physics 121 - electricity and magnetism lecture 06 ...tyson/p121-ece_lecture5_extra.pdf · rate of...

26
Copyright R. Janow – Fall 2013 1 Physics 121 - Electricity and Magnetism Lecture 06 - Capacitance Y&F Chapter 24 Sec. 1 - 6 Overview Definition of Capacitance Calculating the Capacitance Parallel Plate Capacitor Spherical and Cylindrical Capacitors Capacitors in Parallel and Series Energy Stored in an Electric Field Atomic Physics View of Dielectrics Electric Dipole in an Electric Field Capacitors with a Dielectric Dielectrics and Gauss Law Summary

Upload: vuongbao

Post on 15-Mar-2018

223 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013 1

Physics 121 - Electricity and Magnetism Lecture 06 - Capacitance Y&F Chapter 24 Sec. 1 - 6

• Overview • Definition of Capacitance • Calculating the Capacitance • Parallel Plate Capacitor • Spherical and Cylindrical Capacitors • Capacitors in Parallel and Series • Energy Stored in an Electric Field • Atomic Physics View of Dielectrics • Electric Dipole in an Electric Field • Capacitors with a Dielectric • Dielectrics and Gauss Law • Summary

Page 2: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

What Capacitance Measures How much charge does an arrangement of conductors hold when a given voltage is applied? The charge needed depends on a geometrical factor called capacitance.

VCQ ∆=

Example: • Two conducting spheres: Radii R1 and R2 = 2R1. Different charges Q1 and Q2. • Spheres touch and come to the same potential ∆V, • Apply point charge potential formula, V(infinity) = 0

RC 04πε=Capacitance of a single isolated sphere:

2

2

2

204

1

1

1

1

104

1

CQ

R QV

CQ

R QV also and ≡=∆≡=∆ πεπε 2

1R

RCC

Q Q

2

1

2

1

2

1 ==≡

Example: A primitive capacitor • The right ball’s potential is the same as the +

side of the battery. Similarly for the – ball. • How much charge flows onto each ball to

produce a potential difference of 1.5 V ? • The answer depends on the capacitance.

∆V = 1.5 V

+

_

1.5 V battery

+ charges

+ charges

+ _

Page 3: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

• Measures the charge needed per volt of potential difference • Does not depend on applied ∆V or charge Q. Always positive. • Depends on geometry (and on dielectric materials) only • Units: 1 FARAD = 1 Coulomb / Volt. - Farads are very large 1 µF = 10-6 F. 1 pF = 1 pico-Farad = 10-12 F = 10-6 µF = 1 µµF

Definition of CAPACITANCE : [ ]

VoltCoulombs or V CQ

VQC ∆≡∆

Example - Capacitance depends on geometry • Move the balls at the ends of the wires closer together

while still connected to the battery • The potential difference ∆V cannot change. • But:

• The distance ∆s between the balls decreased so the E field had to increase as did the stored energy. • Charge flowed from the battery to the balls to increase

E. • The two balls now hold more charge for the same

potential difference: i.e. the capacitance increased.

sE sdE V av

∆≈⋅−=∆ ∫

VCQ ∆=

constant

increases increases

+

_

1.5 V battery

+ charges

+ charges

+ _

Page 4: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Capacitors are charge storage devices • Two conductors not in electrical contact • Electrically neutral before & after being charged Qenc= Qnet=0 • Current can flow from + plate to – plate if there is a conducting path (complete circuit) • Capacitors store charge and potential energy - memory bits - radio circuits - power supplies • Common type: “parallel plate”, sometimes tubular

- + ∆V

+Q -Q d

Method for calculating capacitance from geometry: • Assume two conducting plates (equipotentials) with equal and opposite charges +Q and –Q • Possibly use Gauss’ Law to find E between the plates • Calculate ∆V between plates using a convenient path • Capacitance C = Q/∆V • Certain materials (“dielectrics”) can reduce the E field between plates by “polarizing” - capacitance increases

∫−=∆f

i

sdEVfi

∫==Φε

S

encE AdEq

0

Page 5: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

- Q

d

+Q

S

Find E between plates • A = plate area. Treat plates as infinite sheets • |σ+| = |- σ−| = σ = Q / A = uniform surface charge density • E is uniform between the plates (d << plate size) • Use Gaussian surface S (one plate). Flux through ends and attached conductors is zero. Total flux is EA • Qenc = σA = ε0φ = ε0 EA

sheet) conducting (infinite

0 i.e.,0

AQ/ E /E ε=εσ=∴

EXAMPLE: CALCULATE C for a PARALLEL PLATE CAPACITOR

Find potential difference ∆V: • Choose V = 0 on negative plate (grounded) • Choose path from – plate to + plate, opposite to E field

CQ

AQddEd))((sdEV

pathfi ≡

ε=

εσ

+=−−=−=∆ ∫00

dA

VQC 0ε

=∆

≡∴• C DEPENDS ONLY ON GEOMETRY • C infinity as plate separation d 0 • C directly proportional to plate area A

• Other formulas for other geometries

path

Page 6: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Charge on a capacitor - no battery attached

6-1: Suppose that we charge an ideal parallel plate capacitor to 20 V, then disconnect the battery. What happens to the charge and voltage on it?

