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-9-EM2

KP3

06913

AS

Mcr

Mce

Pseudallescheriasp.

DQ682599

99100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-2-PD2

JQ922239

AD

Pls

Mnt

Letendraea

helminthicola

JQ026217

100

100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-1-P152

JQ922200

AS

Hyp

NI

Hypocreales

EF060508

98100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-4-P15

KP3

06914

AS

Hyp

Hyc

Acrem

oniumsp.

AY303601

92100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-5-P30

KP3

06915

AS

Xyl

Xye

Xylariaceae

EU010001

99100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1a040-2-SNA2

JQ922211

AS

Hyp

Nec

Nectriaceae

AF178422

99100

C9

Rn

10.06

Spi

Ttl

Cynachirella

alloclada

B1b019-1-SN

A2

JQ388922

AD

Pls

Did

Leptosphaerulinachartarum

JN862799

9792

C9

Rn

11.58

Spi

Ttl

Cynachirella

alloclada

B1b019-2-SN

A2

JQ649377

AD

Pls

Ple

Phomasp.

JQ621876

99100

C9

Rn

11.58

Spi

Ttl

Cynachirella

alloclada

B1b064-2-EM2

JQ388919

AD

Pls

NI

Pleosporales

HQ832823

9499

C12

Dr

9.45

Ver

Apl

Aplysinacauliform

isB1a085-1-EM2

JQ411378

AS

Hyp

Nec

Nectriaceae

JQ717346

100

100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-2-EM2

JQ411359

AS

Hyp

Hyc

Hypocrealixii

JF923807

100

100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-7-EM2

JQ411365

AS

Hyp

Hyc

Hypocreasp.

DQ164408

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-10-EM2

JQ411304

AS

Xyl

Dty

Eutypella

sp.

JN637945

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-3-P152

KP3

06916

AS

Xyl

Xye

Xylariaceae

AB741621

9899

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-4-P15

JQ388930

AD

Pls

NI

Pleosporales

AB255299

92100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-5a-P15

JQ922136

BAgm

Agr

Psa

Coprinellusradians

HM595561

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-7-P152

KP3

06917

AS

Xyl

Xye

Xylariaceae

AB741619

98100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-8-P15

JQ922163

AS

Xyl

Dty

Eutypella

scoparia

EU702436

98100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-1-P30

KP3

06918

AS

Xyl

Amp

Pestalotiopsissp.

JX684005

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-2-P30

KP3

06919

AD

Bty

Bot

Lasiodiplodiasp.

JN615242

100

100

C11

Dr

5.18

Ve r

Apl

Aplysinacauliform

isB1a085-3-P302

KP3

06920

AS

Xyl

Xye

Xylaria

sp.

EU009958

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-4-P30

KP3

06921

AS

Hyp

NI

Hypocreales

JQ905658

8699

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-6-P30

KP3

06922

AD

Pls

NI

Pleosporales

KC248544

9956

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-7-P30

KP3

06923

AS

Xyl

Xye

Xylaria

sp.

EU009989

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-1-SNA2

JQ922222

AS

Hyp

Hyc

Hypocreasp.

HQ630998

100

100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-2-SNA2

JQ922241

AS

Xyl

Dty

Diatrypaceae

JF773650

99100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-4-SNA2

KP3

06924

AD

Pls

NI

Pleosporales

HQ649851

9899

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-4a1-SNA2

JQ922156

AD

Pls

NI

Pleosporales

EF694666

9597

C12

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-6-SNA2

JQ411366

AS

Hyp

Hyc

Hypocreasp.

AY154920

100

100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-1-PD2

KP3

06925

AS

Dia

Val

Phomopsissp.

JQ905726

9999

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1a085-3-PD2

KP3

06926

AD

Pls

NI

Pleosporales

HQ108019

100

100

C11

Dr

5.18

Ver

Apl

Aplysinacauliform

isB1b085-1-EM2

KP3

06927

AS

Xyl

Xye

Xylariaceae

EU010003

9599

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-3-EM2

JQ411342

AS

Xyl

Dty

Diatrypella

pulvinata

JX427039

9986

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-4-EM2

KP3

06928

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-5-EM2

JQ388914

AD

Pls

NI

Pleosporales

EF694666

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-1-P1

5KP3

06929

AS

Xyl

Amp

Pestalotiopsissp.

KC203051

100

100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-2-P1

5JQ

411375

AS

Hyp

NI

Hypocreales

JQ905656

98100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-3-P1

52KP3

06930

AS

Xyl

Xye

Biscogniauxia

sp.

FJ884075

99100

C9

Dr

10.67

Mar Biotechnol (2015) 17:533–564 553

Page 22: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Ver

Apl

Aplysinacauliform

isB1b085-4b-P15

JQ411355

AS

Xyl

Xye

Hypoxylon

sp.

DQ322114

9895

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-6-P1

52KP3

06931

AS

Xyl

Xye

Biscogniauxia

sp.

EF026131

9592

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-1-P3

0JQ

411380

AS

Hyp

Nec

Nectriaceae

JQ717346

100

100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-2-P3

0JQ

388920

AD

NI

NI

Dothideom

ycetes

GQ153059

9597

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-4-P3

0KP3

06932

AD

Pls

NI

Pleosporales

HQ832823

100

100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-4-P3

0KP3

06933

AD

Pls

Mnt

Microsphaeropsisarundinis

AB775571

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-5-P3

0JQ

922135

BAgm

Agr

Psa

Coprinellusdissem

inatus

KC771477

100

100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-6-P3

0JQ

649346

AS

Hyp

NI

Hypocreales

KC311472

9199

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-7-P3

0JQ

388935

AD

Pls

NI

Pleosporales

JX264157

90100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-1-PD

2KP3

06934

AS

Xyl

Xye

Xylaria

sp.

EU009989

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-3-PD

2KP3

06935

AS

Xyl

Xye

Xylaria

sp.

EU009958

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-2-SN

A2

KP3

06936

AS

Xyl

Xye

Xylaria

sp.

EU009989

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-3-SN

A2

KP3

06937

AS

Xyl

Xye

Xylaria

sp.

HQ107995

99100

C9

Dr

10.67

Ver

Apl

Aplysinacauliform

isB1b085-4-SN

A2

KP3

06938

AS

Xyl

Xye

Xylariaceae

EU009990

99100

C9

Dr

10.67

Ver

Apl

Aplysinachiriquensis

C4065-1-P151

JQ649363

AS

Srd

Api

Arthriniumsp.

HQ832842

100

100

P5

Dr

17.68

Ver

Apl

Aplysinachiriquensis

M2025-1-M

1DJQ

922158

AS

Xyl

Dty

Eutypella

sp.

FJ800515

100

100

P1

Rn

22.56

Ver

Apl

Aplysinachiriquensis

M2025-4-P30A

JQ388948

AD

Cpn

Dvd

Cladosporiumsp.

JQ988832

99100

P1

Rn

22.56

Ver

Apl

Aplysinachiriquensis

M2025-4-P30B

JQ388951

AD

Cpn

Dvd

Cladosporiumsp.

JQ988832

99100

P1

Rn

22.56

Ver

Apl

Aplysinafulva

B1a003-1-EM2

JQ411364

AS

Hyp

Hyc

Hypocreasp.

HQ657316

99100

C10

Rn

5.18

Ver

Apl

Aplysinafulva

B1a003-2-EM2

KP3

06939

AS

Xyl

Amp

Pestalotiopsissp.

KC540782

100

100

C10

Rn

5.18

Ver

Apl

Aplysinafulva

B1a003-3-EM2

KP3

06940

AS

Hyp

Hyc

Hypocreasp.

HQ657295

100

100

C10

Rn

5.18

Ver

Apl

Aplysinafulva

B1a003-4-EM2

JQ411358

AS

Hyp

Hyc

Hypocrealixii

JX082390

100

100

C10

Rn

5.18

Ve r

Apl

Aplysinafulva

B1a003-5-EM2

JQ411356

AS

Hyp

Hyc

Hypocrealixii

JX082390

100

100

C10

Rn

5.18

Ver

Apl

Aplysinafulva

B1a003-3-P302

KP3

06941

AS

Hyp

Hyc

Hypocreasp.

