physics at vlhc - tao han

Upload: juan-antonio-valls-ferrer

Post on 01-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Physics at VLHC - Tao Han

    1/26

    Tao HanPittsburgh Particle physics, Astrophysics and Cosmology Center 

    Physics At VLHC  

    Exploring the Physics Frontier with Circular Colliders  ACP Winter Conference, Jan. 27, 2015 

    Photo credit: Hitoshi Murayama 

  • 8/9/2019 Physics at VLHC - Tao Han

    2/26

    PHYSICS AT 100-200 TeV

    Tao Han, Univ. of Wisconsin-Madison

    (1999 VLHC Annual Meeting, June. 28)

    I. Brief Introduction:

    •   Particle Physics and Colliders

    II. Physics Expectations at the VLHC:

    •  Representative SM Physics

    •   Physics Beyond the SM

    III. Physics at the High-Energy Frontier

    •   Be ond the Naive Ex ectation

    PHYSICS AT THE VLHC

    Tao Han, Univ. of Wisconsin-Madison

    (July 17, Snowmass 2001)

    VLHC: The True Energy Frontier

    •   Invitation to Innovative Ideas

    for New Physics

    Beyond the SM Physics•   New Threshold and Extended Reach

    Bread and Butter Physics

    •   SM Physics and Precisions

    Theory Overview

    in the light of future hadron colliders

    Tao Han

    Univ. of Wisconsin - Madison

    VLHC workshop, Fermilab, Oct. 16, 2003

    The Standard Model as It Is

    The Need For Going Beyond SMThe Role of Future Hadron Colliders

    (Bill Foster’s initiative) 

  • 8/9/2019 Physics at VLHC - Tao Han

    3/26

    •   M W , M Z ?   (Gauge symmetry breaking)

    •   M H   ∼ O(M Z )?   (natural EW scale)

    •   Supersymmetry?   (M Z − M  pl   hierarchy)

    •   mt, mf , mν ?   (fermion masses and mixing)

    •  Techni-/top-color?   (dynamical symm. brkng)

    •   extra dimensions/low-scale gravity?

    (gravity+hierarchy)

    •  Superstring?

    (quantum gravity/Theory of everything?)

    •   ... ...?   (... ...)

    Physics Issues in 1999 (TH’s list) 

    DM  

  • 8/9/2019 Physics at VLHC - Tao Han

    4/26

     4 

    Chris Quigg, IAS-HKUST Jan. 19, 2015

  • 8/9/2019 Physics at VLHC - Tao Han

    5/26

    -

    Snowmass QCD Working Group: 1310.5189

    !t : 1% ! : 8%

    Rich Physics @ VLHC

    VLHC leads energy frontier

    Interesting scaling: 

  • 8/9/2019 Physics at VLHC - Tao Han

    6/26

    SUSY @ VLHC

    M.Mangano, T.Plehn et al.: 1407.5066

    discovery 

  • 8/9/2019 Physics at VLHC - Tao Han

    7/26

    SUSY DM @ VLHC

    M. Low & L.T. Wang: 1404.0682

    mass [TeV]

    0 1 2 3 4 5 6 7

    wino / higgsino

    higgsino / wino

    higgsino / bino

    wino / bino

    NLSP mass

    LSP mass

    Multi-Lepton Limits

    S. Gori et al.: 1410.6287

    [TeV]!"m

    0 1 2 3 4 5 6

    wino disappearing tracks

    higgsino

    )H~ 

    / B~ 

    mixed (

    )W~ 

    / B~ 

    mixed (

    gluino coan.

    stop coan.

    squark coan.

