physics 7b lecture 1010-mar-2010 slide 1 of 23 physics 7b-1 (a/b) professor cebra simple harmonic...

32
Physics 7B Lecture 10 10-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Post on 19-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23

Physics 7B-1 (A/B)Professor Cebra

Simple Harmonic Motion

Winter 2010Lecture 10

Page 2: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 2 of 23

• Final exam will be next Wednesday 3:30-5:30– A Formula sheet will be provided– Closed-notes & closed-books– One single-sided 8 ½ X 11 Formula Sheet allowed – Bring a calculator– Bring your UCD ID (picture and student number)

• Practice problems – Online• Formula sheet – Online • Review Sessions – Online

Announcements

Final Exam Room

Last Name Begins With:

198 Young N - Z

1100 Social Sciences

C - M

55 Roessler A - B

Page 3: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 3 of 23

Page 4: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 4 of 23

Page 5: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 5 of 23

Grading Status

Page 6: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 6 of 23

Extended Objects - Center of Gravity

m2gm1g

x2N

xf

fulcrum

x1

21

2211

mm

xmxmxx fcm

i

iicm m

rmx

dVrrM

xcm

)(

1

Discrete masses

Distribution of mass

Two masses

Balance forces and Torques

Page 7: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 7 of 23

Center of Gravity

The center of gravity (or Center of mass) is the point about which an object will rotate. For a body under goes both linear projectile motion and rotational motion, the location of the center of mass will behave as a free projectile, while the extended body rotates around the c.o.m.

Parabolic trajectory of the center of mass

Extended body rotating with constant angular velocity

Page 8: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 8 of 23

Center of Gravity

Linear Impulse andAngular Impulse

Parabolic trajectory of the center of mass

Rotation

Rotation

Page 9: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 9 of 23

Rotating Off Axis vs On Axis

When can a body rotate about an arbitrary pivot point and when must it rotate about its center of gravity?

First, consider a free body (define free to mean no contact forces – i.e. Normal forces or frictions). For an object to rotate, there must be Centripetal forces – since these are all internal forces, they must add to zero.The body must rotate about its center of gravity.

For a body with an external fixed pivot point, normal forces at the pivot can provide an external centripetal force.

Demo: Center of Gravity

Page 10: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 10 of 23

Rotating Off Axis When rotating off axis, in a uniform gravitational field:

Is the motion circular? Yes

Is the angular velocity uniform? No

Is there a net torque? Yes

Is the angular acceleration uniform? No

Is the torque uniform? No

Is there a net linear motion? Yes

Is there a net force? Yes

Is it uniform? No Demo: Center of Gravity

Page 11: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 11 of 23

Oscillating Off Axis

There is an oscillation between kinetic energy ( ½ mv2 and ½ Iw2) and potential energy (mgh).

Where it KE maximum? The bottom

Where is PE maximum? The top

What happens is KEmax < DPE? The motion is no longer circular! Instead, the body will oscillate.

Can we describe oscillatory motion?

Demo: Center of Gravity

Page 12: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 12 of 23

• Equilibrium Position: The position at which all forces acting on an object sum to zero.•Restoring Force : Force driving the object towards equilibrium point • if restoring force is proportional to displacement => S.H.M.• i.e. Hooke’s Law Frestore = -kx

•Period (T) : Interval of time for each repetition or cycle of the motion. Frequency (f = 1/T)•Amplitude (A) : Maximum displacement from equilibrium point• Phase (f): Describes where in the cycle you are at time t = 0.

Periodic or Oscillatory Motion

Oscillatory Motion

Oscillation: Periodic displacement of an object from an equilibrium point

Page 13: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 13 of 23

Examples of Oscillating Systems

VerticalMass-Spring

HorizontalMass-Spring

Pendulum

Page 14: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 14 of 23

Horizontal Mass-Spring

Spring Extended:

Spring in Equilibrium:

Spring Compressed:

Fnormal

Fspring

Fgravity

kxFspring

mgFgravity

mgFnormal

kxFNet

Page 15: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 15 of 23

Vertical Mass on Spring System

mg

x

xo

Force from a Spring:Fspring = -kx (upwards)

At Equilibrium:SF = - kx0+ mg = 0

Away from Equilibrium:SF = - kx +mg = - k(x-x0) = -kx

Newton’s 2nd Law (F=ma):Ftot = - kx(t) = ma(t) = m (d2x(t)/dt2)

EquilibriumPosition

RelaxedSpring

Let x = (x-x0)

DifferentialEquation... DEMO: Spring w/ mass

-kx

Page 16: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 16 of 23

kmT 2

How to solve this differential equation?

)()(

)()(

2

2

2

2

txm

k

dt

txd

dt

txdmtkx

btbbtdt

d

btbbtdt

d

btbbtdt

d

btbbtdt

d

coscos

sinsin

sincos

cossin

22

2

22

2

Do we know any function whose second derivative is itself times a constant?