JQ988834

100

100

C10

Rn

5.18

Ver

Apl

Aplysinafulva

B1a050-3-EM2

KP3

06942

AD

Pls

NI

Pleosporales

HQ832823

98100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-5A

-EM2

KP3

06943

AD

Pls

Mas

Massarina

sp.

JQ889692

99100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-5b-EM2

JQ649337

AS

Hyp

Hyc

Acrem

oniumimplicatum

KC464332

99100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-6-EM2

JQ922181

AS

Xyl

NI

Xylariales

AB511813

84100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-4-P302

KP3

06944

AS

Phy

Phe

Plectosporium

sp.

AB685487

97100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-5-P302

JQ649353

AS

Hyp

Hyc

Acrem

oniumstrictum

GU219467

99100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a050-6-P302

KP3

06945

AS

Xyl

NI

Xylariales

KC181931

99100

C9

Rn

10.06

Ver

Apl

Aplysinafulva

B1a090-1-EM2

KP3

06946

AD

NI

NI

Dothideom

ycetes

JQ905824

100

89C

11Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-2-EM2

JQ411373

AS

Hyp

Cor

Beauveria

sp.

JQ266171

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-5-EM2

KP3

06947

BAgm

Rus

Wrg

Wrightoporiasp.

FJ904857

95100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-6-EM2

KP3

06948

FNI

NI

NI

Fungalsp.

JQ747679

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-7-EM2

JQ411323

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

97100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-1-P15

KP3

06949

AD

Pls

NI

Pleosporales

JN559399

9991

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-2-P15

KP3

06950

AS

NI

NI

NI

JQ760257

9999

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-3-P15

JQ411316

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-4B

-P15

KP3

06951

AS

Hyp

Hyc

Acrem

oniumimplicatum

FN706541

97100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-6-P15

JQ411305

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-7-P15

JQ411344

AS

Xyl

NI

Diatrypaceae

AJ302461

9197

C11

Dr

5.18

554 Mar Biotechnol (2015) 17:533–564

Page 23: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Ver

Apl

Aplysinafulva

B1a090-1-P30

KP3

06952

AS

Xyl

Xye

Xylareaceae

EU010001

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-3-P30

KP3

06953

AD

NI

NI

Dothideom

ycetes

JQ905824

100

89C

11Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-4-P30

KP3

06954

AS

Hyp

NI

Hypocreales

DQ350128

89100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-5-P30

JQ388933

AD

Pls

NI

Pleosporales

JX264157

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-7-P30

KP3

06955

AS

Hyp

NI

Hypocreales

JQ905673

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-1a-PD2

JQ411368

AS

Hyp

Hyc

Hypocreasp.

JQ988820

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-1b-PD2

JQ411370

AS

Hyp

Hyc

Hypocreasp.

JQ988820

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-2-PD2

JQ922190

AS

Hyp

NI

Hypocreales

HQ248209

96100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-3-PD2

KP3

06956

AD

Pls

i.s.

Nigrogranasp.

KC288117

9399

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-5-PD2

JQ411306

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-6-PD2

JQ922166

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-8-PD2

KP3

06957

AD

Pls

Mas

Massarina

sp.

JQ889692

9998

C11

Dr

5.18

Ver

Apl

Aplysinafulva

B1a090-3-SNA2

JQ411339

AS

Xyl

Dty

Diatrypella

pulvinata

JX427039

9986

C11

Dr

5.18

Ver

Apl

Aplysinagerardogreeni

C3030-1-EM1

JQ922144

AD

Pls

Ple

Pleosporaceae

EF687932

9899

P4

Dr

26.83

Ver

Apl

Aplysinagerardogreeni

C3003-1-P301

JQ411377

AS

Hyp

Nec

Nectriaceae

JN411816

99100

P4

Dr

26.83

Ver

Apl

Aplysinagerardogreeni

C3003-2-P301

KP3

06958

AD

Pls

NI

Pleosporales

JN559399

9991

P4

Dr

26.83

Ver

Apl

Aplysinagerardogreeni

C4008-2-EM1

JQ411352

AS

Xyl

Xye

Xylariaceae

FJ416301

8198

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4008-4-EM1

KP3

06959

AS

Xyl

Xye

Xylariaceae

JX914486

8098

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4008-3-P152

JQ922226

AS

Xyl

Xye

Xylariaceae

JX298902.

92100

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4008-1-PD1

KP3

06960

AS

NI

NI

Sordariomycetes

JQ760019

99100

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4008-2-PD1

JQ922175

AS

Xyl

Xye

Xylariaceae

AB440109

99100

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4060-2-PD1

JQ649364

AS

Srd

Api

Arthriniumsp.

JN618364

9998

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

C4066-1-P151

JQ411347

AS

Xyl

Dty

Eutypella

sp.

FJ800515

99100

P5

Dr

17.68

Ver

Apl

Aplysinagerardogreeni

M2024-1-EM

JQ922178

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

P6

Rn

21.34

Ver

Apl

Aplysinagerardogreeni

M2024-1-P15

JQ922164

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

P6

Rn

21.34

Ver

Apl

Aplysinagerardogreeni

M2024-1a-P15

JQ411311

AS

Xyl

Dty

Eutypella

scoparia

EU702436

9999

P6

Rn

21.34

Ver

Apl

Aplysinagerardogreeni

M2024-1b-P1

5JQ

922170

AS

Xyl

Dty

Eutypella

scoparia

JX049395

9998

P6

Rn

21.34

Ver

Apl

Aplysinagerardogreeni

M2034-2-M

1DJQ

388924

ANI

NI

NI

Ascom

ycota

EF632079

9197

P8

Rn

18.6

Ver

Apl

Aplysinagerardogreeni

M2034-2-M

1DSNA

JQ388923

ANI

NI

NI

Ascom

ycota

EF632079

9097

P8

Rn

18.6

Ver

Apl

Aplysinagerardogreeni

M2035-1-M

1DJQ

411334

AS

Xyl

Dty

Eutypella

sp.

EU702437

9599

P8

Rn

18.6

Ver

Apl

Aplysinagerardogreeni

P5006-1-EM1

JQ922194

AS

Hyp

NI

Hypocreales

GU017508

96100

P7

Rn

12.8

Ver

Apl

Aplysinagerardogreeni

P5012-2-P1

5JQ

922231

ANI

NI

NI

Ascom

ycota

AJ279474

97100

P7

Dr

13.1

Ver

Apl

Aplysinagerardogreeni

P5012-3A

-P15

KP3

06961

AS

Hyp

NI

Hypocreales

GU017486

8399

P7

Dr

13.1

Ver

Apl

Aplysinagerardogreeni

P5012-2-PD

1KP3

06962

AS

Hyp

NI

Hypocreales

KC311472

9198

P7

Dr

13.1

Ver

Apl

Aplysinasp.

B1a028-2-EM2

KP3

06963

AS

Xyl

Xye

Xylariaceae

JN411813

100

100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-3-EM2

KP3

06964

AS

Xyl

Xye

Xylaria

sp.

DQ780448

94100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-6-EM2

KP3

06965

AS

Xyl

Xye

Annulohypoxylon

stygium

KC771510

100

100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-8-P15

KP3

06966

AS

Hyp

NI

Hypocreales

KC311472

9199

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-2-P302

KP3

06967

AS

Xyl

Xye

Xylariaceae

EU010001

99100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-4-P30

JQ922126

AD

Pls

NI

Pleosporales

HQ832823

99100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-4A

-PD2

KP3

06968

AD

NI

NI

Dothideom

ycetes

JQ905824

100

87C

9Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-4b1-PD

2KP3

06969

AD

Pls

NI

Pleosporales

JF288550

93100

C9

Rn

10.06

Mar Biotechnol (2015) 17:533–564 555

Page 24: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Ver

Apl

Aplysinasp.

B1a028-4b2-PD

2KP3

06970

AD

Pls

NI

Pleosporales

JF288550

9998

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-3-PD2

KP3

06971

AD

Pls

NI

Pleosporales

JF288550

9298

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-9-PD2

KP3

06972

AS

Xyl

Dty

Eutypella

scoparia

JX049395

99100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-2-SNA2

JQ922218

AS

Hyp

Hyc

Hypocreasp.

