physics beyond the standard model · ª the standard model of particle physics ª the large hadron...

73
Intro SM LHC Need for BSM Some Ideas Conclusions Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Upload: others

Post on 18-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 2: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics Beyond the Standard Model

Akın Wingerter

Laboratoire de Physique Subatomique et de CosmologieUJF Grenoble 1, CNRS/IN2P3, INPG, Grenoble, France

May 24, 2012

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 3: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Outline

ã The Standard Model of particle physics

ã The Large Hadron Collider (LHC) at CERN

ã Need for physics beyond the Standard Model

ã Some popular ideas for physics beyond the Standard Model

ã How our activities at LPSC fit into the search for new physics

ã Disclaimer: I will concentrate on work done at LPSC.

As such, my talk is unbalanced.

A general overview is beyond the scope of my talk!

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 4: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

The Standard Model of Particle Physics

Gauge groupSU(3)c × SU(2)L ×U(1)Y

Particle content

Q (3, 2) 1/3 L (1, 2)-1 H (1, 2)1 A (1, 1)0

ucR (3, 1)-4/3 ec

R (1, 1) 2 W (1, 3)0

dcR (3, 1) 2/3 νc

R (1, 1) 0 G (8, 1)0

Lagrangian (Lorentz + gauge + renormalizable)

L = −1

4GαµνG

αµν+. . .Qk /DQk+. . . (DµH)†(DµH)−µ2H†H− λ4!

(H†H)2+. . .Yk`QkH(uR)`

Spontaneous symmetry breaking

ã H → H ′ + 1√2

(0v

)ã SU(2)L ×U(1)Y → U(1)Q

ã A,W 3 → γ,Z 0 and W 1µ ,W

2µ →W +,W−

ã Fermions acquire mass through Yukawa couplings to Higgs

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 5: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

The Standard Model of Particle Physics

Excellent agreement between theory and data

The LEP Electroweak Working Group, Plots for Winter 2012

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 6: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

The Standard Model of Particle Physics

ã Lower bound from LEP: mH > 114.4 GeV

Preferred mH = 94 GeV, upper limit mH < 171 GeV (95% C.L.)The LEP Electroweak Working Group, Plots for Winter 2012

0

1

2

3

4

5

6

10040 200

mH [GeV]

∆χ2

LEPexcluded

LHCexcluded

∆αhad =∆α(5)

0.02750±0.00033

0.02749±0.00010

incl. low Q2 data

Theory uncertaintyMarch 2012 mLimit = 152 GeV

ã LHC has new exclusion limits & hints of a Higgs boson ∼ 125 GeV→ More on that later in this talk!

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 7: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

ã LEP (1989 - 2000) has tested the SM up to O(100) GeV

ã Commissioning of LHC on March 30, 2010

ã Collected ∼ 5 fb−1 of data @7 TeV till end of 2011

ã First 8 TeV collisions on March 30, 2012

ã Eventually√

s = 14 TeV (after shutdown in 2013/14)

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 8: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 9: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 10: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 11: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 12: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 13: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 14: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 15: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 16: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Physics at the Large Hadron Collider

Gavin Salam, RPP2012

ã High momentum transfer ; Amenable to perturbation theory(→ Tzvetalina’s & Francois’ talk)

ã Parton showering (correspond to “jets” under ideal circumstances)

ã Hadronization (free quarks & gluons not observed: “Confinement”)

ã Junk from the proton remnants

ã Higgs boson: That’s the event we hope to observe

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 17: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

Why do weexpect newphysics beyondthe StandardModel?A word of warning:

There is no concensus on the list of problems that will follow

Some of the problems are more serious/imminent than others

Many are purely “aestetic”

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 18: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

¶ Too many free parameters

Gauge sector: 3 couplings g ′, g , g3 3

Quark sector: 6 masses, 3 mixing angles, 1 CP phase 10

Lepton sector: 6 masses, 3 mixing angles and 1+2 phases 10+2

Higgs sector: Quartic coupling λ and vev v 2

θ parameter of QCD 1

26+2

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 19: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

· Structure of gauge symmetry

Why the product structure SU(3)c × SU(2)L ×U(1)Y ?

Why 3 different coupling constants g ′, g , g3?

¸ Structure of family multiplets

One family is

(3,2)1/3 + (3,1)-4/3 + (1,1)-2 + (3,1)2/3 + (1,2)-1 + (1,1)0

Q u e d L ν

Can the particles be reorganized in a single representation?

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 20: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

¹ Repetition of families

Why is this pattern for 1 generation replicated 3 times?

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 21: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

º Mass hierarchies and texture of Yukawa couplings

up-quark mass ∼ 2× 10−3 GeV ↔ top-quark mass ∼ 172.3 GeV

Yukawa coupling of top ∼ 1, but why are the other quarks so light?

Minimal mixing in quark sector

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

' 0.97 0.22 0.00

0.22 0.97 0.040.00 0.04 0.99

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 22: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

» Light neutrinos and texture of Yukawa couplings

Why are neutrinos so light?

∆m2ν ∼ 10−2 − 10−5 eV,

Pmν . 2 eV

Maximal mixing in lepton sector

UPMNS =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

' 0.8 0.5 0.0

-0.4 0.6 0.70.4 -0.6 0.7

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 23: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

¼ Hierarchy problem

∆m2H =− |λf |2

8π2 Λ2UV+...

Higgs mass is quadratically divergent

Standard Model is renormalizable and infinities can be absorbed into afinite number of physical parameters

Hierarchy problem arises if one goes beyond renormalizability; Cut-off ΛUV acquires physical meaning

Higgs mass is dragged to cut-off scale e.g. ΛUV ∼ MPlanck

However, we need a light Higgs O(100) GeV

Analogous problems arise from presence of any heavy particle

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 24: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

½ Dark Matter and Dark Energy

23% of our universe is made up of dark matter and the Standard Model offersno candidate particle . . .

73% of our universe is made up of dark energy and the cosmological constantas calculated from QFT is the worst-predicted quantity in particle physics

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 25: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

¾ Gravity

Scales relevant in everyday life ; Newton’s theory

Satellites, solar system, etc. ; Still Newton’s theory

Cosmological scales ; Einstein’s theory of GR

Very small scales ; Need quantum theory of gravitation

Don’t know how to quantize gravity and how to unify with SM

→ String theory (A.W.) or loop quantum gravity (Aurelien Barrau)

¿ Many other problems

Baryon asymmetry in the universe, charge quantization, . . .

