physical planning for the architectural exploration of large-scale chip multiprocessors

15
Physical Planning for the Architectural Exploration of Large- Scale Chip Multiprocessors Javier de San Pedro, Nikita Nikitin, Jordi Cortadella and Jordi Petit Universitat Politècnica de Catalunya (Barcelona) Project funded by Intel Corp.

Upload: dandre

Post on 12-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors. Javier de San Pedro , Nikita Nikitin, Jordi Cortadella and Jordi Petit Universitat Politècnica de Catalunya (Barcelona ) Project funded by Intel Corp. Outline. Introduction - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Physical Planning for the Architectural Exploration of

Large-Scale Chip Multiprocessors

Javier de San Pedro, Nikita Nikitin,Jordi Cortadella and Jordi Petit

Universitat Politècnica de Catalunya (Barcelona)

Project funded by Intel Corp.

Page 2: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Outline• Introduction

– Architectural exploration of CMPs

• Physical planning– Integration with architectural exploration– Floorplanning and wire planning technology

• Results and conclusions

NOCS 2013 2

Page 3: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Designing a Chip Multiprocessor

NOCS 2013 3

CMP Off-ChipMemory

DSP

Graphics

Data Mining

Bioinformatics

• How many cores?• How much L2/L3 on-chip cache?• Interconnect: mesh/ring/bus?• How many memory controllers?

Page 4: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Automated exploration

Models(performance/power)

Cores

On-chip caches

Off-chip memories

Interconnect fabrics

Cache protocol

Workloads

Architectural configuration

Number of cores

Cluster size

L2/L3 size

Hierarchical interconnect

Memory controllers

Exploration tool

Constraints

Area

Throughput

Power

NOCS 2013 4

Huge design space:Billions of configurations

Page 5: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Our exploration flow

NOCS 2013

Simulation

AnalyticalModeling*

5

Architecturalconfigurations

Promisingconfigurations

*N. Nikitin et al. "Analytical Performance Modeling of Hierarchical Interconnect Fabrics.“NOCS 2012

Page 6: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Configuration example

NOCS 2013 6

MC

MC

MC

MCC2

L2C2

L2C2

L2

L3

Bus

C2L2

C2L2

NIR

C1

L2

- 6x4 mesh, 24 clusters- total 144 cores- 6 cores/cluster - 1 C1, 128K L1, 256K L2 - 5 C2, 64K L1, 96K L2- 146 Mb total shared L3

Throughput = 85.71 IPC

Page 7: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

• Min area, but …• Unbalanced aspect ratio• L2 not adjacent to cores• Uneven distribution of ring routers

Motivation for physical planning

NOCS 2013 7

C

L2

C

L2

C

L2

C

L2

r r

r r

r

r

R

L3

NSWE • Block area is used during exploration

Page 8: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Abutability in tiled CMPs

NOCS 2013

N

S

EW

8

Page 9: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Over-the-cell routing

ISPD 2013 Tiled CMPs

Cache

Core

9

500-1000 wires

Router

1000 wires 10 µm

Page 10: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Physical planning

NOCS 2013

Simulation

AnalyticalModeling

L3 R

Local IC

L2CC L2C C

R

L3

L2

10

PhysicalPlanning

Estimations:• Area• Wirelength• Routability

Page 11: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Floorplanner• Slicing structures & Simulated Annealing*• Lightweight maze router• Constraints:

– Adjacency (Core L2)– Balanced links (rings)– Maximum length for critical nets

NOCS 2013 11

• D.F. Wong and C.L. Liu, “A New Algorithm for Floorplan Design”DAC 1986, pages 101-107.

13

24 5

V

H H

V1 2 3

4 5

Page 12: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Wire planner• SAT-based approach for gridded routing• Grid unit: link width ( 500 - 1000 wires)• Customizable for any type of Boolean-encoded

constraints (abutability, 1D/2D routing, …)

NOCS 2013

Top view

Cross-section view

12

Page 13: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Filtering floorplans

320

330

340

350

360

370

380

390

400

100 101 102 103 104 105 106 107 108

Area

[mm

2]

Throughput [IPC]

Block areaBest floorplan

Best routable floorplan

NOCS 2013 13

320

330

340

350

360

370

380

390

400

100 101 102 103 104 105 106 107 108

Area

[mm

2]

Throughput [IPC]

Block areaBest floorplan

Best routable floorplan

Area limit

Page 14: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

After physical planning

NOCS 2013 14

Page 15: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Conclusions• Physical planning has significant impact during

architectural exploration of tiled CMPs

• Future work:– New topologies (mesh of rings)– Multi-module memory floorplanning– Regularity and choppability

NOCS 2013 15