HQ607953

92100

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a028-6-SNA2

KP3

06973

AD

Pls

NI

Pleosporales

KC771509

9493

C9

Rn

10.06

Ver

Apl

Aplysinasp.

B1a081-5-EM2

JQ411312

AS

Xyl

Dty

Eutypella

scoparia

EU702436

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-3-P15

KP3

06974

AS

Dia

Dpe

Diaporthe

sp.

EF423521

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-5-P15

JQ066170

AD

Pls

NI

Pleosporales

HQ832823

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-6-P15

JQ344359

AD

Pls

NI

Pleosporales

EF694666

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-7-P15

JQ411317

AS

Xyl

Dty

Eutypella

sp.

JN637945

100

100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-8-P15

KP3

06975

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-1-P30

KP3

06976

AS

Dia

Dpe

Diaporthe

sp.

EF423521

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-2-P30

JQ388942

AD

Hys

Hst

Rhytidhysteron

rufulum

HQ832843

100

92C

11Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-4-P30

KP3

06977

AS

Xyl

Xye

Xylariaceae

AB440109

9999

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-6-P30

KP3

06978

AS

Xyl

Xye

Xylariaceae

AB440101

9398

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-8-P30

JQ344348

AD

Pls

NI

Pleosporales

HQ832823

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-9-P30

KP3

06979

AD

Pls

NI

Pleosporales

JF288550

9599

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-1-PD2

KP3

06980

AS

Dia

Dpe

Diaporthe

sp.

FJ799939

9999

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-2-PD2

JQ649345

AS

Hyp

NI

Hypocreales

KC311472

92100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-8-PD2

JQ388917

AD

Pls

NI

Pleosporales

EF694666

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-2-SNA2

KP3

06981

AD

NI

NI

Dothideom

ycetes

JQ905824

100

88C

11Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-3-SNA2

JQ411330

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

100

100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-6-SNA2

JQ411302

AS

Xyl

Dty

Eutypella

sp.

JN637945

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-7-SNA2

JQ411307

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

B1a081-8-SNA2

JQ411310

AS

Xyl

Dty

Eutypella

scoparia

JN601153

99100

C11

Dr

5.18

Ver

Apl

Aplysinasp.

M188T-3-EM

KP3

06982

AD

Pls

Ple

Phomasp.

JQ621876

99100

C9

Dr

12.2

Ver

Apl

Aplysinasp.

M188I-1-M

1DJQ

649362

BAgm

Agr

Mar

Marasmiussp.

JN601434

9399

C9

Dr

12.2

Ver

Apl

Aplysinasp.

M188T-3-M

1DJQ

411374

AS

Hyp

Cor

Beauveria

bassiana

KC551951

100

100

C9

Dr

12.2

Ver

Apl

Aplysinasp.

M188T-3YY-EM2

KP3

06983

AD

Pls

NI

Pleosporales

KC248544

9695

C9

Dr

12.2

Ver

Apl

Aplysinasp.

M188T-3Z-EM2

KP3

06984

AD

Pls

Ple

Phomasp.

JQ621876

99100

C9

Dr

12.2

Ver

Apl

Aplysinasp1

C3009-1-EM1

JQ411390

AE

Cha

NI

Strelitzianaafricana

DQ885895

99100

P4

Dr

26.83

Ver

Apl

Aplysinasp1

C3009-2-P15

KP3

07015

FNI

NI

NI

Fungalendophyte

EU686045

99100

P4

Dr

26.83

Ver

Apl

Aplysinasp1

C4B

-3-EM1

JQ388940

AD

Pls

Spo

Westerdykella

nigra

AY943049

97100

P5

Dr

29.57

Ver

Apl

Aplysinasp1

C4B

-3-SNA1

KP3

06985

AS

Hyp

Hyc

Hypocreasp.

JQ655465

99100

P5

Dr

29.57

Ver

Apl

Aplysinasp5

C4071-2-P301

JQ388944

AD

Bty

NI

Botryosphaeriales

HQ622105

100

100

P5

Dr

17.68

Ver

Apl

Aplysinasp5

C4009-1-EM1

KP3

06986

FNI

NI

NI

Fungalsp.

EU558536

100

99P

5Dr

17.68

Ver

Apl

Aplysinasp5

C4009-1-PD1

JQ922140

AD

Pls

Cry

Corynespora

cassiicola

KC662096

100

100

P5

Dr

17.68

Ver

Apl

Aplysinasp5

C4009-2-PD1

KP3

06987

FNI

NI

NI

Fungalsp.

JN098081

99100

P5

Dr

17.68

Ver

Apl

Aplysinasp6

P1051-1-P1

5JQ

388941

AD

Pls

NI

Pleosporales

GU595040

8283

P8

Rn

20.73

Ver

Apl

Aplysinasp6

P1060-1-EM1

KP3

06988

AS

Hyp

NI

Hypocreales

EF060726

97100

P8

Rn

20.73

Ver

Apl

Aplysinasp6

P1060-1-P3

0KP3

06989

AS

Hyp

NI

Hypocreales

JQ936269

100

100

P8

Rn

20.73

Ver

Apl

Aplysinasp6

P1060-1-PD

1JQ

411354

AS

NI

NI

Sordariomycetes

JQ760992

100

100

P8

Rn

20.73

556 Mar Biotechnol (2015) 17:533–564

Page 25: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Ver

Apl

Aplysinasp6

P1060-2-PD1

JQ411336

AS

Xyl

Dty

Eutypella

sp.

EU702437

96100

P8

Rn

20.73

Ver

Apl

Aplysinasp6

P1060-3-PD1

KP306990

AD

Pls

Ple

Phomasp.

JQ621876

99100

P8

Rn

20.73

Ver

Apl

Aplysinasp6

P5010-1-P30

JQ649386

AD

NI

NI

Dothideom

ycete

EU680515

100

100

P7

Dr

13.1

Ver

Apl

Aplysinasp6

P5010-1-EM

JQ388928

AD

NI

NI

Dothideom

ycete

EU680530

98100

P7

Dr

13.1

Ver

Apl

Aplysinasp6

P5019-1-EM1

KP306991

AS

Xyl

Amp

Pestalotiopsissp.

JX684003

100

99P

7Dr

13.1

Ver

Apl

Aplysinasp6

P5019-3-EM1

JQ411346

AS

Xyl

Dty

Eutypella

sp.

FJ800515

100

100

P7

Dr

13.1

Ver

Apl

Aplysinasp6

P5019-2-P15

JQ922151

AS

Xyl

Dty

Diatrypaceaesp.

JF773650

99100

P7

Dr

13.1

Ver

Apl

Aplysinasp6

M2036-1-EM1

KP306992

AS

Xyl

Xye

Annulohypoxylon

sp.

KC147571

9999

P8

Rn

18.6

Ver

Apl

Aplysinasp6

M2036-3-EM1

JQ649357

AS

NI

NI

Sordariomycetes

JQ717349

99100

P8

Rn

18.6

Ver

Apl

Aplysinasp7

M2037-2-EM1

KP306993

AS

NI

NI

Sordariomycetes

JQ760019

99100

P8

Rn

18.6

Ver

Apl

Aplysinasp7

M2037-3-EM1

JQ922165

AS

Xyl

Dty

Eutypella

sp.

JN637945

99100

P8

Rn

18.6

Ver

Apl

Aplysinasp7

M2037-4-M

1DJQ

344358

AD

Pls

NI

Pleosporales

EF6

94666

99100

P8

Rn

18.6

Ver

Apl

Aplysinasp7

M2037-5-M

1DJQ

922228

FNI

NI

NI

Fungalsp.