→ Will not be addressed in this talk!

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 26: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Problems of the Standard Model

Are there any hints

at physics beyond the Standard Model?

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 27: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

ã Running gauge couplings seem to meet at ∼ 2× 1016 GeVH. Georgi and S. L. Glashow, “Unity of all elementary particle forces,” Phys. Rev. Lett. 32 (1974) 438–441

S. Dimopoulos, S. A. Raby, and F. Wilczek, “Unification of couplings,” Phys. Today 44N10 (1991) 25–33

ã Points towards supersymmetry (→ Suchita’s talk) & unification

figures courtesy of K. Dienes

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 28: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

ã Remember gauge symmetry & particle content of SM

SO(10) → SU(5)×U(1)X → SU(3)×SU(2)×U(1)Y×U(1)B-L

16 → 10+5+1

→ (3,2)1/3,1/3 + (3,1)-4/3,-1/3 + (1,1)-2,-1 + (3,1)2/3,-1/3 + (1,2)-1,1 + (1,1)0,-1

Q ucR ec

R dcR L νc

R

ã U(1)B-L can serve as R-parity ,

ã Partial solution to ¶ “Too many parameters”:

g ′, g , g3 reduced to gGUTB. Dundee, S. Raby, and A. Wingerter, “Reconciling Grand Unification with Strings by Anisotropic

Compactifications,” Phys. Rev. D78 (2008) 066006, 0805.4186

Relates quark & lepton masses (“good prediction” only for 3rdgeneration)

Not-so-wrong prediction for sin2 θw (only SU(5))S. Raby and A. Wingerter, “Can String Theory Predict the Weinberg Angle?,” Phys. Rev. D76 (2007)

086006, 0706.0217

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 29: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

ã Partial solution to · “Structure of gauge symmetry”

SU(3)c×SU(2)L×U(1)Y ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E8 × E8

O. Lebedev et al., “A mini-landscape of exact MSSM spectra in heterotic orbifolds,” Phys. Lett. B645

(2007) 88–94, hep-th/0611095

ã Elegant solution to ¸ “Structure of family multiplets”

(3,2)1/3+(3,1)-4/3+(1,1)-2+(3,1)2/3+(1,2)-1+(1,1)0 = 16 ⊂ 27 ⊂ 248

ã Elegant solution to » “Light neutrinos & . . . ”

L = . . .+ yνLHcνR + MνRνR + . . . (Majorana spinors)

M =

( νL νR

νL 0 mνR m M

); m1 ' M, m2 ' m2

M∼ (100 GeV)2

1016 GeV∼ 10−3eV

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 30: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

ã Technical solution to ¼ Hierarchy problem

H

f S

H

For fermions : ∆m2H =− |λf |

2

8π2 Λ2UV+...

For scalars : ∆m2H =

λS16π2 [Λ2

UV−2m2S ln(ΛUV/mS )+...]

ã May have an answer for ½ Dark matter & . . .

R-parity ; lightest supersymmetric particle (LSP) is stable

LSP (if colorless & neutral) may constitute (part of) dark matter

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 31: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

Some problems with GUTs

ã Wrong prediction of md/me and ms/mµ

Need more (and large) representations, i.e. more particles to fix that

ã Higgs boson has color-triplet partner ; proton decayS. Forste, H. P. Nilles, P. K. S. Vaudrevange, and A. Wingerter, “Heterotic brane world,” Phys. Rev. D70

(2004) 106008, hep-th/0406208

gaugino

d s

νµu

p

s

uK +

u

d

~

ã Need large representations (i.e. more particles) to breakSU(5)→ SU(3)c × SU(2)L ×U(1)Y

O. Lebedev et al., “A mini-landscape of exact MSSM spectra in heterotic orbifolds,” Phys. Lett. B645

(2007) 88–94, hep-th/0611095

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 32: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Supersymmetry & GUTs

Some problems with supersymmetry

ã SUSY doubles the particle spectrum

ã SUSY predicts equal masses for particle and superpartner, e.g. me = meeã SUSY breaking introduces (in minimal model) 105 new parameters

Origin of SUSY breaking not understoodO. Lebedev et al., “Low Energy Supersymmetry from the Heterotic Landscape,” Phys. Rev. Lett. 98

(2007) 181602, hep-th/0611203

ã cMSSM (SUSY+naive GUT) close to be excluded at LHC

ã Proton decay in renormalizable superpotential ; need R-parityO. Lebedev et al., “The Heterotic Road to the MSSM with R parity,” Phys. Rev. D77 (2008) 046013,

0708.2691

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 33: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Extended Gauge Symmetries

T. Jezo, M. Klasen, I. Schienbein, arXiv:1203.5314v1 [hep-ph]

Gauge groupSU(3)c×SU(2)1×SU(2)2×U(1)X

XParticle content (Un-unified model or UU)

Q (3, 2, 1) 1/3 L (1, 1, 2)-1 φ (1, 2, 2)0 A (1, 1, 1)0

ucR (3, 1, 1)-4/3 ec

R (1, 1, 1) 2 H (1, 2, 1)1 W1 (1, 3, 1)0

dcR (3, 1, 1) 2/3 νc

R (1, 1, 1) 0 W2 (1, 1, 3)0

G (8, 1, 1)0

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 34: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

ã A straightforward extension of the SM

ã 4th generation is exact copy of 3rd one except for masses

ã Gauge and Higgs sectors unchanged

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 35: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

Lower bound on Higgs mass from stability of electroweak vacuum

ã Require that Higgs coupling λ not become negative anywhere

N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, “Bounds on the Fermions and Higgs Boson Masses in

Grand Unified Theories,” Nucl.Phys. B158 (1979) 295–305

G. Altarelli and G. Isidori, “Lower limit on the Higgs mass in the standard model: An Update,” Phys.Lett.

B337 (1994) 141–144

J. A. Casas, J. R. Espinosa, and M. Quiros, “Standard Model stability bounds for new physics within LHC

reach,” Phys. Lett. B382 (1996) 374–382, hep-ph/9603227

102 104 106 108 1010 1012 1014 1016 1018

µ [GeV]

−1.0

−0.5

0.0

0.5

1.0

λ(µ

)