A. The charge stays on the plates indefinitely, and the voltage stays constant at 20 V. B. The charge leaks out the bottom quickly, and the voltage goes to 0 V. C. The charge jumps quickly across the air gap, and the voltage goes to 0 V. D. The charge stays on the plates, but the voltage drops to 0 V. E. The charge instantly disappears, but the voltage stays constant at 20 V.

Page 7: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

• As before:

EX 24.03: FIND C for a SPHERICAL CAPACITOR

qAdES0 =⋅ε ∫

)r(EEAq 2

00 4πε=ε=

)r/(qE 204πε=

Negative For b > a Vb < Va

• To find potential difference use outward radial integration path from r = a to r = b.

b

a0

br

ar2

0

br

arab r

1)(4

q rdr

4q sdEVVV −

πε−

=πε−

=⋅−=−=∆ ∫∫=

=

=

=

πε=

πε=∆

baba

4q

a1

b1

4qV

00

Let b infinity. Then a/b 0 and result becomes the earlier formula for the isolated sphere:

abab4

|V|qC 0

−πε

=∆

≡∴

a b

abC 0

0 44

πε=πε

• 2 concentric spherical, conducting shells, radii a & b • Charges are +q (inner sphere), -q (outer sphere) • All charge on the outer sphere is on its inner surface (by Gauss’s Law) • Choose Gaussian surface S as shown and find field using Gauss’s Law:

Page 8: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

)r/(2 )rL2/(qE 00 πελ=πε=

EX 24.04: Find C for a CYLINDRICAL CAPACITOR • 2 concentric, long cylindrical conductors • Radii a & b and length L >> b => neglect end effects • Charges are +q (inner) and -q (outer), λ is uniform • All charge on the outer conductor is on its inner surface (by Gauss’s Law) • Choose Gaussian surface S between plates and find field at radius r. • E is perpendicular to endcaps => zero flux contribution

)rL2(EEAq 00 πε=ε=qAdE S0cyl0 =⋅ε=Φε ∫

• So:

For b > a Vb < Va

• To find potential difference use outward radial integration path from r = b to r = a.

)a/bln(L2

q )rln(L2

q r

drL2

q sdEVVV0

ba

0

br

ar0

br

arab πε

−=

πε−

=πε−

=⋅−=−=∆ ∫∫=

=

=

=

)a/bln(

L2V/qC 0πε=∆=

C 0 as b/a inf C inf as b/a 1

C depends only on geometrical parameters

Page 9: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Examples of Capacitance Formulas

• Capacitance for isolated Sphere

• Parallel Plate Capacitor

• Concentric Cylinders Capacitor

• Concentric Spheres Capacitor

• Units: F (Farad) = C2/Nm = C/ Volt = ε0×length - named after Michael Faraday. [note: ε0 = 8.85 pF/m]

dAC 0ε

=

)a/bln(LC 02πε=

ababC−

πε= 04

RC 04πε=

All of these formulas depend only on geometrical factors

Page 10: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Capacitors in circuits CIRCUIT SYMBOLS:

CIRCUIT DEFINITIONS:

Open Circuit: NO closed path. No current. Conductors are equi-potentials Closed Circuit: There is/are completed paths through which current can flow. Loop Rule: Potential is a conservative field Potential CHANGE around ANY closed path = 0

+

-

circuit the inpoint apast flow charge of rate Current

dq/dt i

+=≡≡

Example: CHARGING A CAPACITOR

+

-

i

C E

-

+

S

• Current flows when switch is CLOSED, completing circuit • Battery (EMF) maintains ∆V (= EMF E), and supplies energy by moving free + charges from – to + terminal, internal to battery Convention: i flows from + to – outside of battery When switch closes, current (charge) flows until ∆V across capacitor equals battery voltage E. Then current stops as E field in wire 0

DEFINITION: EQUIVALENT CAPACITANCE • Capacitors can be connected in series, parallel, or more complex combinations • The “equivalent capacitance” is the capacitance of a SINGLE capacitor that would have the same capacitance as the combination. • The equivalent capacitance can replace the original combination in analysis.