JQ747679

100

100

P8

Rn

18.6

Ver

Apl

Aplysinasp7

P1059-1-P15

JQ388943

AD

Hys

Hst

Rhytid

hysteron

rufulum

EU020026

9998

P8

Rn

20.73

Ver

Apl

Aplysinasp7

P3007-3-P15

KP306994

AD

Pls

NI

Pleosporales

GQ254685

99100

P8

Rn

20.73

Ver

Apl

Aplysinasp7

P3007-1-P30

JQ649342

AS

NI

NI

Sordariomycete

EF6

94652

98100

P8

Rn

20.73

Ver

Apl

Aplysinasp7

P3007-1-PD1

KP307014

ANI

NI

NI

Ascom

ycota

GU566290

91100

P8

Rn

20.73

Ver

Apl

Verongulareiswigi

B1a103-1-EM2

KP306995

FNI

NI

NI

Fungalsp.

FJ439590

97100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-3-EM2

KP306996

ANI

NI

NI

Ascom

ycota

GU985214

9592

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-5-EM2

KP306997

AD

Pls

NI

Pleosporales

JN559399

9948

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-8-EM2

JQ411376

AS

Hyp

NI

Hypocreales

JQ905649

9899

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-3-P1

52KP306998

AS

Dia

Dpe

Diaporthe

sp.

FJ799937

100

100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-4-P1

5JQ

388915

AD

Pls

NI

Pleosporales

EF6

94666

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-5-P1

52KP306999

AS

Dia

Dpe

Diaporthe

sp.

FJ799937

100

100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-6-P1

52KP307000

AS

Hyp

NI

Hypocreales

GU586835

100

100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-7a-P152

KP307001

AS

Dia

Dpe

Di aporthe

sp.

GU066726

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-7B

-P152

KP307002

AS

Dia

Dpe

Diaporthe

sp.

GU066726

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-9-P1

5KP307003

FNI

NI

NI

Fungalsp.

JQ747679

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-2-P3

0JQ

344357

AD

Pls

NI

Pleosporales

EF6

94666

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-4-P3

0JQ

411313

AS

Xyl

Dty

Eutypella

scoparia

JN601153

100

100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-6-P3

0JQ

344350

AD

Pls

NI

Pleosporales

EF6

94666

98100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-7-P3

0KP307004

AS

Hyp

NI

Hypocreales

KC311472

9198

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-8-P3

0JQ

411308

AS

Xyl

Dty

Eutypella

sp.

JN637945

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-3-PD

2KP307005

AS

Xyl

Xye

Xylariaceae

EU010003

9599

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-5-PD

2JQ

344355

AD

Pls

NI

Pleosporales

EF6

94666

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-5a-PD3

JQ344356

AD

Pls

NI

Pleosporales

EF6

94666

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-7-PD

2KP307006

AS

Hyp

NI

Hypocreales

KC311472

9198

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-8-PD

2JQ

411321

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-2-SN

A2

JQ411340

AS

Xyl

Dty

Diatrypaceae

FR715523

91100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-3-SN

A2

KP307007

AD

Pls

NI

Pleosporales

HQ832823

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1a103-4-SN

A2

JQ388914

AD

Pls

NI

Pleosporales

EF6

94666

99100

C11

Dr

5.18

Ver

Apl

Verongulareiswigi

B1b076-1-P1

5KP307008

AS

Mcr

Mce

Pseudallescheriasp.

GU827497

100

100

C9

Dr

10.67

Mar Biotechnol (2015) 17:533–564 557

Page 26: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Tab

le4

(contin

ued)

Host

Isolate

GenBankacc.no.

Fungus

TopBLAST

match

no.

ID(%

)Query

cov.

ZSt

SnDpt

(m)

Ord

Fam

Species

PhCl

Ord

Fam

Assignedtaxon

Ver

Apl

Verongulareiswigi

B1b076-1a-P152

KP307009

BAgm

Hym

Hye

Phellinustropicalis

AF534077

99100

C9

Dr

10.67

Ver

Apl

Verongulareiswigi

B1b076-3-P1

5KP307010

AS

Mcr

Mce

Pseudallescheriaboydii

KC800585

100

100

C9

Dr

10.67

Ver

Apl

Verongulareiswigi

B1b076-2-P3

0JQ

649376

AD

Pls

Ple

Phomasp.

JQ621876

99100

C9

Dr

10.67

Ver

Apl

Verongulareiswigi

B1b076-2-P3

02KP307011

AD

Pls

Ple

Phomasp.

JX868743

9983

C9

Dr

10.67

Ver

Apl

Verongulareiswigi

B1b076-3-P3

0KP307012

AS

Hyp

NI

Hypocreales

EF0

60755

9487

C9

Dr

10.67

Ver

Apl

Verongulareiswigi

B1b076-2-PD

2KP307013

AS

Xyl

Dty

Eutypella

scoparia

JQ936179

98100

C9

Dr

10.67

AAscom

ycota,Agm

Agaricomycetes,A

grAgaricales,AmpAmphisphaeriaceae,Api

Apiosporaceae,A

plAplysinidae,A

rtArthopyreniaceae,Axn

Axinellidae,BBasidiomycota,BaBasidiomycetes,B

ioBionectriaceae,

Bty

Botryosphaeriales,Bot

Botryosphaeriaceae,

CCaribbean

Sea,Cha

Cha

etothyriales,Chd

Chondrillidae,

Chl

Chalin

idae,Cho

Cho

ndrosida,Clclass,

Cln

Clio

naidae,Coe

Coelosphaeridae,Cor

Crodycipitaceae,Cpn

Cap

nodiales,Cry

Corynespo

rascaceae,

DDothideom

ycetes,Dac

Dacam

piaceae,

Dct

Dictyon

ellid

ae,Dia

Diapo

rtha

les,

Dic

Dictyoceratida,

Did

Didym

ellaceae,D

peDiaporthaceae,D

ptdepth,Drdry,DtyDiatrypaceae,Dvd

Davidiella

ceae,E

Eurotiomycetes,E

urEurotiales,FFu

ngal,F

amfamily,G

loGlomerellaceae,G

lsGlomerellales,Had

Hadromerida,Hal

Halichondrida,Hap

Haplosclerida,Har

Harknessiaceae,Her

Herpotrichiellaceae,Hom

Hom

osclerophorida,HstHysteriaceae,Hyc

Hypocreaceae,Hye

Hym

enochaetaceae,Hym

Hym

enochaetales,H

ypHypocreales,H

ysHysteriales,IDidentity,i.s.incertasedis,IotIotrochotidae,IrcIrciniidae,Lep

Leptosphaeriaceae,M

arMarasmiaceae,M

asMassarinaceae,M

ceMicroascaceae,

Mcr

Microascales,MicMicroionidae,Mnt

Montagnulaceae,Myc

Mycalidae,Nec

Nectriaceae,NInotidentified,

Nph

Niphatid

ae,Ord

order,PPacificOcean,Phphylum

,Phe

Phylla

choraceae,Phl

Phloeodictyidae,Phy

Phylla

chorales,Plc

Placospongiidae,Ple

Pleosporaceae,Plk

Plakinidae,

Pls

Pleosporales,

Ply

Polyporales,Psa

Psathyrellaceae,Ptr

Petrosiidae,Poe

Poecilosclerida,Pol

Polyporaceae,

Rsp

Raspaillidae,Rnrainy,

Rus

Russulales,SSordariomycetes,SbrSuberitidae,

Snseason,SrdSordariales,St

site,SpiSp

irophorida,SpoSporormiaceae,SprSpirastrellidae,

Ter

Teratosphaeriaceae,T

dnTedaniidae,Trc

Trichocomaceae,TriTrichosphaeriales,T

thTethyidae,TtlT

etillidae,ValValsaceae,VenVenturiaceae,Ver

Verongida,W

rgWrightoporiaceae,Xye

Xylariaceae,

XylXylariales,Zzone

558 Mar Biotechnol (2015) 17:533–564

Page 27: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Table 5 Number of fungi isolated and sequenced per sponge specimen

Host order Host family Host species Code no. Collectiondate D/M/Y

EM M1D P15 P30 PD SNA TI TS %

Verongida Aplysinidae Aplysina cauliformis B1a085 09/12/2009 5 0 6 7 3 8 29 22 76