λ(MZ) = 0.01

λ(MZ) = 0.10

λ(MZ) = 0.20

λ(MZ) = 0.30

λ(MZ) = 0.40

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 36: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

Upper bound on Higgs mass from triviality of theoryM. Lindner, “Implications of Triviality for the Standard Model,” Z.Phys. C31 (1986) 295

ã At 1-loop: Higgs coupling λ→∞ for renormalization scale µ→∞ã At 2-loop: Higgs coupling λ→ λFP (fixed point)

ã Criterion for perturbativity: λ < λFP/4 (tight) or λ < λFP/2 (loose)

102 104 106 108 1010 1012 1014 1016 1018

µ [GeV]

0

5

10

15

20

25

30

λ(µ

)

0

λFP/4

λFP/2

λFP

λ(MZ) = 0.5

λ(MZ) = 1.0

λ(MZ) = 2.0

λ(MZ) = 3.0

λ(MZ) = 4.0

λ(MZ) = 5.0

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 37: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Before LHC Era: mH < 114 GeV (LEP), 158 < mH < 175 GeV (Tevatron), mH > 186 GeV (EWPM)

ã EPS 2011: 146 < mH < 216 GeV, 226 < mH < 288 GeV, 296 < mH < 466 GeV (LHC)

ã December 13, 2011: mH < 115.5 GeV, 127 < mH < 600 GeV (LHC)

ã Moriond 2012: mH < 117.5 GeV, 118.5 < mH < 122.5 GeV, 127.5 < mH < 600 GeV

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

Λ (GeV)

100

200

300

400

500

600

700

800

MH

(GeV

)

SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 38: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Before LHC Era: mH < 114 GeV (LEP), 158 < mH < 175 GeV (Tevatron), mH > 186 GeV (EWPM)

ã EPS 2011: 146 < mH < 216 GeV, 226 < mH < 288 GeV, 296 < mH < 466 GeV (LHC)

ã December 13, 2011: mH < 115.5 GeV, 127 < mH < 600 GeV (LHC)

ã Moriond 2012: mH < 117.5 GeV, 118.5 < mH < 122.5 GeV, 127.5 < mH < 600 GeV

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

Λ (GeV)

100

200

300

400

500

600

700

800

MH

(GeV

)

SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184

Excluded by EWPMExcluded by TevatronExcluded by LEP

Before LHC Era

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 39: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Before LHC Era: mH < 114 GeV (LEP), 158 < mH < 175 GeV (Tevatron), mH > 186 GeV (EWPM)

ã EPS 2011: 146 < mH < 216 GeV, 226 < mH < 288 GeV, 296 < mH < 466 GeV (LHC)

ã December 13, 2011: mH < 115.5 GeV, 127 < mH < 600 GeV (LHC)

ã Moriond 2012: mH < 117.5 GeV, 118.5 < mH < 122.5 GeV, 127.5 < mH < 600 GeV

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

Λ (GeV)

100

200

300

400

500

600

700

800

MH

(GeV

)

SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184

Excluded by EWPMExcluded by LHCExcluded by LEP

EPS July 2011

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 40: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Before LHC Era: mH < 114 GeV (LEP), 158 < mH < 175 GeV (Tevatron), mH > 186 GeV (EWPM)

ã EPS 2011: 146 < mH < 216 GeV, 226 < mH < 288 GeV, 296 < mH < 466 GeV (LHC)

ã December 13, 2011: mH < 115.5 GeV, 127 < mH < 600 GeV (LHC)

ã Moriond 2012: mH < 117.5 GeV, 118.5 < mH < 122.5 GeV, 127.5 < mH < 600 GeV

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

Λ (GeV)

100

200

300

400

500

600

700

800

MH

(GeV

)

mH = 125 GeV at Λ = 1.7× 108 GeV

SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184

Allowed mass rangeDecember 13, 2011

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 41: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Before LHC Era: mH < 114 GeV (LEP), 158 < mH < 175 GeV (Tevatron), mH > 186 GeV (EWPM)

ã EPS 2011: 146 < mH < 216 GeV, 226 < mH < 288 GeV, 296 < mH < 466 GeV (LHC)

ã December 13, 2011: mH < 115.5 GeV, 127 < mH < 600 GeV (LHC)

ã Moriond 2012: mH < 117.5 GeV, 118.5 < mH < 122.5 GeV, 127.5 < mH < 600 GeV

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

Λ (GeV)

100

200

300

400

500

600

700

800

MH

(GeV

)

SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184

Allowed mass rangeMoriond March 2012

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 42: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Dependence on quark mass scale, mb′ , mτ ′ , mν′ , quark mixing

ã LHC Higgs limits exclude fourth generation (chiral, perturbative)

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

mH ≡ 125 GeV

SM4: mτ ′ =200 mν′ =80 θCKM34 = 0◦

mt′ = mb′ =200

mt′ = mb′ =250

mt′ = mb′ =300

mt′ = mb′ =350

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 43: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Dependence on quark mass scale, mb′ , mτ ′ , mν′ , quark mixing

ã LHC Higgs limits exclude fourth generation (chiral, perturbative)

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

mH ≡ 125 GeV

SM4: mt′ =300 mτ ′ =200 mν′ =80 θCKM34 = 0◦

mb′ =200

mb′ =250

mb′ =300

mb′ =350

mb′ =400

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 44: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Dependence on quark mass scale, mb′ , mτ ′ , mν′ , quark mixing

ã LHC Higgs limits exclude fourth generation (chiral, perturbative)

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

mH ≡ 125 GeV

SM4: mt′ =300 mb′ =250 mν′ =80 θCKM34 = 0◦

mτ ′ =100

mτ ′ =200

mτ ′ =250

mτ ′ =300

mτ ′ =350

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 45: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Dependence on quark mass scale, mb′ , mτ ′ , mν′ , quark mixing

ã LHC Higgs limits exclude fourth generation (chiral, perturbative)

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

mH ≡ 125 GeV

SM4: mt′ =300 mb′ =250 mτ ′ =200 θCKM34 = 0◦

mν′ =80

mν′ =200

mν′ =250

mν′ =300

mν′ =350

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 46: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

A. Wingerter, “Implications of the Stability and Triviality Bounds on the Standard Model with Three and Four

Chiral Generations,” Phys.Rev. D84 (2011) 095012, 1109.5140

ã Dependence on quark mass scale, mb′ , mτ ′ , mν′ , quark mixing

ã LHC Higgs limits exclude fourth generation (chiral, perturbative)

