pile group (2)

Upload: abdul-kabasy

Post on 03-Jun-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/13/2019 Pile Group (2)

    1/25

    9. Axial Capacity

    of Pile Groups

    CIV4249: Foundation Eng ineering

    Monash Univers i ty

  • 8/13/2019 Pile Group (2)

    2/25

    Axial Capacity

    W

    Pbase Bearing failure at the pi le base

    PshaftShear fai lure at pile sh aft

    Fu Fu+ W = Pbase+ Pshaft

  • 8/13/2019 Pile Group (2)

    3/25

    Pshaft, tShear failur e at pil e shaft

    Tu - W = Pshaft, t < Pshaft,c

    Tension Capacity

  • 8/13/2019 Pile Group (2)

    4/25

    Applications

    Low

    Weight

    Soft toFirm Clay

    Large Distr ibu ted

    Weight

    Very Large ConcentratedWeight

    Dense Sand

    Strong Rock

  • 8/13/2019 Pile Group (2)

    5/25

    Group Capacity

    Overlapping stress f ields

    Progressive densi f ication

    Progressive loosening

    Case-by-case bas is

    Pile Cap

    Pug

    Pugn .PupPug= en.Pup

  • 8/13/2019 Pile Group (2)

    6/25

    Efficiency, e

    Soil Type

    Clay

    Sand

    Rock

    Number of Pi les, n

    n = 5 x 5 = 25

    Spacing/Diameter

    s

    d

    s/d typ ical ly > 2 to 3

    Pile Cap

  • 8/13/2019 Pile Group (2)

    7/25

    Types of Groups

    Rigid Cap

    Capped Groups

    Flexib le Cap

    Free-standing Groups

  • 8/13/2019 Pile Group (2)

    8/25

    Feld Rule for free-standing

    piles in clay

    A

    B

    A

    B

    C

    B

    B

    C

    B

    B

    C

    B

    A

    B

    A

    reduce capacity of each p i le by 1/16 for each adjo ing p i le

    13/16 11/16

    8/16

    e = 1/15 * (4* 13/16 + 8 * 11/16 + 3 * 8/16) = 0.683

  • 8/13/2019 Pile Group (2)

    9/25

    Converse-Labarre Formula for

    free-standing piles in clay

    e= 1 - q (n-1)m + (m-1)n90 mn

    m = # row s = 3

    n = # co ls = 5

    s = 0.75d=0.3

    q = tan-1(d/s) e = 0.645

  • 8/13/2019 Pile Group (2)

    10/25

    Flexib le Cap

    Pug

    = m in (nPup

    ,PBL

    )

    D

    L,B

    PBL= BLcbNc+ 2(B+L )Dcs

    cs

    cb

    Block Failure

    Ncincl shape & depth factors

  • 8/13/2019 Pile Group (2)

    11/25

    Empir ical Mod i f ication

    nnPup

    PBL= BLcbNc+ 2(B+L )Dcs

    Pug

    = min (nPup

    ,PBL

    )1 1 1

    P2ug= n2P2up+ P

    2BL

    1 = 1 + n

    2

    P

    2

    upe2 P2BL

  • 8/13/2019 Pile Group (2)

    12/25

    Flexib le Cap

    D = 20m

    L = B = 5m

    cs= cb= 50 kPa

    Block Failure

    d = 0.3m

  • 8/13/2019 Pile Group (2)

    13/25

    Rigid Cap

    Ptotal= Pgroup+ Pcap

    for group block fai lure, Pcap= ccapNc[BcL c- BL ]for single pi le failure, Pcap= ccapNc[BcL c- nA p]

    Capped Groups

    B x L

    Bcx L c

  • 8/13/2019 Pile Group (2)

    14/25

  • 8/13/2019 Pile Group (2)

    15/25

    Piles in Granular Soils

    End bearing - l i t t le interact ion , e= 1 Shaft - dr iven

    For loose to medium sands, e> 1 Vesic driven : 1.3 to 2 for s /d = 3 to 2

    Dense/V dense - loosening?

    Shaft - bo red

    General ly m ino r component, e= 1

  • 8/13/2019 Pile Group (2)

    16/25

    Pile Settlement

  • 8/13/2019 Pile Group (2)

    17/25

    Elastic Analysis Methods

    based on Mindlins equations for shear

    loading w ithin an elast ic hal fspace

    Poulos and Davis (1980)

    assumes elast ic i ty - i .e. immediate and

    reversible

    OK for sett lement at wo rking loads i f

    reasonable FOS

    use smal l st rain modulus

  • 8/13/2019 Pile Group (2)

    18/25

    Definitions

    Area Ratio, A p

    RA= A p/ A s

    A p

    A s

    Pile Stif fness Facto r, K

    K = RA .Ep/Es

    Ep Es

  • 8/13/2019 Pile Group (2)

    19/25

    Floating Pile

    % load at the base

    Pile top settlement

    b= boCKCn

    r= P.IoRKRLRn/ EsddEp Es,n

    Rigid Stratum

    h

    L

    Solut ions are independent

    of so i l strength and pi le

    capacity. Why?

  • 8/13/2019 Pile Group (2)

    20/25

    Floating pile example

    0.5

    Ep= 35,000 MPa

    Es= 35 MPa

    Rigid Stratum

    32

    25

    n = 0.3

    b= boCKCn r= P.IoRKRLRn/ EsdP = 1800 kN

    bo= 0.038CK= 0.74Cn= 0.79b= .022Pb= 40 kN

    Io= 0.043

    RK= 1.4RL= 0.78

    Rn= 0.93r= 4.5mmEffect of :

    L = 15m

    db/d = 2

    h = 100m

  • 8/13/2019 Pile Group (2)

    21/25

    Pile on a stiffer stratum

    % load at the base

    Pile top settlement

    b= boCKCbCn

    r= P.IoRKRbRn/ EsddEs,n

    Sti ffer Stratum

    Eb> Es

    LEp

  • 8/13/2019 Pile Group (2)

    22/25

    Layered Soils

    E1,n1

    Sti ffer Stratum

    Eb> Es

    L

    d

    EpE2,n2 Es= 1 Ei hi

    L

  • 8/13/2019 Pile Group (2)

    23/25

    Stiffer base layer example

    0.5

    Ep= 35,000 MPa

    Eb= 70 MPa

    25

    b= boCKCbCn r= P.IoRKRbRn/ EsdP = 1800 kN

    bo= 0.038CK= 0.74

    Cn= 0.79Cb= 2.1b= .0467Pb= 84 kN

    Io= 0.043

    RK= 1.4

    Rb= 0.99

    Rn= 0.93r= 4.5 mm

    Es= 35 MPa

    n = 0.3

    Effect o f:

    Es= 15 MPa to 15m

  • 8/13/2019 Pile Group (2)

    24/25

    Movement Ratios

    MR is rat io of sett lement to PL/AE

    Foch t (1967) - suggested in general :

    0.5 < MR < 2 See Pou los and Davis Figs 5.23 and 5.24

  • 8/13/2019 Pile Group (2)

    25/25

    Pile group settlment

    Floating Piles End bearing piles

    psg R rr

    Single pile settlement is computedfor average working load per pile