B1b085 17/08/2009 3 0 7 5 4 3 22 21 95

Aplysina chiriquensis C4065 28/01/2009 0 0 1 1 0 0 2 1 50

M2025 15/05/2007 3 1 1 1 0 0 6 3 50

Aplysina fulva B1a003 03/02/2009 6 0 1 4 0 0 11 6 55

B1a050 03/02/2009 5 0 4 6 1 1 17 7 41

B1a090 09/12/2009 6 0 7 7 9 2 31 24 77

Aplysina gerardogreeni C3003 29/01/2009 0 0 0 1 3 0 4 2 50

C3030 29/01/2009 1 0 0 0 0 0 1 1 100

C4008 28/01/2009 2 0 2 0 2 1 7 5 71

C4060 28/01/2009 0 0 0 0 1 0 1 1 100

C4066 28/01/2009 0 1 0 0 0 1 1 100

M2024 28/10/2006 3 0 2 3 0 0 8 4 50

M2034 08/10/2007 4 2 0 0 0 0 6 2 33

M2035 08/10/2007 1 1 0 0 0 0 2 1 50

P5006 25/11/2009 7 0 5 8 9 7 36 1 3

P5012 02/10/2009 0 0 1 1 1 0 3 3 100

Aplysina sp1 C3009 29/01/2009 1 0 1 0 0 1 3 2 67

C4B 31/01/2009 1 0 0 0 0 3 4 2 50

Aplysina sp5 C4009 28/01/2009 1 0 0 0 4 1 6 3 50

C4071 28/01/2009 0 0 1 2 2 0 5 1 20

Aplysina sp6 M2036 08/10/2009 3 0 0 1 0 0 4 2 50

P1051 14/12/2009 1 0 1 0 1 0 3 1 33

P1060 14/12/2009 1 0 3 1 3 0 8 5 63

P5010 02/10/2009 1 0 0 2 0 0 3 2 67

P5019 02/10/2009 2 0 1 1 0 0 4 3 75

Aplysina sp7 M2037 08/10/2007 3 5 0 0 0 0 8 4 50

P1059 14/12/2009 0 0 1 0 0 0 1 1 100

P3007 14/12/2009 2 0 3 2 2 1 10 3 30

Aplysina sp. B1a028 03/02/2009 4 0 2 2 4 5 17 13 76

B1a081 09/12/2009 2 0 9 8 5 5 29 20 69

M188 06/04/2006 5 4 2 0 0 0 11 5 45

Verongula reiswigi B1a103 11/12/2010 4 0 9 8 2 3 26 24 92

B1b076 17/08/2009 2 0 4 3 1 1 11 7 64

Halichondrida Axinellidae Axinella sp1 C4004 28/01/2009 1 0 0 2 0 1 4 4 100

C4006 28/01/2009 2 0 0 3 0 6 11 4 36

C4025 28/01/2009 3 0 4 2 5 2 16 13 81

C4027 28/01/2009 5 0 2 4 1 7 19 4 21

P1057 14/12/2009 4 0 2 3 5 4 18 8 44

Axinella sp2 C4030 28/01/2009 4 0 4 3 1 3 15 8 53

Dictyonellidae Scopalina sp. C3060A 29/01/2009 0 0 1 1 0 0 2 3 150

Spirophorida Tetillidae Cynachirella alloclada B1a040 03/02/2009 4 0 2 2 4 2 14 9 64

B1b019 02/11/2009 1 0 2 4 1 3 11 2 18

B1b064 17/08/2009 5 0 2 0 0 0 7 1 14

Haplosclerida Niphatidae Niphates erecta B1a001 03/02/2009 6 0 4 0 1 2 13 11 85

Appendix 2

Mar Biotechnol (2015) 17:533–564 559

Page 28: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Table 5 (continued)

Host order Host family Host species Code no. Collectiondate D/M/Y

EM M1D P15 P30 PD SNA TI TS %

B1a008 03/02/2009 1 0 1 0 1 1 4 4 100

B1a009 03/02/2009 6 0 5 7 6 4 28 21 75

B1a095 11/12/2010 5 0 4 4 7 9 29 1 3

B1b081 17/08/2009 0 0 1 0 0 1 2 2 100

B1b086 17/08/2009 1 0 1 1 2 1 6 4 67

M2033 29/05/2007 10 5 10 6 0 0 31 3 10

Amphimedon compressa B1a013 03/02/2009 4 0 2 1 4 2 13 1 8

M186 06/04/2006 6 2 3 0 0 0 11 3 27

Amphimedon viridis B1b068 17/08/2009 5 0 3 0 2 3 13 2 15

NI B1b018 02/11/2009 1 0 2 0 0 2 5 1 20

Petrosiidae Xestospongia muta B1a105 11/12/2010 6 0 6 3 4 4 23 1 4

Xestospongia rosariensis B1a054 03/02/2009 3 0 0 3 1 2 9 1 11

Xestospongia sp. B1a018 03/02/2009 2 0 4 2 6 1 15 12 80

Chalinidae Haliclona caerulea C4015 28/01/2009 4 0 0 0 0 0 4 1 25

M2030 29/05/2007 8 3 5 7 0 0 23 4 17

P1056 14/12/2009 4 0 2 1 1 2 10 5 50

P3004 14/12/2009 9 0 3 1 3 3 19 8 42

Haliclona sp. B1b052 02/11/2009 2 0 2 4 2 3 13 1 8

B1b056 02/11/2009 3 0 0 0 2 3 8 1 13

M200 07/04/2006 18 12 11 0 0 0 41 1 2

Haliclona sp2 P1055 14/12/2009 1 0 1 0 1 1 4 3 75

Haliclona sp3 C4037 15/12/2009 8 0 4 1 6 5 24 1 4

NI M2031 29/05/2007 8 2 6 9 0 0 25 2 8

Phloeodictyidae Aka B1b009 02/11/2009 3 0 2 0 0 3 8 1 13

Dictyoceratida Irciniidae Ircinia strobilina B1a024 03/02/2009 7 0 1 6 1 3 18 1 6

B1b074 17/08/2009 5 0 3 2 2 3 15 1 7

Petrosiidae Hyatella cf intestinalis C1039 15/12/2009 3 0 0 0 0 0 3 3 100

C3060 29/01/2009 2 0 1 2 1 4 10 3 30

C4015B 28/01/2009 1 0 1 0 6 2 10 3 30

Poecilosclerida Mycalidae Mycale sp. B1a020 03/02/2009 4 0 5 5 6 6 26 5 19

B1a047 03/02/2009 0 0 2 2 1 0 5 7 140

Coelosphaeridae Lissondendoryx colombiensis B1a019 03/02/2009 5 0 3 4 7 4 23 13 57

Tedaniidae Tedania ignis B1a031 03/02/2009 1 0 4 2 2 3 12 9 75

B1a035 03/02/2009 6 0 2 2 3 2 15 12 80

Microionidae Desmapsana B1a041 03/02/2009 1 0 3 2 0 2 8 7 88

Iotrochotidae Iotrochota birotulata B1b057 02/11/2009 3 0 5 3 2 3 16 1 6

Raspaillidae NI C3040 03/12/2009 2 0 2 0 2 0 6 3 50

C4092 28/01/2009 1 0 0 0 1 0 2 1 50

M2007 28/10/2006 5 0 5 4 0 0 14 2 14

M2038 08/10/2007 7 7 0 0 0 0 14 4 29

P5005 25/11/2009 4 0 8 7 6 10 35 1 3

Homosclerophorida Plakinidae Plakinastrella onkodes B1a111 11/12/2010 0 0 1 0 0 0 1 1 100

B1b088 17/08/2009 2 0 0 0 1 0 3 2 67

Hadromerida Clionaidae Cliona delitrix B1b073 17/08/2009 1 0 3 2 1 4 11 1 9

Placospongiidae Placospongia intermedia B1a039 03/02/2009 4 0 3 2 0 1 10 10 100

Spirastrellidae Spirastrella sp. B1aA 03/02/2009 0 0 3 2 2 3 10 9 90

B1a027A 03/02/2009 7 0 4 2 1 7 21 13 62

B1a020A 03/02/2009 1 0 2 2 4 3 12 5 42

560 Mar Biotechnol (2015) 17:533–564

Page 29: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Table 5 (continued)