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

mH ≡ 125 GeV

SM4: mt′ =300 mb′ =250 mτ ′ =200 mν′ =100

θCKM34 =0◦

θCKM34 =13◦

θCKM34 =42◦

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 47: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

ã 2-loop RGEs and matching corrections are relevant:

mt′ = mb′ ' 250 GeV: Λ ' 300 TeV ↔ Λ ' 40 TeV

Kribs et al. arXiv:0706.3718

100 150 200 250 300 350 400 450 5001

10

210

310

(GeV)HM

(T

eV)

Λ

SM = 260 GeV

4d = m4

um = 310 GeV

4um

= 260 GeV4

dm

103 104 105 106

Λ [GeV]

100

200

300

400

500

600

700

800

MH

[GeV

]

SM4: mτ ′ =200 mν′ =80 θCKM34 = 0◦

mt′ = mb′ =200

mt′ = mb′ =250

mt′ = mb′ =300

mt′ = mb′ =350

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 48: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

λ(µ) =m2

H

v2(1 + δH(µ))

∣∣∣∣µ=mH

, yt(µ) =

√2mt

v(1 + δt(µ))

∣∣∣∣∣µ=mt

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 49: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Neutrinos have mass and the different flavors can mix

ã Charged lepton and neutrino mass matrices cannot be simultaneouslydiagonalized

M`+ = DLM`+D†R , Mν = ULMνU†R

ã Pontecorvo-Maki-Nakagawa-Sakata matrix

0@νe

νµντ

1A = DLU†L| {z }

UPMNS

0@ν1

ν2

ν3

1Aã Parametrization just as CKM matrix (Majorana phases not indicated)

UPMNS =“ 1 0 0

0 c23 s230 -s23 c23

”„c13 0 e−iδs130 1 0

-e iδs13 0 c13

«“c12 s12 0-s12 c12 0

0 0 1

”=

c12c13 s12c13 s13e−iδ

-c23s12−s13s23c12e iδ c23c12−s13s23s12e iδ s23c13

s23s12−s13c23c12e iδ -s23c12−s13c23s12e iδ c23c13

!

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 50: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

Attempt at explaning » “. . . neutrinos & texture of Yukawa couplings”

ã Until recently, our best guess was tribimaximal mixing (TBM)

P. F. Harrison, D. H. Perkins, and W. G. Scott, “Tri-bimaximal mixing and the neutrino oscillation data,”

Phys. Lett. B530 (2002) 167, hep-ph/0202074

UPMNS?= UHPS =

0@p

2/3 1/√

3 0

-1/√

6 1/√

3 -1/√

2

-1/√

6 1/√

3 1/√

2

1A↪→ θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦

ã Agreement still quite good for θ12, θ23, but θ13 = 0◦ excluded @5σ

Schwetz et al, 1108.1376, DAYA-BAY Collaboration, 1203.1669, RENO Collaboration, 1204.0626

Parameter Tribimaximal Global fit 1σ Daya Bay Reno

θ12 35.26◦ 33.02◦ − 35.0◦ - - 3

θ23 45.00◦ 42.13◦ − 49.6◦ - - 3

θ13 0.00◦ 5.13◦ − 8.13◦ 8.8◦ 9.8◦ 7

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 51: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Regular patter UPMNS is suggestive of a family symmetry

UPMNS?= UHPS =

2/3 1/√

3 0

-1/√

6 1/√

3 -1/√

2

-1/√

6 1/√

3 1/√

2

∼2 1 0

1 1 11 1 1

ã Situation is much less clear after Daya bay and Reno

Daya bay and Reno rule out tribimaximal Mixing

ã What are our options?

Give up family symmetries!

Look for groups that give θ13 6= 0◦R. d. A. Toorop, F. Feruglio, and C. Hagedorn, “Discrete Flavour Symmetries in Light of T2K,”

Phys.Lett. B703 (2011) 447–451, 1107.3486

Keep TBM and calculate higher corrections → This talk!

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 52: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Introduce relations between families of quarks and leptons

ã But which discrete group do we take for the family symmetry?

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 53: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

K. M. Parattu and A. Wingerter, “Tribimaximal Mixing From Small Groups,” Phys.Rev. D84 (2011) 013011,

1012.2842

ã In a recent publication we had scanned 76 discrete groups

ã Most papers concentrate on A4 × Zn, n ≥ 3

ã ∆(96) gives θ13 6= 0◦ but is large

ã We identified smallest group with TBM → Higher order corrections!

(12,3)

(21,1)

(24,3)

(24,12)

(24,13)

(27,3)

(27,4)

(36,3)

(36,11)

(39,1)

(42,2)

(48,3)

(48,28)

(48,29)

(48,30)

(48,31)

(48,32)

(48,33)

(48,48)

(48,49)

(48,50)

(54,8)

(57,1)

(60,5)

(60,9)

(63,1)

(63,3)

(72,3)

(72,15)

(72,25)

(72,42)

(72,43)

(72,44)

(75,2)

(78,2)

(81,7)

(81,8)

(81,9)

(81,10)

(84,2)

(84,9)

(84,11)

(93,1)

(96,3)

(96,64)

(96,65)

(96,66)

(96,67)

(96,68)

(96,69)

(96,70)

(96,71)

(96,72)

(96,74)

(96,185)

(96,186)

(96,187)

(96,188)

(96,189)

(96,190)

(96,191)

(96,192)

(96,193)

(96,194)

(96,195)

(96,197)

(96,198)

(96,199)

(96,200)

(96,201)

(96,202)

(96,203)

(96,204)

(96,226)

(96,227)

(96,229)

101

102

103

104

105

Nu

mb

er

of

Mo

de

ls

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 54: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

K. M. Parattu and A. Wingerter, “Tribimaximal Mixing From Small Groups,” Phys.Rev. D84 (2011) 013011,

1012.2842

ã In a recent publication we had scanned 76 discrete groups

ã Most papers concentrate on A4 × Zn, n ≥ 3

ã ∆(96) gives θ13 6= 0◦ but is large

ã We identified smallest group with TBM → Higher order corrections!