    Collider Limits

    100 TeV14 TeV

  • 8/9/2019 Physics at VLHC - Tao Han

    8/26

    -

    Snowmass NP report, 1311.0299 

    New Particle Searches at VLHC

     VLHC  leads for broad searches at the energy frontier.  Look forward to the many 

     inspiring talks this week! 

     pp virtual 

    ee virtual 

     pp real 

  • 8/9/2019 Physics at VLHC - Tao Han

    9/269 

    The EW gauge bosons & the top quark prettymuch “massless”: the EW symmetry is “restored” 

     At the new energy frontier VLHC: v/√ s∼

    2.5×10−3

    In the collision processes 

    • 

    Initial particles! partons •  Final state particles! narrow jets, radiations 

    •  New physics @ heavier scales! W ± /Z/H/top ! Studying W ± /Z/H/top at higher energies: - bread & butter (new) phenomena within SM  

    -  first step toward understanding

    O(10 TeV) scale physics

    New behavior of “old physics”

  • 8/9/2019 Physics at VLHC - Tao Han

    10/2610 

     With mt  

  • 8/9/2019 Physics at VLHC - Tao Han

    11/2611 

     With mt  ~ v,

    The top quark may hold the key to new physics:•  Most sensitive to the “naturalness” issue. 

    •   Vacuum stability 

    •  … … 

    Top quark Initiated Processes

    spin 0 : neutral scalar  H 0 :   i  y√ 

    2; pseudo scalar  A0 :   i

      y√ 2γ 5;

    charged scalar  H 

    +

    :   i

      y

    √ 2(gLP L + gRP R);spin 1 : color − singlet vector/axial vector  Z 00, W 0+ :   igγ µ(gV   − gAγ 5);

    color − octet vector/axial vector  gKK   :   igsγ µ(gV   − gAγ 5) ta;spin 2 : tensor G :

      −iκ

    8

    [γ µ( pt

    − pt̄)

    ν  + γ ν ( pt

    − pt̄)

    µ

    −2gµν (/pt

    −/pt̄

    −2mt)].

    tt̄→ X Examples for new physics:

    TH, J. Sayre, S. Westhoff: 1411.2588

  • 8/9/2019 Physics at VLHC - Tao Han

    12/26

  • 8/9/2019 Physics at VLHC - Tao Han

    13/2613 

    Top lumi tracking gg, reaching few% of bb! Relevant range: 

    Partonic luminosities σ pp→H +X (S ) =

    i,j

       1m2

    H /S 

    dx1

       1m2

    H /(x1S )

    dx2 f i(x1, µ) f  j(x2, µ) σ̂ij→H (s)

    ≡i,j    1

    m2H /S 

    dτ dLij

    dτ σ̂ij(s),

      dLij

    dτ (τ , µ) =  

      1

    τ 

    dx

    x f i(x, µ)f  j(τ /x,µ)

    0.002 

  • 8/9/2019 Physics at VLHC - Tao Han

    14/26

    14 

    5-flavor vs. 6-flavor: (ACOT: massive top with careful subtraction) 

    • 

    5-flavors usually underestimate the rate (better at low M) •  6-flavors usually overestimate the rate (better at high M) 

    (too much resummation)! proper treatment needed •  Higher CM Energies better approximation 

    [TeV]0 H 

    1 2 3 4 5 6 7 8 9 10

        [   f   b   ]

         σ

    -110

    1

    10

    210

    310

    410

    510

    0  H → t t 

    0  H t t → gg

    ACOT

    100 TeV

     [TeV]0 H 

    0.5 1 1.5 2 2.5 3 3.5 4

        [   f   b   ]

         σ

    -310

    -210

    -110

    1

    10

    210

    310

    0  H → t t 

    0  H t t → gg

    ACOT

    14 TeV

  • 8/9/2019 Physics at VLHC - Tao Han

    15/26

    15 

    “Effective”factorization scale 

    logµ2

    eff 

    m2t

     =

       dxx  f t(x,m

    H 0)    dz

    z P tg(z ) log(

    mH 0

    m2

    t

    (1−z)2

    z  )f g(

      τ 

    zx,m

    H 0) 

      dxx  f t(x,mH 0)

       dzz P tg(z )f g(

      τ 

    zx, mH 0)

    100 TeV

    14 TeV

    2 4 6 8 100.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    m H 0

     TeV

       Μ     e        f        f

                  m

        H        0

    100 TeV

    t t   H  0ggt t H 

     0

    t t   H  0

     Μ Μeff 

    m ACOT  Μ m H 0

    2 4 6 8 100.1

    1

    10

    100

    1000

    104

    105

    m H 0

     TeV

       Σ   p   p       H        0

                       f        b

               

     [TeV]0 H 

    0 2 4 6 8 10

       )   0

       H

        (  m

        !   )   /     µ

        (    !

