phys 342 - lecture 6 notes - f12

Upload: john-doe

Post on 02-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    1/15

    Lecture 6

    Pole and Barn Paradox

    L1 L2

    v

    L1> L2

    P. 48-50, textbook

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    2/15

    Lecture 6

    Quiz

    In class, we explained, from the perspective of an observer in

    the laboratory, why muons were detected at a higher rate at the

    sea level than expected. How would an observer in the frame

    of the muons explain the same phenomenon?1.

    The average lifetime of muons is longer due to time dilation;

    2. The distance traveled is shorter due to length contraction;

    3. The average speed of muons is greater than the speed of light;

    4. There is something wrong with the experiment;

    5.

    It must be the aliens

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    3/15

    Lecture 6

    Lorentz Invariance

    Assuming the origins of inertial frames Sand Scoincide only

    at t = t= 0, when a light pulse is generated. According to

    Einsteins second postulate, the wave front of the light pulse

    should evolve spherical symmetrically around the respective

    origin, as seen by an observer in either inertial frames.

    22222

    tczyx =++

    In reference frame S,

    22222 )()()()( tczyx !=!+!+!

    In reference frame S,

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    4/15

    Lecture 6

    Mathematical Proof

    [ ]

    ( )[ ]

    ( ) ( ) 2

    2

    22222

    2

    22

    2

    22

    222

    22222

    2

    2

    222222

    )(1)()()(1

    2)(

    )()()(2)(

    )()()()(

    tcc

    vzyxc

    v

    cxv

    cxvttc

    zytvtvxx

    cxvtczytvx

    !"=!+!+!"

    !+

    !!+!=

    !+!+!+!!+!

    !+!=!+!+!+!

    ##

    #

    #

    ##

    22222 )()()()( tczyx !=!+!+!

    Using Lorentz transformation, we have

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    5/15

    Lecture 6

    Spacetime Interval

    In general, we can define a spacetime intervalas follows:

    ])()()[()()( 22222 zyxtcs !+!+!"!=!

    It can be shown, similarly, that the spacetime interval is Lorentz

    invariant, or it has the same value in all inertial frames.

    0)( 2 >!sIf , the interval is timelike. The spacetime intervalbetween any two causally connected events must be timelike,

    since nothing can move faster than the speed of light.

    0)( 2 =!sIf , the interval is lightlike.

    0)( 2

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    6/15

    Lecture 6

    Casuality

    Spacetime regions: Casuality zone:

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    7/15

    Lecture 6

    Relativistic Velocity

    )(

    )(

    2c

    xvtt

    zz

    yy

    tvxx

    !+!=

    !=

    !=

    !+!=

    "

    "

    )(

    )(

    2c

    vxtt

    zz

    yy

    vtxx

    !="

    ="

    ="

    !="

    #

    #

    Lorentz Transformation:

    $& '=!

    #$& '=

    (x

    uc

    v

    dt

    dx

    c

    v

    dt

    td

    22 11 ))

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    8/15

    Lecture 6

    Relativistic Velocity-Contd

    2

    2

    22

    2

    2

    1

    1)(

    c

    vu

    c

    vuuvu

    c

    vu

    ucvvu

    dt

    tdv

    dt

    td

    td

    xd

    dt

    tdv

    dt

    xd

    dt

    dxu

    xxxxx

    xx

    x

    !"!+"=#%

    &( !

    #$%&'( !)+"=

    &'( "

    +

    """

    =#$%

    &'( "

    +

    "==

    **

    **

    21c

    vu

    vu

    u

    x

    x

    x !+

    +!=

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    9/15

    Lecture 6

    Relativistic Velocity-Contd

    2

    2

    2

    2

    2

    2

    22

    2

    2

    1

    1

    1

    1

    1

    1

    c

    vu

    cv

    dt

    td

    c

    vu

    cv

    c

    vu

    c

    vu

    c

    vu

    vu

    c

    v

    dt

    td

    x

    x

    xx

    x

    x

    !+

    "=

    !