(12,

3)(2

1,1)

(24,

3)(2

4,12

)(2

4,13

)(2

7,3)

(27,

4)(3

6,3)

(36,

11)

(39,

1)(4

2,2)

(48,

3)(4

8,28

)(4

8,29

)(4

8,30

)(4

8,31

)(4

8,32

)(4

8,33

)(4

8,48

)(4

8,49

)(4

8,50

)(5

4,8)

(57,

1)(6

0,5)

(60,

9)(6

3,1)

(63,

3)(7

2,3)

(72,

15)

(72,

25)

(72,

42)

(72,

43)

(72,

44)

(75,

2)(7

8,2)

(81,

7)(8

1,8)

(81,

9)(8

1,10

)(8

4,2)

(84,

9)(8

4,11

)(9

3,1)

(96,

3)(9

6,64

)(9

6,65

)(9

6,66

)(9

6,67

)(9

6,68

)(9

6,69

)(9

6,70

)(9

6,71

)(9

6,72

)(9

6,74

)(9

6,18

5)(9

6,18

6)(9

6,18

7)(9

6,18

8)(9

6,18

9)(9

6,19

0)(9

6,19

1)(9

6,19

2)(9

6,19

3)(9

6,19

4)(9

6,19

5)(9

6,19

7)(9

6,19

8)(9

6,19

9)(9

6,20

0)(9

6,20

1)(9

6,20

2)(9

6,20

3)(9

6,20

4)(9

6,22

6)(9

6,22

7)(9

6,22

9)

101

102

103

104

105

Nu

mb

er

of

Mo

de

ls

Altarelli/Feruglioand most others

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 55: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

K. M. Parattu and A. Wingerter, “Tribimaximal Mixing From Small Groups,” Phys.Rev. D84 (2011) 013011,

1012.2842

ã In a recent publication we had scanned 76 discrete groups

ã Most papers concentrate on A4 × Zn, n ≥ 3

ã ∆(96) gives θ13 6= 0◦ but is large

ã We identified smallest group with TBM → Higher order corrections!

(12,

3)(2

1,1)

(24,

3)(2

4,12

)(2

4,13

)(2

7,3)

(27,

4)(3

6,3)

(36,

11)

(39,

1)(4

2,2)

(48,

3)(4

8,28

)(4

8,29

)(4

8,30

)(4

8,31

)(4

8,32

)(4

8,33

)(4

8,48

)(4

8,49

)(4

8,50

)(5

4,8)

(57,

1)(6

0,5)

(60,

9)(6

3,1)

(63,

3)(7

2,3)

(72,

15)

(72,

25)

(72,

42)

(72,

43)

(72,

44)

(75,

2)(7

8,2)

(81,

7)(8

1,8)

(81,

9)(8

1,10

)(8

4,2)

(84,

9)(8

4,11

)(9

3,1)

(96,

3)(9

6,64

)(9

6,65

)(9

6,66

)(9

6,67

)(9

6,68

)(9

6,69

)(9

6,70

)(9

6,71

)(9

6,72

)(9

6,74

)(9

6,18

5)(9

6,18

6)(9

6,18

7)(9

6,18

8)(9

6,18

9)(9

6,19

0)(9

6,19

1)(9

6,19

2)(9

6,19

3)(9

6,19

4)(9

6,19

5)(9

6,19

7)(9

6,19

8)(9

6,19

9)(9

6,20

0)(9

6,20

1)(9

6,20

2)(9

6,20

3)(9

6,20

4)(9

6,22

6)(9

6,22

7)(9

6,22

9)

101

102

103

104

105

Nu

mb

er

of

Mo

de

ls

Adelhart Toorop et al

Altarelli/Feruglioand most others

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 56: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

K. M. Parattu and A. Wingerter, “Tribimaximal Mixing From Small Groups,” Phys.Rev. D84 (2011) 013011,

1012.2842

ã In a recent publication we had scanned 76 discrete groups

ã Most papers concentrate on A4 × Zn, n ≥ 3

ã ∆(96) gives θ13 6= 0◦ but is large

ã We identified smallest group with TBM → Higher order corrections!

(12,

3)(2

1,1)

(24,

3)(2

4,12

)(2

4,13

)(2

7,3)

(27,

4)(3

6,3)

(36,

11)

(39,

1)(4

2,2)

(48,

3)(4

8,28

)(4

8,29

)(4

8,30

)(4

8,31

)(4

8,32

)(4

8,33

)(4

8,48

)(4

8,49

)(4

8,50

)(5

4,8)

(57,

1)(6

0,5)

(60,

9)(6

3,1)

(63,

3)(7

2,3)

(72,

15)

(72,

25)

(72,

42)

(72,

43)

(72,

44)

(75,

2)(7

8,2)

(81,

7)(8

1,8)

(81,

9)(8

1,10

)(8

4,2)

(84,

9)(8

4,11

)(9

3,1)

(96,

3)(9

6,64

)(9

6,65

)(9

6,66

)(9

6,67

)(9

6,68

)(9

6,69

)(9

6,70

)(9

6,71

)(9

6,72

)(9

6,74

)(9

6,18

5)(9

6,18

6)(9

6,18

7)(9

6,18

8)(9

6,18

9)(9

6,19

0)(9

6,19

1)(9

6,19

2)(9

6,19

3)(9

6,19

4)(9

6,19

5)(9

6,19

7)(9

6,19

8)(9

6,19

9)(9

6,20

0)(9

6,20

1)(9

6,20

2)(9

6,20

3)(9

6,20

4)(9

6,22

6)(9

6,22

7)(9

6,22

9)

101

102

103

104

105

Nu

mb

er

of

Mo

de

ls

Adelhart Toorop et alOur Model

Altarelli/Feruglioand most others

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 57: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

C. Luhn, K. M. Parattu, A. Wingerter, work in progress

Ê Symmetries of the model

SU(2)L ×U(1)Y × T7 ×U(1)R

Ë Particle content and charges

Field SU(2)L ×U(1)Y T7 U(1)R

L (2, -1) 3 1

e (1, 2) 1 1

µ (1, 2) 1′ 1

τ (1, 2) 1′′ 1

hu (2, 1) 1 0

hd (2, -1) 1 0

ϕ (1, 0) 3 0

ϕ (1, 0) 3′ 0

Ì Breaking the family symmetry

〈ϕ〉 = (vϕ, vϕ, vϕ), 〈ϕ〉 = (veϕ, 0, 0)

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 58: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

All you need to know about T7

The GAP Group, “GAP – Groups, Algorithms, and Programming.” http://www.gap-system.org, 2008