Host order Host family Host species Code no. Collectiondate D/M/Y

EM M1D P15 P30 PD SNA TI TS %

Suberitidae Laxosuberites sp. M2017 28/10/2006 6 0 7 9 0 0 22 2 9

M2028 15/05/2007 7 7 6 7 0 0 27 1 4

NI X0016R 09/02/2009 4 0 0 3 2 3 12 4 33

Tethyidae Tethya sp. B1a110 11/12/2010 8 0 2 2 3 7 22 1 5

Chondrosida Chondrillidae Chondrilla sp. C4091 28/01/2009 3 0 2 0 0 2 7 2 29

NI P5025 10/02/2009 7 0 6 10 10 9 42 1 2

NI NI NI B1a006 03/02/2009 5 0 4 2 3 2 16 14 88

B1a007 03/02/2009 4 0 0 1 2 2 9 1 11

B1a010 03/02/2009 7 0 3 2 1 3 16 1 6

B1a027 03/02/2009 8 0 2 1 2 4 17 12 71

B1b004 25/03/2009 0 0 0 1 3 2 6 1 17

B1b011 25/03/2009 3 0 1 2 8 0 14 8 57

B1b014 25/03/2009 1 0 1 0 0 1 3 1 33

B1b072 17/08/2009 1 0 0 0 2 2 5 1 20

C3060B 29/01/2009 1 0 2 2 2 2 9 3 33

C3060C 29/01/2009 1 0 0 0 0 2 3 4 133

M2011 28/10/2006 5 0 2 5 0 0 12 2 17

P1058 14/12/2009 4 0 2 2 2 2 12 6 50

P1053 14/12/2009 5 0 1 1 3 1 11 6 55

P1054 14/12/2009 4 0 1 1 2 1 9 4 44

TI total of isolated fungi, TS total of sequenced fungi, % percentage of sequenced fungi

Table 6 Percentage of receptor inhibition by 100 μg/ml fungal extracts. Data represents the average and the standard deviation of three independentexperiments

Phylum Class Order Family Specie Media; cultureconditions

ETA ETB AT1

A Dothideomycetes Botryosphaeriales NI NI P30; shaker 8.95±0.97 −9.34±28.79 2.18±4.84

A Dothideomycetes Capnodiales Davidiellaceae Cladosporium sp. EM; shaker 16.71±0.61 20.88±13.16 1.32±2.13

A Sordariomycetes Diaporthales Valsaceae Cytospora rhizophorae P30; shaker −0.18±10.38 31.55±3.80 30.61±0.43

A Sordariomycetes Diaporthales Diaporthaceae Diaporthe sp. P30; shaker 16.15±0.46 4.38±2.92 0.31±2.33

A Sordariomycetes Diaporthales Diaporthaceae Diaporthe sp. PD; shaker 14.95±0.99 13.98±14.42 15.52±2.47

A Sordariomycetes Hypocreales Hypocreaceae Acremonium implicatum P15; shaker 21.35±14.28 −36.87±8.22 30.23±3.73

A Sordariomycetes Hypocreales Cordycipitaceae Beauveria sp. M1D; shaker 6.35±6.69 −1.86±7.88 −11.78±3.26A Sordariomycetes Hypocreales Bionectriaceae Bionectria ochroleuca PD; shaker 17.09±6.49 10.51±5.56 2.72±2.15

A Sordariomycetes Hypocreales Bionectriaceae Bionectria sp. P15; shaker 16.36±0.23 6.90±7.70 20.71±1.51

A Sordariomycetes Hypocreales Bionectriaceae Clonostachys divergens PD; shaker 17.33±2.34 11.44±4.20 6.84±1.52

A Sordariomycetes Hypocreales Nectriaceae Cosmospora sp. EM; shaker 6.05±0.82 13.71±10.18 5.10±2.44

A Sordariomycetes Hypocreales Nectriaceae Fusarium culmorum P15; shaker 8.66±0.12 8.73±5.25 9.12±4.31

A Sordariomycetes Hypocreales Nectriaceae Fusarium sp. PD; shaker 11.49±0.53 −0.08±0.10 20.95±1.38

A Sordariomycetes Hypocreales Nectriaceae Fusarium sp. PD; shaker 3.74±2.88 67.93±2.31 49.74±2.59

A Sordariomycetes Hypocreales Nectriaceae Fusarium sp. P15; shaker −123.7±169.03 3.22±2.25 11.82±2.32

A Sordariomycetes Hypocreales Nectriaceae Fusarium sp. P30; shaker 20.61±4.06 9.07±1.50 23.02±1.36

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea jecorina EM; shaker 23.89±3.39 22.44±7.82 24.48±5.93

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea jecorina EM; shaker 10.86 0.93±0.54 0.72±1.54

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea jecorina EM; shelf 20.15±4.17 24.16±2.20 2.55±4.24

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea lixii EM; shaker 12.86±2.61 6.27±6.50 8.55±1.53

Appendix 3

Mar Biotechnol (2015) 17:533–564 561

Page 30: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Table 6 (continued)

Phylum Class Order Family Specie Media; cultureconditions

ETA ETB AT1

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea sp. EM; shaker 14.58±3.43 3.68±8.79 4.58±4.47

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea sp. EM; shaker 18.92±0.92 3.95±3.10 12.09±9.10

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea sp. P30; shaker 0.59±1.83 35.00±6.14 3.34±15.48

A Sordariomycetes Hypocreales Hypocreaceae Hypocrea sp. P30; shaker 11.14±0.5 4.21±21.25 −7.62±5.11A Sordariomycetes Hypocreales NI NI PD; shaker 5.35±11.43 12.45±0.48 −2.28±0.93A Sordariomycetes Hypocreales NI NI EM; shaker 14.44±6.11 −3.93±8.04 0.06±4.16

A Sordariomycetes Hypocreales Clavicipitaceae Tolypocladium inflatum M1D; shaker 18.99±23.3 −100.35±62.61 40.24±0.78

A Sordariomycetes Hypocreales Clavicipitaceae Tolypocladium inflatum M1D; shaker 11.60±4.5 −1.16±1.82 12.35±1.68

A Sordariomycetes Hypocreales Hypocreaceae Trichoderma atroviride P15; shaker −14.18±29.88 10.70±0.30 −1.85±0.22A NI NI NI NI P15; shaker 28.87±10.82 6.78±20.61 9.60±1.51

A NI NI NI NI P30; shelf 0.93±25.59 −47.01±6.96 −102.26±1.67A NI NI NI NI M1D; shaker 12.46±23.7 −8.32±0.27 5.56±4.68

A NI NI NI NI M1D; shelf −91.58±20.07 −5.77±16.69 7.38±3.77

A Dothideomycetes NI NI NI EM; shaker 15.913.07± 15.74±7.07 6.41±0.30

A Dothideomycetes NI NI NI P30; shaker 16.04±5.06 35.50±10.10 16.08±5.93

A Dothideomycetes Pleosporales Pleosporaceae Cochliobolus lunatus P30; shaker 7.75±0.24 5.35±6.74 17.16±1.84

A Dothideomycetes Pleosporales NI NI P15; shaker 11.38±1.54 2.36±8.07 −1.41±5.73A Dothideomycetes Pleosporales Leptosphaeriaceae sp. NI EM; shaker 22.06±1.94 37.03±23.08 −8.57±3.79A Dothideomycetes Pleosporales NI NI M1D; shaker 14.29±1.89 19.40±0.23 10.19±5.91

A Dothideomycetes Pleosporales NI NI EM; shelf 3.07±17.39 −7.13±3.21 −14.98±9.16A Dothideomycetes Pleosporales NI NI P15; shaker −4.49±0.15 5.96±1.82 −11.65±7.62A Dothideomycetes Pleosporales Pleosporaceae Phoma sp. EM; shaker −8.07±10.25 0.36±9.53 −1.10±0.98A Dothideomycetes Pleosporales Pleosporaceae Phoma sp. EM; shelf 19.04±14.18 5.38±1.23 −10.11±0.37A Dothideomycetes Pleosporales Pleosporaceae Phoma sp. PD; shaker 55.83±0.6 39.47±3.50 29.39±4.21