    !+

    "!"!+=

    ###

    $

    %

    &&&

    '

    (

    !+

    +!"=!

    )

    )dt

    td

    td

    yd

    dt

    dyu

    y

    !

    !

    !==

    2

    2

    2

    1

    1

    c

    vu

    c

    v

    uu

    x

    yy !+

    "!=

    2

    2

    2

    1

    1

    c

    vu

    c

    v

    uu

    x

    zz !+

    "!=

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    10/15

    Lecture 6

    Velocity Transformation

    2

    2

    2

    2

    2

    2

    2

    1

    1

    1

    1

    1

    c

    vu

    c

    v

    uu

    c

    vu

    c

    v

    uu

    c

    vu

    vuu

    x

    zz

    x

    yy

    x

    x

    x

    !+

    "

    !=

    !+

    "

    !=

    !+

    +!=

    2

    2

    2

    2

    2

    2

    2

    1

    1

    1

    1

    1

    c

    vu

    c

    v

    uu

    c

    vu

    c

    v

    uu

    c

    vu

    vuu

    x

    zz

    x

    yy

    x

    x

    x

    !

    !

    ="

    !

    !

    ="

    !

    !="

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    11/15

    Lecture 6

    Examples

    1. Letcu

    x=! we have

    c

    c

    v

    vc

    c

    vu

    vu

    u

    x

    x

    x=

    +

    +=

    !+

    +!=

    11 2

    2. In a laboratory frame S, two particles move at the speed of

    light in opposite directions. What is the velocity of a particle

    as measured by an observer sitting on the other particle?

    c c

    x

    S S

    x

    cvcux

    =!= ,

    c

    cc

    c

    vu

    vu

    u

    x

    x

    x!=

    +

    !!=

    !

    !="

    111 2

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    12/15

    Lecture 6

    Relativistic Acceleration

    2/1 cuv

    vu

    u

    x

    x

    x

    !+

    +!=

    td

    uda

    dt

    dua

    xx

    xx

    !

    !=!= , and

    ( )( )( ) ( )22222

    22

    222

    2

    /1/1

    /1

    /1/1

    cuv

    ud

    cuv

    udcv

    c

    uvd

    cuv

    vu

    cuv

    uddu

    x

    x

    x

    x

    x

    x

    x

    x

    xx

    !+

    !

    =

    !+

    !"

    =

    !

    !+

    +!"!+

    !=

    #

    tdcuvcxvdtddt x !!+=!+!= )/1()/( 22

    ""

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    13/15

    Lecture 6

    Relativistic Acceleration-Contd

    ( )323 /1 cuva

    a

    x

    x

    x

    !+

    !=

    "

    As for theyorzcomponent, the expression becomes cumbersome.

    ( )2

    /1 cuv

    uu

    x

    y

    y!+

    !=

    "

    ( ) ( ) 2222 /1/1 cuvd

    cuv

    u

    cuv

    uddu x

    x

    y

    x

    yy

    !

    !+

    !"

    !+

    !=

    ##

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    14/15

    Lecture 6

    Relativistic Acceleration-Contd

    ( ) ( )3

    22

    2

    222

    /1

    /

    /1 cuv

    acuv

    cuv

    a

    dt

    dua

    x

    xy

    x

    yyy

    !+

    !!"

    !+

    !==

    ##

    Now, imagine an inertial frame Sin which the object is at rest

    instantaneously, i.e., its velocity is equal to 0, the acceleration

    measured by an observer in Sis then

    223 ,,

    !!!

    zz

    y

    y

    x

    x

    aa

    aa

    aa

    "=

    "=

    "=

  • 8/11/2019 PHYS 342 - Lecture 6 Notes - F12

    15/15

    Lecture 6

    Reading Assignments

    Chapter 2, 2-1 and 2-2