A. W. , Neutrino model calculator in Python, to be published

Tensor Products

1× 1 = 1

1× 1′ = 1′

1× 1′′ = 1′′

1× 3 = 3

1× 3′ = 3′

1′ × 1′ = 1′′

1′ × 1′′ = 1

1′ × 3 = 3

1′ × 3′ = 3′

1′′ × 1′′ = 1′

1′′ × 3 = 3

1′′ × 3′ = 3′

3× 3 = 3 + 3′ + 3′

3× 3′ = 1 + 1′ + 1′′ + 3 + 3′

3′ × 3′ = 2× 3 + 3′

Contractions

x ∼ 3, y ∼ 3, z ∼ 3,

z =

0BB@13

√3x1y1 + 1

3

√3x2y3 + 1

3

√3x3y2

x1y2

“− 1

6

√3 + 1

2ı”

+ x2y1

“− 1

6

√3 + 1

2ı”

+ x3y3

“− 1

6

√3 + 1

2ı”

x1y3

“− 1

6

√3− 1

2ı”

+ x2y2

“− 1

6

√3− 1

2ı”

+ x3y1

“− 1

6

√3− 1

2ı”1CCA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@ 13

√6x1y1 − 1

6

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 + 1

3

√6x2y2 − 1

6

√6x3y1

− 16

√6x1y2 − 1

6

√6x2y1 + 1

3

√6x3y3

1CA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@− 16

√6x1y1 + 1

3

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 − 1

6

√6x2y2 + 1

3

√6x3y1

13

√6x1y2 − 1

6

√6x2y1 − 1

6

√6x3y3

1CA

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 59: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

All you need to know about T7

The GAP Group, “GAP – Groups, Algorithms, and Programming.” http://www.gap-system.org, 2008

A. W. , Neutrino model calculator in Python, to be published

Tensor Products

1× 1 = 1

1× 1′ = 1′

1× 1′′ = 1′′

1× 3 = 3

1× 3′ = 3′

1′ × 1′ = 1′′

1′ × 1′′ = 1

1′ × 3 = 3

1′ × 3′ = 3′

1′′ × 1′′ = 1′

1′′ × 3 = 3

1′′ × 3′ = 3′

3× 3 = 3 + 3′ + 3′

3× 3′ = 1 + 1′ + 1′′ + 3 + 3′

3′ × 3′ = 2× 3 + 3′

Contractions

x ∼ 3, y ∼ 3, z ∼ 3,

z =

0BB@13

√3x1y1 + 1

3

√3x2y3 + 1

3

√3x3y2

x1y2

“− 1

6

√3 + 1

2ı”

+ x2y1

“− 1

6

√3 + 1

2ı”

+ x3y3

“− 1

6

√3 + 1

2ı”

x1y3

“− 1

6

√3− 1

2ı”

+ x2y2

“− 1

6

√3− 1

2ı”

+ x3y1

“− 1

6

√3− 1

2ı”1CCA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@ 13

√6x1y1 − 1

6

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 + 1

3

√6x2y2 − 1

6

√6x3y1

− 16

√6x1y2 − 1

6

√6x2y1 + 1

3

√6x3y3

1CA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@− 16

√6x1y1 + 1

3

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 − 1

6

√6x2y2 + 1

3

√6x3y1

13

√6x1y2 − 1

6

√6x2y1 − 1

6

√6x3y3

1CA

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 60: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

All you need to know about T7

The GAP Group, “GAP – Groups, Algorithms, and Programming.” http://www.gap-system.org, 2008

A. W. , Neutrino model calculator in Python, to be published

Tensor Products

1× 1 = 1

1× 1′ = 1′

1× 1′′ = 1′′

1× 3 = 3

1× 3′ = 3′

1′ × 1′ = 1′′

1′ × 1′′ = 1

1′ × 3 = 3

1′ × 3′ = 3′

1′′ × 1′′ = 1′

1′′ × 3 = 3

1′′ × 3′ = 3′

3× 3 = 3 + 3′ + 3′

3× 3′ = 1 + 1′ + 1′′ + 3 + 3′

3′ × 3′ = 2× 3 + 3′

Contractions

x ∼ 3, y ∼ 3, z ∼ 3,

z =

0BB@13

√3x1y1 + 1

3

√3x2y3 + 1

3

√3x3y2

x1y2

“− 1

6

√3 + 1

2ı”

+ x2y1

“− 1

6

√3 + 1

2ı”

+ x3y3

“− 1

6

√3 + 1

2ı”

x1y3

“− 1

6

√3− 1

2ı”

+ x2y2

“− 1

6

√3− 1

2ı”

+ x3y1

“− 1

6

√3− 1

2ı”1CCA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@ 13

√6x1y1 − 1

6

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 + 1

3

√6x2y2 − 1

6

√6x3y1

− 16

√6x1y2 − 1

6

√6x2y1 + 1

3

√6x3y3

1CA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@− 16

√6x1y1 + 1

3

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 − 1

6

√6x2y2 + 1

3

√6x3y1

13

√6x1y2 − 1

6

√6x2y1 − 1

6

√6x3y3

1CA

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 61: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

All you need to know about T7

The GAP Group, “GAP – Groups, Algorithms, and Programming.” http://www.gap-system.org, 2008

A. W. , Neutrino model calculator in Python, to be published

Tensor Products

1× 1 = 1

1× 1′ = 1′

1× 1′′ = 1′′

1× 3 = 3

1× 3′ = 3′

1′ × 1′ = 1′′

1′ × 1′′ = 1

1′ × 3 = 3

1′ × 3′ = 3′

1′′ × 1′′ = 1′

1′′ × 3 = 3

1′′ × 3′ = 3′

3× 3 = 3 + 3′ + 3′

3× 3′ = 1 + 1′ + 1′′ + 3 + 3′

3′ × 3′ = 2× 3 + 3′

Contractions

x ∼ 3, y ∼ 3, z ∼ 3,

z =

0BB@13

√3x1y1 + 1

3

√3x2y3 + 1

3

√3x3y2

x1y2

“− 1

6

√3 + 1

2ı”

+ x2y1

“− 1

6

√3 + 1

2ı”

+ x3y3

“− 1

6

√3 + 1

2ı”

x1y3

“− 1

6

√3− 1

2ı”

+ x2y2

“− 1

6

√3− 1

2ı”