A Dothideomycetes Pleosporales NI NI P30; shaker −8.91±25.62 0.86±2.02 −10.59±0.99A Dothideomycetes Pleosporales NI NI EM; shaker 20.90±6.93 9.45±4.76 15.66±0.06

A Dothideomycetes Pleosporales NI NI P15; shaker −10.42±24.84 2.20±5.52 6.38±8.37

A Sordariomycetes Sordariales Apiosporaceae Arthrinium phaeospermum EM; shaker 10.18±3.73 3.58±10.89 15.09±8.03

A Sordariomycetes Sordariales Apiosporaceae Arthrinium sp. SNA; shaker 10.86±0.22 3.27±11.40 1.31±5.33

A Sordariomycetes Sordariales Apiosporaceae Arthrinium sp. PD; shaker 23.39±31.36 −14.28±0.39 −5.64±20.14A Dothideomycetes Venturiales Sympoventuriaceae Fusicladium sp. P30; shaker 18.78±6.44 20.61±15.51 20.28±5.93

A Sordariomycetes Xylariales Xylariaceae Biscogniauxia sp. P30; shaker 0.63±1.93 −1.17±14.01 −82.49±3.43A Sordariomycetes Xylariales Diatrypaceae Eutypella scoparia EM; shaker 31.10±33.7 44.85±7.44 36.40±2.26

A Sordariomycetes Xylariales Diatrypaceae Eutypella scoparia P15; shaker −30.91±17.54 12.93±2.71 −15.96±3.19A Sordariomycetes Xylariales Diatrypaceae Eutypella scoparia EM; shaker 29.12±23.18 −3.59±2.95 26.02±5.46

A Sordariomycetes Xylariales Diatrypaceae Eutypella sp. P15; shaker 10.89±22.78 23.53±3.26 19.79±11.10

A Sordariomycetes Xylariales Diatrypaceae Eutypella sp. M1D; shaker −8.64±1.05 12.57±2.41 8.92±5.83

A Sordariomycetes Xylariales Diatrypaceae Eutypella sp. EM; shaker 11.62±1.29 4.89±4.58 −2.68±0.65A Sordariomycetes Xylariales Xylariaceae NI PD; shaker 2.04±13.35 19.76±1.94 19.51±0.56

A Sordariomycetes Xylariales Xylariaceae Xylaria sp. EM; shaker 13.92±2.75 11.84±2.38 18.41±4.58

B Agaricomycetes Agaricales NI NI P15; shaker 23.69±6.92 −1.00±0.98 −5.54±4.48B Agaricomycetes Corticiales Corticiaceae NI EM; shaker 23.52±7.18 23.34±5.71 15.98±1.17

B Agaricomycetes Hymenochaetales Hymenochaetaceae Phellinus sp. EM; shaker 12.02±1.27 13.21±10.90 15.34±2.43

B Basidiomycetes Polyporales Polyporaceae Panus sp. P30; shaker 15.96±18.25 6.69±4.97 −1.61±15.24B Agaricomycetes Russulales Wrightoporiaceae Wrightoporia tropicalis P15; shaker 19.04±14.18 25.82±15.41 25.49±3.06

BQ123* 91.76±6.92 −0.22±8.28 nm

BQ788* 8.51±4.37 99.03±0.14 nm

CV* nm nm 90.91±3.15

shaker culture in orbital shaker at 150 rpm and 28 °C, shelf culture on bench at 22 °C, A Ascomycota, B Basidiomycota, CV candesartan, * referenceligand, NI not identified, nm not measured

562 Mar Biotechnol (2015) 17:533–564

Page 31: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

References

Adachi K, Kanoh K, Wisespongp P, Nishijima M, Shizuri Y (2005)Clonostachysins A and B, new anti-dinoflagellate cyclic peptidesfrom a marine-derived fungus. J Antibiot (Tokyo) 58:145–150

Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungalendophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogeneticdiversity and antimicrobial activities of fungi associated withHaliclona simulans isolated from Irish coastal waters. MarBiotechnol 11:540–547

Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR(2009) Marine natural products. Nat Prod Rep 26:170–244

Caballero-George C, Vanderheyden PM, Solis PN, Pieters L, Shahat AA,Gupta MP, Vauquelin G, Vlietinck AJ (2001) Biological screeningof selected medicinal Panamanian plants by radioligand-bindingtechniques. Phytomedicine 8:59–70

Caballero-George C, Vanderheyden PM, De Bruyne T, Shahat AA, Vanden Heuvel H, Solis PN, Gupta MP, Claeys M, Pieters L, VauquelinG, Vlietinck AJ (2002) In vitro inhibition of [3H]-angiotensin IIbinding on the human AT1 receptor by proanthocyanidins fromGuazuma ulmifolia bark. Planta Med 68:1066–1071

Caballero-George C, Bolaños J, Ochoa E, Carballo JL, Cruz JA, ArnoldAE (2010) Protocol to isolate sponge-associated fungi from tropicalwaters and an examination of their cardioprotective potential. CurrTrends Biotechnol Pharm 4:881–899

Castresana J (2000) Selection of conserved blocks from multiple align-ments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

Coates A (2001) En la Historia Geologica, Panama ha Cambiado elMundo. In: Heckadon-Moreno S (ed) Panama: Puente Biológico.Instituto Smithsonian de Investigaciones Tropicales, Panama, pp18–25

Collin R, Diaz MC, Norenburg J, Rocha RM, Sanchez JA, Schulze A,Schwartz M, Valdes A (2005) Photographic identification guide tosome common marine invertebrates of Bocas del Toro, Panama.Caribb J Sci 41:638–707

Cruz LJ, Insua MM, Baz JP, Trujillo M, Rodriguez-Mias RA, Oliveira E,Giralt E, Albericio F, Cañedo LM (2006) IB-01212, a new cytotoxiccyclodepsipeptide isolated from the marine fungus Clonostachys sp.ESNA-A009. J Org Chem 71:3335–3338

D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacificshelf of Panama and implications for the distribution of nutrientsand chlorophyll. Estuar Coast Shelf Sci 73:325–340

D’Croz L, Robertson DR (1997) Coastal oceanographic conditions af-fecting coral reefs on both sides of the Isthmus of Panama. Proc 8thInt Coral Reef Symp 2:2053–2058

Da Silva M, Passarini MR, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisationand RBBR decolourisation screening. Environ Technol 29:1331–1339

Deo SK, Daunert S (2001) Luminescent proteins fromAequorea victoria:applications in drug discovery and in high throughput analysis.Fresenius J Anal Chem 369:258–266

Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversityof culturable fungi associated with marine sponges Clathrinaluteoculcitella and Holoxea sp. in the South China Sea. MarBiotechnol (NY) 13:713–721

Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD,Baker KM (1997) Molecular mechanisms of angiotensin II in mod-ulating cardiac function: intracardiac effects and signal transductionpathways. J Mol Cell Cardiol 29:2893–2902

EbrahimW, Kjer J, El AmraniM,Wray V, LinW, Ebel R, Lai D, ProkschP (2012) Pullularins E and F, two new peptides from the endophytic

fungus Bionectria ochroleuca isolated from the mangrove plantSonneratia caseolaris. Mar Drugs 10:1081–1091

Edgar R (2004) MUSCLE: multiple sequence alignment with high accu-racy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

Ewing B, Green P (1998) Base-calling of automated sequencer tracesusing Phred. II. Error probabilities. Genome Res 8:186–194

Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automatedsequencer traces using phred. I. Accuracy assessment. Genome Res8:175–185

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS,Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp.as potential halotolerant agents of biological control for arid-zoneagriculture. Appl Environ Microbiol 77:5100–5109

Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungalcommunities in the Hawaiian marine sponges Suberites zeteki andMycale armata. Appl Environ Microbiol 74:6091–6101

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity forbasidiomycetes: application to the identification of mycorrhizae andrusts. Mol Ecol 2:113–118

Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: amultiplatform graphical user interface for sequence alignment andphylogenetic tree building. Mol Biol Evol 27:221–224

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm toestimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

Hatai K (2012) Diseases of fish and shellfish caused by marine fungi.Prog Mol Subcell Biol 53:15–52

Hills DM, Bull JJ (1993) An empirical test of bootstrapping as a methodassessing confidence in phylogenetic analysis. Syst Biol 42:182–192