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

     /2 0 H 

    =m F 

     µ 

    0 H 

    =2m F 

     µ 

    eff  µ = 

    F  µ 

    0 H 

    =m R 

     µ  “Natural” factorization scale 

    µ2≈ m

    2

    (Early discussions: Maltoni, Willenbrock)

  • 8/9/2019 Physics at VLHC - Tao Han

    16/26

    16 

    tb̄→ H +

    * Dawson, Ismail, Low, 2014 

    Full NLO O("s) calculations, including NLO PDF’s. 

    t

    b

    H+ 

     Another recent work * 

  • 8/9/2019 Physics at VLHC - Tao Han

    17/26

     At colliding energies E >> M  W ,EW gauge bosons are new “gluons”!

     

    17 

    Gauge-boson Initiated Processes

    In the EW theory: P q→qV  T   = (g

    2

    V    + g2

    A)  α2

    1 + (1− x)2

    x  ln

     Q2

    Λ2

    P q→qV  L  = (g2

    V    + g2

    A)  α2

    π

    1− x

    x•

     

    V T  radiation the same asg 

    , # : | M |2

     ~ pT2

    :- “dead cone” at pT! 0 - log-enhancement at high pT & soft x

    •  V  L radiation no collinear enhancement/suppression,

    not the same as a scalar radiation. 

     “Effective W-Approximation”(VBF ! h is seen by ATLAS/CMS)S. Dawson, 1985;G. Kane et al., 1984;Chanowitz & Gailard, 1984

    TH R R i B T di i

    WW P i l i i i

  • 8/9/2019 Physics at VLHC - Tao Han

    18/26

    18 

    /ss= 

    0.02 0.04 0.06 0.08 0.1

         

    -510

    -410

    -310

    -210

    -1101

    10

    210

    310

    410

    510

    610

    710gg

    qq’

    ’qq

    q

    W

    -

    TW+

    TW

    -

    0W+

    0W

    PRELIMINARY - 100 TeV pp

    Lumi(W +T W -T) similar size to lumi(tt); Lumi(W +T W 

    -T) ~ Lumi(W 

    ± !), Electro=weak 

    Lumi(W +L  W -L ) 100 times smaller: Goldstones

    Lumi(100/14) increased by 1000 – 105 for 500 GeV - 4 TeV! 

    TH, R. Ruiz, B. Tweedie, in prep

    ΦV V   ′ (τ ) =  1

    (δ V V  ′  + 1)

       1

    τ 

    dξ 

    ξ 

       1

    τ /ξ

    dz1z1

       1

    τ /ξ/z1

    dz2z2

    q,q′

    (7)

    ×f V /q(z2)f V   ′/q′ (z1)  f q/p(ξ )f q′/p

      τ 

    ξ z1z2

     + f V /q(z2)f V  ′ /q′ (z1)  f q/p

      τ 

    ξ z1z2

    f q′/p(ξ )

     [TeV]s0.5 1 1.5 2 2.5 3 3.5 4

       1   4   T  e   V

             /

       1   0   0   T

      e   V

         310

    410

    510

    gg

    qq’

    ’qq

    q

    W  

    -

    TW+

    TW

    -

    0W+

    0W

     WW Partonic luminosities 

    tt  

    W W S i

  • 8/9/2019 Physics at VLHC - Tao Han

    19/26

    •  The existence of a light,  weakly coupled Higgs boson unitarize the WW amplitude: 

    •  Consistent perturbative theory up to  $ (?) 

    500 1000 1500 2000 2500 3000105

    106

    107

    s

    `

    @GeVD

        Σ

                 @        f        b             D

    W+W-->ZZ

    Standard Model

    no Higgs

    ll i i i i i i

    ~ (g2 /16 " 2) s/v2 

    19 

    W  LW  L Scattering: 

    ~ s/v2 

    ~ mH2 /v2 

    •  New strong dynamics effects may still exist,

     but “delayed” tov 2 /  " 2 . 