+ x3y1

“− 1

6

√3− 1

2ı”1CCA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@ 13

√6x1y1 − 1

6

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 + 1

3

√6x2y2 − 1

6

√6x3y1

− 16

√6x1y2 − 1

6

√6x2y1 + 1

3

√6x3y3

1CA

x ∼ 3, y ∼ 3, z ∼ 3′,

z =

0B@− 16

√6x1y1 + 1

3

√6x2y3 − 1

6

√6x3y2

− 16

√6x1y3 − 1

6

√6x2y2 + 1

3

√6x3y1

13

√6x1y2 − 1

6

√6x2y1 − 1

6

√6x3y3

1CA

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 62: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Terms that are invariant, have 2 leptons and mass dimension ≤ 5 or 6:

W = yeϕ

ΛLehd + yµ

ϕ

ΛLµhd + yτ

ϕ

ΛLτhd + y1

ϕ

Λ2LLhuhu + y2

ϕ

Λ2LLhuhu

3′⊗3⊗1⊗1 = (1+1′+1′′+3+3′)⊗1⊗1 = 1+1′+1′′+3+3′

ã Contract family indices (need to know Clebsch-Gordan coefficients):

ye1

3

√3L1ehd ϕ1 + ye

1

3

√3L2ehd ϕ2 + ye

1

3

√3L3ehd ϕ3

+ yµ1

3

√3L1µhd ϕ3 + yµ

1

3

√3L2µhd ϕ1 + yµ

1

3

√3L3µhd ϕ2

+ yτ1

3

√3L1τhd ϕ2 + yτ

1

3

√3L2τhd ϕ3 + yτ

1

3

√3L3τhd ϕ1

ã Contract SU(2)L indices and substitute vevs 〈ϕ〉 = (veϕ, 0, 0), etc:

ye1

3

√3vdveϕ L

(2)1 e + yµ

1

3

√3vdveϕ L

(2)2 µ+ yτ

1

3

√3vdveϕ L

(2)3 τ

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 63: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Terms that are invariant, have 2 leptons and mass dimension ≤ 5 or 6:

W = yeϕ

ΛLehd + yµ

ϕ

ΛLµhd + yτ

ϕ

ΛLτhd + y1

ϕ

Λ2LLhuhu + y2

ϕ

Λ2LLhuhu

3′⊗3⊗1⊗1 = (1+1′+1′′+3+3′)⊗1⊗1 = 1+1′+1′′+3+3′

ã Contract family indices (need to know Clebsch-Gordan coefficients):

ye1

3

√3L1ehd ϕ1 + ye

1

3

√3L2ehd ϕ2 + ye

1

3

√3L3ehd ϕ3

+ yµ1

3

√3L1µhd ϕ3 + yµ

1

3

√3L2µhd ϕ1 + yµ

1

3

√3L3µhd ϕ2

+ yτ1

3

√3L1τhd ϕ2 + yτ

1

3

√3L2τhd ϕ3 + yτ

1

3

√3L3τhd ϕ1

ã Contract SU(2)L indices and substitute vevs 〈ϕ〉 = (veϕ, 0, 0), etc:

ye1

3

√3vdveϕ L

(2)1 e + yµ

1

3

√3vdveϕ L

(2)2 µ+ yτ

1

3

√3vdveϕ L

(2)3 τ

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 64: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Terms that are invariant, have 2 leptons and mass dimension ≤ 5 or 6:

W = yeϕ

ΛLehd + yµ

ϕ

ΛLµhd + yτ

ϕ

ΛLτhd + y1

ϕ

Λ2LLhuhu + y2

ϕ

Λ2LLhuhu

3′⊗3⊗1⊗1 = (1+1′+1′′+3+3′)⊗1⊗1 = 1+1′+1′′+3+3′

ã Contract family indices (need to know Clebsch-Gordan coefficients):

ye1

3

√3L1ehd ϕ1 + ye

1

3

√3L2ehd ϕ2 + ye

1

3

√3L3ehd ϕ3

+ yµ1

3

√3L1µhd ϕ3 + yµ

1

3

√3L2µhd ϕ1 + yµ

1

3

√3L3µhd ϕ2

+ yτ1

3

√3L1τhd ϕ2 + yτ

1

3

√3L2τhd ϕ3 + yτ

1

3

√3L3τhd ϕ1

ã Contract SU(2)L indices and substitute vevs 〈ϕ〉 = (veϕ, 0, 0), etc:

ye1

3

√3vdveϕ L

(2)1 e + yµ

1

3

√3vdveϕ L

(2)2 µ+ yτ

1

3

√3vdveϕ L

(2)3 τ

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 65: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Terms that are invariant, have 2 leptons and mass dimension ≤ 5 or 6:

W = yeϕ

ΛLehd + yµ

ϕ

ΛLµhd + yτ

ϕ

ΛLτhd + y1

ϕ

Λ2LLhuhu + y2

ϕ

Λ2LLhuhu

3′⊗3⊗1⊗1 = (1+1′+1′′+3+3′)⊗1⊗1 = 1+1′+1′′+3+3′

ã Contract family indices (need to know Clebsch-Gordan coefficients):

ye1

3

√3L1ehd ϕ1 + ye

1

3

√3L2ehd ϕ2 + ye

1

3

√3L3ehd ϕ3

+ yµ1

3

√3L1µhd ϕ3 + yµ

1

3

√3L2µhd ϕ1 + yµ

1

3

√3L3µhd ϕ2

+ yτ1

3

√3L1τhd ϕ2 + yτ

1

3

√3L2τhd ϕ3 + yτ

1

3

√3L3τhd ϕ1

ã Contract SU(2)L indices and substitute vevs 〈ϕ〉 = (veϕ, 0, 0), etc:

ye1

3

√3vdveϕ L

(2)1 e + yµ

1

3

√3vdveϕ L

(2)2 µ+ yτ

1

3

√3vdveϕ L

(2)3 τ

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 66: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Mass matrices

M`+ = − vdv eϕ√6Λ×

e µ τ

L(2)1 ye 0 0

L(2)2 0 yµ 0

L(2)3 0 0 yτ

, Mν =v2u

12Λ2 ×

L

(1)1 L

(1)2 L

(1)3

L(1)1

√2y2vϕ + 2y1veϕ − 1

2

√2y2vϕ − 1

2

√2y2vϕ

L(1)2 − 1

2

√2y2vϕ

√2y2vϕ − 1

2

√2y2vϕ + 2y1veϕ

L(1)3 − 1

2

√2y2vϕ − 1

2

√2y2vϕ + 2y1veϕ √

2y2vϕ

ã Singular value decomposition

M`+ = DLM`+D†R , Mν = ULMνU†R

ã Neutrino mixing matrix

UPMNS = DLU†L =

0 0 10 1 01 0 0

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

e,µ,τ→τ,µ,e=

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

Formdiagonalizable! Mixing matrix does not depend on A, B, masses do!