Höller U, König GM, Wright AD (1999) Three new metabolites frommarine-derived fungi of the genera Coniothyrium andMicrosphaeropsis. J Nat Prod 62:114–118

Hooper JNA, Van Soest RWM (2002) Systema Porifera: a guide to theclassification of sponges, vol 2. Kluwer Academic/PlenumPublisher, New York

Jackson J, D’Croz L (2003) El Oceano Se Divide. In: Coates AG (ed)Paseo Pantera. Smithsonian Books, Washington, pp 41–79

Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater ba-sidiomycetes. Br Mycol Soc Symp Ser 28:301–324

Julianti E, Oh H, Jang KH, Lee JK, Lee SK, Oh DC, Oh KB, Shin J(2011) Acremostrictin, a highly oxygenated metabolite from themarine fungus Acremonium strictum. J Nat Prod 74:2592–2594

Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation ofmarine-derived endophytic fungi and their bioactive secondaryproducts. Nat Protoc 5:479–490

Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In:Moss ST (ed) The biology of marine fungi. Cambridge UniversityPress, Cambridge, p 234–257

Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M(2002) Adaptation of aequorin functional assay to high throughputscreening. J Biomol Screen 7:57–65

Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiianmarine sponges. Microbiol Res 164:233–241

Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diver-sity of cultivable fungi associated with two marine sponges:Haliclona simulans and Gelliodes carnosa, collected from theHainan Island coastal waters of the South China Sea. FungalDivers 42:1–15

Maddison WP, Maddison DR (2009) Mesquite: a modular system forevolutionary analysis. Version 2.72 http://mesquiteproject.org.Accessed 29 Oct 2012

Manohar CS, Raghukumar C (2013) Fungal diversity from various ma-rine habitats deduced through culture-independent studies. FEMSMicrobiol Lett 341:69–78

Mar Biotechnol (2015) 17:533–564 563

Page 32: Phylogenetic Diversity of Sponge-Associated Fungi ......Amp PCR System 2700 with 25 μl of reaction per sample: 1 μl of DNA template (1:10 dilution of extracted genomic DNA), 9.5

Masaki T (1989) The discovery, the present state, and the future prospectsof endothelin. J Cardiovasc Pharmacol 13(Suppl 5):S1–S4, discus-sion S18

Miao L, Kwong T, Qian PY (2006) Effect of culture conditions on my-celial growth, antibacterial activity, and metabolite profiles of themarine-derived fungus Arthrinium c.f. saccharicola. ApplMicrobiol Biotechnol 72:1063–1073

Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L,Hoover P, Warnow T (2010) The CIPRES portals. CIPRES. 2009-08-04. URL: http://www.phylo.org/sub_sections/portal. AccessedDec 2010. (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J(2000) Biodiversity hotspots for conservation priorities. Nature403:853–858

Nakamura M, Ito Y, Ogawa K, Michisuji Y, Sato S, Takada M, HayashiM, Yaginuma S, Yamamoto S (1995) Stachybocins, novelendothelin receptor antagonists, produced by Stachybotrys sp.M6222. I. Taxonomy, fermentation, isolation and characterization.J Antibiot (Tokyo) 48:1389–1395

Nikolaou A, Van den Eynde I, Tourwé D, Vauquelin G, Tóth G,Mallareddy JR, Poglitsch M, Van Ginderachter JA, VanderheydenPM (2013) [3H]IVDE77, a novel radioligand with high affinity andselectivity for the insulin-regulated aminopeptidase. Eur JPharmacol 702:93–102

Ogawa T, Ando K, Aotani Y, Shinoda K, Tanaka T, Tsukuda E, YoshidaM, Matsuda Y (1995) RES-1214-1 and -2, novel non-peptidicendothelin type A receptor antagonists produced by Pestalotiopsissp. J Antibiot (Tokyo) 48:1401–1406

Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J,Ainsworth AM, Katzer W, Cheng XM, Hupe DJ (1995)Azaphilones with endothelin receptor binding activity produced byPenicillium sclerotiorum: taxonomy, fermentation, isolation, struc-ture elucidation and biological activity. J Antibiot (Tokyo) 48:913–923

Pearman JK, Taylor JE, Kinghorn JR (2010) Fungi in aquatic habitatsnear St Andrews in Scotland. Mycosphere 1:11–21

Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL(2011) Diversity and distribution of soil fungal communities in asemiarid grassland. Mycologia 103:10–21

R Development Core Team (2008) R: a language and environment forstatistical computing. R Foundation for Statistical Computing,Vienna. http://www.R-project.org. Accessed 25 Feb 2013

Richards T, Jones M, Leonard G, Bass D (2012) Marine fungi: theirecology and molecular diversity. Ann Rev Mar Sci 4:495–522

Ridgely RS, Gwynne JA (1989) A guide to the birds of Panama.Princeton University Press, Princeton

Salter CE, O’Donnell K, Sutton DA, Marancik DP, Knowles S, ClaussTM, Berliner AL, Camus AC (2012) Dermatitis and systemic my-cosis in lined seahorses Hippocampus erectus associated with amarine-adapted Fusarium solani species complex pathogen. DisAquat Org 101:23–31

Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC,Zheng CJ, She ZG, Lin YC (2011) Potent antifouling resorcylic acidlactones from the gorgonian-derived fungus Cochliobolus lunatus. JNat Prod 74:629–633

Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012)Sponge-specific clusters revisited: a comprehensive phylogeny ofsponge-associated microorganisms. Environ Microbiol 14:517–524

Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independentterrestrial origins of the Halosphaeriales (marine Ascomycota). AmJ Bot 85:1569–1580

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algo-rithm for the RAxML web servers. Syst Biol 57:758–771

Sun L, Li D, TaoM, Chen Y, Zhang Q, Dan F, ZhangW (2013) Two newpolyketides from a marine sediment-derived fungus Eutypellascoparia FS26. Nat Prod Res 27:1298–1304

Suryanarayanan TS (2012) The diversity and importance of fungi asso-ciated with marine sponges. Bot Mar 55:553–564

Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaki T, Goto K (1995)Molecular identification of guanine-nucleotide-binding regulatoryproteins which couple to endothelin receptors. Eur J Biochem 228:102–108

Talavera G, Castresana J (2007) Improvement of phylogenies after re-moving divergent and ambiguously aligned blocks from proteinsequence alignments. Syst Biol 56:564–577

Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associatedmicroorganisms: evolution, ecology, and biotechnological potential.Microbiol Mol Biol Rev 71:295–347

Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G,Schmitt S, Webster NS (2013) Sponge-specific bacteria arewidespread (but rare) in diverse marine environments. ISMEJ 7:438–443

Timmermans PBM, Benfield P, Chiu AT, Herblin WF, Wong PC (1992)Angiotensin II receptors and functional correlates. Am J Hypertens5:221S–235S

Vanderheyden PM, Fierens FL, De Backer JP, Fraeyman N, Vauquelin G(1999) Distinction between surmountable and insurmountable selec-tive AT1 receptor antagonists by use of CHO-K1 cells expressinghuman angiotensin II AT1 receptors. Br J Pharmacol 126:1057–1065

Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of cultivable fungiassociated with the Hawaiian sponges Suberites zeteki andGelliodesfibrosa. Antonie Van Leeuwenhoek 93:163–174

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and directsequencing of fungal ribosomal RNA genes for phylogenetics. In:InnisMA, Gelfand DH, Shinsky JJ,White TJ (eds) PCR protocols: aguide to methods and applications. Academic, San Diego, pp 315–322

Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011)Phylogenetic identification of fungi isolated from the marine spongeTethya aurantium and identification of their secondary metabolites.Mar Drugs 9:561–585

Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang K, Virjmoed L, Qian P(2007) Effect of culture conditions on antifouling compound pro-duction of a sponge-associated fungus. Appl Microbiol Biotechnol74:1221–1231

Zea S (1987) Esponjas del Caribe Colombiano. Catálogo Científico,Bogotá

Ziegler C, Leigh EG (2002) A magic web: the forest of Barro ColoradoIsland. Oxford University Press, Oxford

564 Mar Biotechnol (2015) 17:533–564