Page 11: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Parallel capacitors - Equivalent capacitance The actual parallel circuit...

ii V CQ ∆=

...and the equivalent circuit:

eqtot V CQ ∆≡E

Ceq

Qtot

∆V

The parallel capacitors are just like a single capacitor with larger plates so.... (parallel) QQ itot ∑=

Charges on parallel capacitors add V...)C3C(C ...VCVCVC Q 21321tot ∆+++=+∆+∆+∆=∴

(parallel) ieq CC ∑=Parallel capacitances add directly

Question: Why is ∆V the same for all elements in parallel?

Answer: Potential is conservative field, for ANY closed loop around circuit:

Rule) Loop (Kirchoffi 0V =∆∑

∆V is the same for each branch

E

C1 C2 C3

Q1 Q2 Q3 .... ∆V ....

Page 12: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Series capacitors - equivalent capacitance The equivalent circuit...

toteqtot VCQ ∆≡

E

Ceq

Qtot

∆Vtot

The actual series circuit...

∆V1

C1 C2

∆V2

C3

∆V3

E

..... V V V VV 32 1itot +∆+∆+∆=∆=∆ ∑

∆Vi are NOT necessarily the same for each capacitor in series

Q C/Q V sameii so =∆

eqi321tot Q/C 1/C Q ...C/QQ/C Q/C V ≡=+++=∆∴ ∑

But... charges on series capacitors are all equal - here’s why.....

Gaussian surface Qenc = 0 neutral..so Q1 = - Q2

Q1 Q2

ieq

(series) C1

C ∑=1Reciprocals of series

capacitances add

For two capacitors in series:

21

12eq

21

12

21eq

CCCC C

CCCC

C1

C1

C +=⇒

+=+=

1

Page 13: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Example 1: A 33µF and a 47 µF capacitor are connected in parallel Find the equivalent capacitance Solution: F C C C 2 1para µ=+= 80

Example 2: Same two capacitors as above, but now in series connection

F . 47 3347 x 33

C CCC C

2 1

2 1ser µ=

+=

+= 419Solution:

Example 3: A pair of capacitors is connected as shown • C1 = 10 µF, charged initially to 100V = Vi • C2 = 20 µF, uncharged initially

Close switches. Find final potentials across C1 & C2. Solution: • C’s are in parallel Same potential Vf for each • Total initial charge: • Charge is conserved – it redistributes on both C1 & C2

.C 10 VC Q Q -3i 11itot ===

• Final charge on each:

V.33 10 x 30

10 V C C V / Q C 6-

-3

f21ftoteq ==⇒+==

C.10 x 6.7 VC Q C.10 x 3.3 VC Q -4f 2f

-4f 1f ==== 21

Page 14: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Three Capacitors in Series

6-2: The equivalent capacitance for two capacitors in series is: Which of the following is the equivalent capacitance formula for three capacitors in series? A. B. C.

21

2111

21

1CC

CCCCC

eq +=

+=

321

321CCC

CCCCeq ++=

321

313221CCC

CCCCCCCeq ++++

=133221

321CCCCCC

CCCCeq ++=

D. E.

321

133221CCC

CCCCCCCeq++

=

321

321CCC

CCCCeq++

=

Apply formula for Ceq twice

Page 15: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Example: Reduce circuit to find Ceq=C123 for mixed series-parallel capacitors

C3

C1 C2

V parallel

2112 CCC +=

C3

C12

After Step 1

V series

312123

111CCC

+=

C123

After Step 2

V

312

312123 CC

CCC+

=

C1 = 12.0 µF, C2 = 5.3 µF, C3 = 4.5 µF

C123 = (12 + 5.3) 4.5 / (12 + 5.3 + 4.5) µF = 3.57 µF

Values:

Page 16: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Series or Parallel?

6-3: In the circuits below, which ones show capacitors 1 and 2 connected in series?

A. I, II, III B. I, III C. II, IV D. III, IV E. None

V C1

C3 C2

V C2

C1

C3

V

C3

C1

C2

V

C1

C2

C3

I II

III IV

Page 17: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Energy Stored in a Capacitor When charge flows in the sketch, energy stored in the

battery is depleted. Where does it go?

+

_

1.5 V battery

+ charges

+ charges

V=1.5 V

+ _

CVC

Qqd qC

dUU QQ 2

21

2

00 21

==′′== ∫∫

CqV =

• Charge distributions have potential energy. Charges that are separated in a neutral body store energy.

• The electric potential is defined to be

V = U/q, U = qV • A small element of charge dq on

each plate of a capacitor stores potential energy:

dU = V dq • The energy stored by charging a

capacitor from charge 0 to Q is the integral:

Page 18: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

• The total energy in a parallel plate capacitor is

• The volume of space filled by the electric field in the capacitor is = Ad, so the energy density u is

• But for a parallel plate capacitor,

• so

∫ =⋅−= EdsdEV

Capacitors Store Energy in the Electrostatic Field

20221

2V

dACVU ε

==

2

02120

2

ε=

ε=≡

dVV

dAdA

volUu

202

1 Eu ε= Energy is stored in the electric field

Page 19: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

What Changes?