ã Mixing angles: θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦ Tribimaximal 4

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 67: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Mass matrices

M`+ = − vdv eϕ√6Λ×

e µ τ

L(2)1 ye 0 0

L(2)2 0 yµ 0

L(2)3 0 0 yτ

, Mν =v2u

12Λ2 ×

L

(1)1 L

(1)2 L

(1)3

L(1)1

√2y2vϕ + 2y1veϕ − 1

2

√2y2vϕ − 1

2

√2y2vϕ

L(1)2 − 1

2

√2y2vϕ

√2y2vϕ − 1

2

√2y2vϕ + 2y1veϕ

L(1)3 − 1

2

√2y2vϕ − 1

2

√2y2vϕ + 2y1veϕ √

2y2vϕ

ã Singular value decomposition

M`+ = DLM`+D†R , Mν = ULMνU†R

ã Neutrino mixing matrix

UPMNS = DLU†L =

0 0 10 1 01 0 0

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

e,µ,τ→τ,µ,e=

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

Formdiagonalizable! Mixing matrix does not depend on A, B, masses do!

ã Mixing angles: θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦ Tribimaximal 4

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 68: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Mass matrices

M`+ = − vdv eϕ√6Λ×

e µ τ

L(2)1 ye 0 0

L(2)2 0 yµ 0

L(2)3 0 0 yτ

, Mν =v2u

12Λ2 ×

L

(1)1 L

(1)2 L

(1)3

L(1)1

√2A + 2B − 1

2

√2A − 1

2

√2A

L(1)2 − 1

2

√2A

√2A − 1

2

√2A + 2B

L(1)3 − 1

2

√2A − 1

2

√2A + 2B

√2A

ã Singular value decomposition

M`+ = DLM`+D†R , Mν = ULMνU†R

ã Neutrino mixing matrix

UPMNS = DLU†L =

0 0 10 1 01 0 0

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

e,µ,τ→τ,µ,e=

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

Formdiagonalizable! Mixing matrix does not depend on A, B, masses do!

ã Mixing angles: θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦ Tribimaximal 4

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 69: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Mass matrices

M`+ = − vdv eϕ√6Λ×

e µ τ

L(2)1 ye 0 0

L(2)2 0 yµ 0

L(2)3 0 0 yτ

, Mν =v2u

12Λ2 ×

L

(1)1 L

(1)2 L

(1)3

L(1)1

√2A + 2B − 1

2

√2A − 1

2

√2A

L(1)2 − 1

2

√2A

√2A − 1

2

√2A + 2B

L(1)3 − 1

2

√2A − 1

2

√2A + 2B

√2A

ã Singular value decomposition

M`+ = DLM`+D†R , Mν = ULMνU†R

ã Neutrino mixing matrix

UPMNS = DLU†L =

0 0 10 1 01 0 0

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

e,µ,τ→τ,µ,e=

-2/√

6 -1/√

3 0

1/√

6 -1/√

3 -1/√

2

1/√

6 -1/√

3 1/√

2

Formdiagonalizable! Mixing matrix does not depend on A, B, masses do!

ã Mixing angles: θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦ Tribimaximal 4

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 70: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Family Symmetries

ã Remember leading-order superpotential:

ã Superpotential with two flavon fields (massdim ≤6 or 7)

ye L e hd eϕ + C7 L e hd ϕϕ + C8 L e hd ϕ eϕ + C9 L e hd eϕ eϕ + C10 L e hu hd hd eϕyµ Lµ hd eϕ + C12 Lµ hd ϕϕ + C13 Lµ hd ϕ eϕ + C14 Lµ hd eϕ eϕ + C15 Lµ hu hd hd eϕyτ L τ hd eϕ + C17 L τ hd ϕϕ + C18 L τ hd ϕ eϕ + C19 L τ hd eϕ eϕ + C20 L τ hu hd hd eϕy2 L L hu hu ϕ + y1 L L hu hu eϕ + C3 L L hu hu ϕϕ

:::::::::+ C4 L L hu hu ϕ eϕ

:::::::::+ C5 L L hu hu eϕ eϕ

:::::::::

Achieved θ13 ' 3.5◦, pushing for higher values

Pick only contributions that change θ13

→ Introduce NR and/or ∆ for renormalizable UV completion

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 71: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Conclusions

ã We are living in exciting times!

ã LHC is showing an excellence performance

ã The Higgs boson will soon be discovered or excluded

ã New physics is probably just around the corner

(Unfortunately so far no sign of it yet!)

ã Presented here some of the “crazy” ideas for new physics

ã Beware Michael Turner’s words:

“Not every crazy idea is a solution to a profound problem.Some of them are just crazy ideas.”

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 72: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

Future Research

B A C K U P

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model

Page 73: Physics Beyond the Standard Model · ª The Standard Model of particle physics ª The Large Hadron Collider (LHC) at CERN ª Need for physics beyond the Standard Model ª Some popular

Intro SM LHC Need for BSM Some Ideas Conclusions

A Fourth Generation of Chiral Fermions

ã Limit on t ′ mass does not consider t ′ →Wb′CDF Collaboration, T. Aaltonen et al., “Search for a Heavy Top-Like Quark in pp Collisions at√

s = 1.96 TeV,” Phys.Rev.Lett. (2011) 1107.3875

ã Limit on b′ mass assumes Br(b′ →Wt) = 100%CDF Collaboration, T. Aaltonen et al., “Search for heavy bottom-like quarks decaying to an electron or

muon and jets in pp collisions at√

s = 1.96 TeV,” Phys. Rev. Lett. 106 (2011) 141803, 1101.5728

M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, et al., “Updated Status of the Global Electroweak

Fit and Constraints on New Physics,” 1107.0975

Akın Wingerter, LPSC Grenoble Physics Beyond the Standard Model