  • 8/9/2019 Physics at VLHC - Tao Han

    20/26

    I    0 1 2

    J  = 0   σ0 .   φ−−,φ−,φ0,φ+,φ++

    1 .   ρ−, ρ0, ρ+ .

    2   f   0 .   t −−

    ,

     t −

    ,

     t 0,

     t +,

     t ++

    . . . . . . . . . . . .

      I  = 0: resonant in  W  +W − and  ZZ   scattering

      I  = 1: resonant in  W  +Z   and  W −Z   scattering

      I  = 2: resonant in  W  +W  + and  W −W − scattering

    Different channels are sensitive to different physics: 

    20 

    W  LW  L Scattering: 

    Equally important: WW !  HH, tt for H3 & top couplings. 

  • 8/9/2019 Physics at VLHC - Tao Han

    21/26

    21 

    Multi Gauge-boson Production

    From prompt production

    Each W  costs you a factor of ~ 1/100 (EW coupling) 

    M. Mangano’s talk

    Multi Gauge boson Production

  • 8/9/2019 Physics at VLHC - Tao Han

    22/26

     At colliding energies E >> M  v,

    22 

    In EW gauge boson splitting: 

    •  V T  the “new gluons”! 

    • 

    V  L /H  radiations the Goldstone Eq. Theo.

    P V  T →V  T H  =  α

    2

    1− x

    x

    P V  T →V  T V  

    0

    =  α2

    2π[

      1

    x(1− x) + x(1− x)] ln

      Q2

    M 2W 

    P V  T →V  LV  

    0

    L

    =  α2

    4πx(1− x) ln

      Q2

    M 2W 

    Multi Gauge-boson Production

    From splitting/showering:

    J. Chen, TH, B. Tweedie, in prep

  • 8/9/2019 Physics at VLHC - Tao Han

    23/26

    Multi Gauge boson From showering:

  • 8/9/2019 Physics at VLHC - Tao Han

    24/26

    24 

    Multi Gauge-boson From showering:

    Number of Z/W bosons

     0!  1!  2!  3!  4!  5!  6!

          P     r     o      b     a      b      i      l      i      t     y

    -610

    -510

    -410

    -310

    -210

    -110

    1  > 1 TeVhard process

     = 14 TeV, ps

     > 10 TeVhard process

     = 100 TeV, ps

     

    Christiansen, Sjostrand: 1401.5238

    f   = 2.0

    f   = 1.1

    f   = 1.0

    f   = 0.0 pT J  >  750GeV

    m23 [GeV]

          d     σ     /      d   m         2         3

        p      b     /     2      G    e      V

    1009080706050

    0.36

    0.34

    0.32

    0.3

    0.28

    0.26

    0.24

    0.22

    0.2

    f   = 2.0

    f   = 1.1

    f   = 1.0

    f   = 0.0 pT J  >  1000GeV

    m23 [GeV]

          d     σ     /      d   m         2         3

          [    p      b     /     2      G    e      V

          ]

    1009080706050

    0.06

    0.055

    0.05

    0.045

    0.04

    0.035

    Kruass, Petrov, Schonher, Spannowsky:1403.4788

     At higher energies, each W  

    costs you a factor of ~ 1/10 ! 

     We are in the process ofdeveloping a more complete

    EW showering code.J. Chen, TH, B. Tweedie 

  • 8/9/2019 Physics at VLHC - Tao Han

    25/26

    Overall

  • 8/9/2019 Physics at VLHC - Tao Han

    26/26

    Overall

    26

    * With the Higgs discovery, the SM is healthier than ever,  valid to a scale up to $ ~ ? 

    But the Higgs sector fine-tuned % : * VLHC will take the lead for searches: 

    H±, A0; W ±’, Z’ … The top,W,Z,H  may hold the key for

    discovery! 

    g̃,   t̃,   b̃,   χ±,0, ...

    •  Searching for new physics starts fromunderstanding old physics in the new regime: 

    - top,W,Z may behave as partons to produce new heavy states; 

    - top,W,Z,H may serve as new radiation sources; and may help reveal new heavy states. 

    - Thus, need precise understanding of the dynamics/kinematics

    While new physics searches exciting,

    SM Physics Remains rich at VLHC!