6-4: A parallel plate capacitor is connected to a battery of voltage V. If the plate separation is decreased, which of the following increase? A.II, III and IV. B.I, IV, V and VI. C.I, II and III. D.All except II. E.All increase.

I. Capacitance of capacitor

II. Voltage across capacitor

III. Charge on capacitor

IV. Energy stored on capacitor

V. Electric field magnitude between plates

VI. Energy density of E field CVq =dAC 0ε

=

221 CVU = 2

021 Eu ε= d/VE =

Page 20: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Model for a Molecule that can Polarize A dipole in a uniform external field.. ..feels torque, stores electrostatic potential energy

dqp

Exp

=τ• |torque| = 0 at θ = 0 or θ = π • |torque| = pE at θ = +/- π/2 • RESTORING TORQUE: τ(−θ) = τ(+θ)

EpUE

⋅−=

Polarization: An external field aligns dipoles in a material, causing polarization that reduces the field

p

0E +

+

+ + +

- -

- - - E E E poldiel

+= 0 polE

See Lecture 3

Page 21: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Dielectric materials in capacitors • Insulators POLARIZE when an external electric field is applied • The NET field inside the material is reduced.

NO EXTERNAL FIELD WITH EXTERNAL FIELD Eo

Non

-pol

ar M

ater

ial

indu

ced

dipo

le

Pola

r Mat

eria

l pe

rman

ent d

ipol

e

MOLECULAR VIEW

Dielectrics increase capacitance For a given ∆V, more movable charge σfreeis needed

Dielectric constant

1≥≡Κ≡vacuum

dielectricCC

Inside conductors, polarization reduces Enet to zero

Polarization surface charge density reduces free surface charge density

σnet= σfree – σpol (σfree = σext = σvac)

E0= Evac is field due to free charge Response to Evac is the polarization

field Epol Actual weakened net field inside is

Ediel = E0 – Epol = Enet

polE

dielE

Page 22: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Representing Dielectrics

vac0

diel Cd

AC κ=κε

=

• A dielectric weakens the field, compared to what it would be for a vacuum

κε≡κ= 0vacdiel /D /EE

• For example, the capacitance of a parallel plate capacitor increases when the space is filled with a dielectric:

• ε0 is the free space permittivity. • All materials (water, paper, plastic, air) polarize to some extent and

have different permittivities ε = κε0

• κ is the dielectric constant - a dimensionless number.

• Wherever you see ε0 for a vacuum, you can substitute κε0 when considering dielectric materials.

Page 23: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Page 24: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

What happens as you insert a dielectric? Initially, charge capacitor C0 to voltage V, charge Q, field Enet.

• With battery detached insert dielectric • Q remains constant, Enet is reduced • Voltage (fixed Q) drops to V’. • Dielectric reduced Enet and V.

0CQV =

0CQV

κ=′

constant a Q = ∫ =⋅−= EdsdEV

VCQ 0=

VC'Q 0κ=

constant a V =

E

E

Q'Q >

• With battery attached, insert dielectric. • Enet and V are momentarily reduced but battery maintains voltage E • Charge flows to the capacitor as dielectric is inserted until V and Enet

are back to original values.

OR

Page 25: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Gauss’ Law with a dielectric netpolS freediel0 qqqAdE =−=ε ∫

• Κ could vary over Gaussian surface S. Usually it is constant and factors • Flux is still measured using field without dielectric: Evac= ΚEdiel= D/ε0) • Only the free charges qfree (excluding polarization) are counted as qenc in the above. Using Κ on the left compensates for the polarization. • When applying the above include only qfree. Ignore polarization charges inside the Gaussian surface

AdEAdEd dielvac

Κ==Φ

Alternatively:

∫ ∫∫ ≡Κε==εS Sdiel0freeS vac0 AdDAdEq AdE

free charge on plates field not counting polarization = ε0Evac

{

The “Electric Displacement” D measures field that would be present due to the “free” charge only, i.e. without polarization field from dielectric

dieldiel0vac0dielvac E EE D EE ε≡Κε=ε≡Κ=

OPTIONAL TOPIC

Page 26: Physics 121 - Electricity and Magnetism Lecture 06 ...tyson/P121-ECE_Lecture5_Extra.pdf · rate of charge flow past a point in the circuit Current i dq/dt = + ≡ ≡ Example: CHARGING

Copyright R. Janow – Fall 2013

Lecture 6 Summary: Chapter 25: Capacitance