Let )sin()( ttxm

k

Period:sine function repeats when bt = 2ptherefore, T=2p/b

General Solution: x(t) = A sin (2pt/T + f) or x(t) = A cos (2pt/T + f)

Differential Equation for Simple Harmonic Oscillation

Page 17: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 17 of 23

Simple Harmonic Motion

• Simple Harmonic Motion: Oscillatory motion in which the restoring force is proportional to displacement

Restoring Force = Constant X Displacement

• Displacement vs. Time:

BtT

Atx )2

sin()(

Page 18: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 18 of 23

Practice With SHM Equationsin(t) , 3 sin(t) sin(t) , sin(t)+2 sin(t) , sin(2t)

sin(t) , sin(0.5 t) sin(t) , sin(t + 0.5 π) sin(t) , sin(t - 0.5 π)

Page 19: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 19 of 23

sin(t) , sin(2t) , sin(2t+0.5 π) sin(t) , sin(2t) , sin(2t-0.5 π)

sin(t),sin(0.5t),sin(0.5t+0.5 π) sin(t),sin(0.5t),sin(0.5t-0.5 π)

Practice With SHM Equation

Page 20: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 20 of 23

Pendulum System

θ

Fgravity

Ftension

sintensionX tension FF costensionY tension FF coscos mgFF gravityR gravity

sinsin mgFF gravityT gravity

sinmgFNet

θ

Page 21: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 21 of 23

Really a rotational problem…

t = Ftan L = mgsin q L

t = I a = mR2 a

-mgLsinq = mL2 d2q/dt2

For small q, sin q = q (good to about 10 degrees)

-mgL (q t) = mL2 d2q/dt2

- (g/L)q(t) = d2q/dt2

L

mg gLT 2

Pendulum System

DEMO

Page 22: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 22 of 23

SHM - Recap

2

T = 2 m

k

T = 2 l

gPendulum:

Mass/Spring:

How is the frequency fof the oscillations relatedto the period T?

T = 1f = 1

1 sec = secPeriod:

y(t) = Asin(2T

t +) + BThe generalized solution is of the form:

Page 23: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 23 of 23

Consider mass on a spring:

PE = (1/2) k x2

KE = (1/2) mv2 v = dx/dt x(t) = A sin(2pt/T + f)

PE = (1/2) kA2 sin2 (2pt/T + f)KE = (1/2) m [(2p/T)Acos(2pt/T + f)]2

remember… (2p/T) = sqrt(k/m) => (2p/T)2 = k/m=> KE = (1/2) A2 k cos2 (2pt/T + f)Etotal = PE + KE = (1/2)kA2[sin2 (2pt/T + f)+ cos2 (2pt/T + f)]

2

2

1kxkxdxdlFW

1 Energy is conserved with time!And Energy is proportional to A2

KEpeak = PEpeak

Energy in SHM

Page 24: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 24 of 23

Topics (1/4)

• Fluids– Continuity Eq.– Energy Density Eq.– Steady-state Flow– Flow Line– Pressure

• Electrical Circuits– Batteries– Resistors

– Capacitors– Power– Voltage– Current– Equivalent Circuits

• Linear Transport Model– Linear Transport Eq.– Current Density– Exponentials

Page 25: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 25 of 23

Topics (2/4)

• Vectors– Addition– Subtraction– Cartesian Coords.– Polar Coords.

• Position Vector• Velocity Vector• Acceleration Vector

• Momentum Vector– Conservation of

Momentum• Force Vector– Friction– Normal– Gravity– Spring

Page 26: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 26 of 23

Topics (3/4)

• Newton’s Laws– Force & Acceleration– Force & Momentum

• Collisions– Momentum Cons.– Elastic vs. Inelastic

• Rotational Motion– Ang. Velocity

– Ang. Acceleration– Ang. Momentum– Torque

• Right Hand Rule• Conservation of Ang.

Momentum• Moment of Inertia– Rotational Kin. Energy

Page 27: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 27 of 23

Topics (4/4)

• Oscillations– Period– Amplitude– Mass-spring system– Pendulum– Simple Harmonic

Motion– Phase Constant

Page 28: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 28 of 23

Evaluations

Page 29: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 29 of 23

Page 30: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 30 of 23

Page 31: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

Physics 7B Lecture 1010-Mar-2010 Slide 31 of 23

Page 32: Physics 7B Lecture 1010-Mar-2010 Slide 1 of 23 Physics 7B-1 (A/B) Professor Cebra Simple Harmonic Motion Winter 2010 Lecture 10

M. Afshar 32

Practice With SHM Equation

Summer 2008

)sin(t

)2

1sin( t

)22

1sin(

t

)2

sin(

t