planet-disk interaction

56
Planet-Disk Interaction Wilhelm Kley Institut f ¨ ur Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics T¨ ubingen 22. August, 2013 W. Kley

Upload: others

Post on 20-Feb-2022

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Planet-Disk Interaction

Planet-Disk Interaction

Wilhelm KleyInstitut fur Astronomie & Astrophysik

& Kepler Center for Astro and Particle Physics Tubingen

22. August, 2013

W. Kley

Page 2: Planet-Disk Interaction

Disk-Planet Organisation

• Context• Modelling/Numerics• Torques• Radiation• Eccentricity• Summary

(A. Crida)

W. Kley Copenhagen: 22. August, 2013 1

Page 3: Planet-Disk Interaction

Context Planet Formation: Overview

Historic View:(Leukippos, 480-420 BC)“The worlds form in such a way, that thebodies sink into the empty space andconnect to each other.”

Modern View:Collaps of an interstellarMolecular CloudSlight rotation ⇒ FlatteningProtosun in center / disk formation(based on Kant & Laplace, 1750s)

Planets form in protoplanetary disks≡ Accretion Disks (99% Gas, 1% Dust)

=⇒Flat system, uniform rotation, circularorbitsAs in Solar System, Kepler Systems

W. Kley Copenhagen: 22. August, 2013 2

Page 4: Planet-Disk Interaction

Context Disks: Observational Evidence

Here: AB Aurigae (Herbig Ae star)Direct Imaging :

Subaru AO, H-Band (1.65 µm)

(Fukagawa ea, 2004)

Spectral Energy Distribution (SED)IR-Excess (over stellar contribution)

(Dullemond & Monnier, 2010)

Idea: obtain disk structure and dynamics- precondition for planet formation- indicators for the presence of planets

W. Kley Copenhagen: 22. August, 2013 3

Page 5: Planet-Disk Interaction

Context Turbulence in disks

3D MHD Simulations:• Local stratified Box• Non ideal MHD• Radiation Transport• Ionising sources• Chemical network• at different radii

Chemical Network(after Ilgner & Nelson, 2006)

Outcome:(Flaig ea. 2012)- Saturation level- Vertical structure- Surface temperature- Transport efficiency (α)- Deadzones- Velocity field for dust

W. Kley Copenhagen: 22. August, 2013 4

Page 6: Planet-Disk Interaction

Context Disks: Global Structure

(P. Armitage, 2011)

The origin of the angular momentum transport in disks not clear(HD or MHD turbulence) Problem: low ionization and non-ideal MHD-effects

W. Kley Copenhagen: 22. August, 2013 5

Page 7: Planet-Disk Interaction

Context Disks: Lifetimes

From IR-Excess

IR-Excess vs. Stellar Age

Lifetimes:approx. 106-107 Years

(Montmerle et al. 2006)

• Need efficientang.mom. transport- Anomalous Viscosity- Turbulence• Planets form fast

W. Kley Copenhagen: 22. August, 2013 6

Page 8: Planet-Disk Interaction

Context Standard Planet Formation Scenarios

Gravitational Instability inprotoplanetary Disk

Growth of unstable modesin spiral arms

Advantage: Very fast formationDisadvantage: Condition, cores

Coagulation of Dust/Gas in Disk

Growth through sequence ofcollisions & coagulationsLate Phase: Gas accretion onto Core

Advantage: Cores of PlanetsDisadvantage: Long timescales

Planets are embedded in disk: interact gravitationallyExert torques on each other: Orbital evolution (Migration)Evidence: HOT Planets (near the star), resonant configurations

W. Kley Copenhagen: 22. August, 2013 7

Page 9: Planet-Disk Interaction

Context Exoplanets: Mass-Distance

High masses, very and close in, and very far away

W. Kley Copenhagen: 22. August, 2013 8

Page 10: Planet-Disk Interaction

Context Exoplanets: Eccentricity-Distance

2520

1510

50

Msi

n(i)

[Jup

iter

Mas

s]

0.1 1 10

0.8

0.6

0.4

0.2

0.0

Semi-Major Axis [Astronomical Units (AU)]

Orb

ital E

ccen

tric

ity

exoplanets.org | 1/13/2013

High eccentricity and high inclinations (dynamically excited)

W. Kley Copenhagen: 22. August, 2013 9

Page 11: Planet-Disk Interaction

Context Planet Formation Problems

• Not possible to form hot Jupiters in situ- disk too hot for material to condense- not enough material

• Difficult to form massive planets- gap formation

• Eccentric and inclined orbits- planets form in flat disks (on circular orbits)

But planets grow and evolve in disks:

⇒ Have a closer look at planet-disk interaction

Have 2 contributions: Spiral arms & Corotation effects

(more details: Annual Review article by Kley & Nelson, ARAA, 50, 2012)

W. Kley Copenhagen: 22. August, 2013 10

Page 12: Planet-Disk Interaction

Planet Disk Two main contributions

1) Spiral arms 2) Horseshoe region(Lindblad Torques) (Corotation Torques)

(Typically inward) (Typically outward)

Properties of Migration: in radiative disks, in turbulent disks, in self-gravitating disks, tidallydriven migration (Kozai), Stellar Irradiation, runaway (type-III) migration (SolSys)Eccentricity & Inclination: Check influence of the disk and Dynamical Processes

W. Kley Copenhagen: 22. August, 2013 11

Page 13: Planet-Disk Interaction

Planet Disk Lindblad Torques (Spiral arms)

Young planets are embedded in gaseous disk

Creation of spiral arms:- stationary in planet frame

- Linear analysis,- 2D hydro-simulations

(Masset, 2001)

Inner Spiral- pulls planet forward:- positive torque

Outer Spiral- pulls planet backward:- negative torque

−→ Net Torque=⇒ Migration

Most important:Strength & Direction ?

Typically: Outer spiral wins=⇒ Inward Migration

Torque scales with:inv. Temp. (H/r)−2, M2

p, Md

W. Kley Copenhagen: 22. August, 2013 12

Page 14: Planet-Disk Interaction

Planet Disk Lindblad torque: radial torqedensity

Γtot = 2π∫dΓdm(r) Σ(r) rdr mit

(dΓdm

)0

= Ω2p(ap)a2

pq2(Hap

)−4

, Hadi =√γHiso

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-4 -3 -2 -1 0 1 2 3 4

dΓ/d

m /

(dΓ

/dm

) 0

(r-ap)/H

isothermaladiabatic: γ = 1.40adiabatic: γ = 1.01

W. Kley Copenhagen: 22. August, 2013 13

Page 15: Planet-Disk Interaction

Planet Disk Corotation Torque: (Horseshoe region)

(F. Masset)

3 Regions

Outer disk (spiral)Inner disk (spiral)=⇒ Lindblad torques

Horseshoe (coorbital)

=⇒ Corotation Torques(Horseshoe drag)

Scaling with:- Vortensity gradient(Vorticity/density)

W. Kley Copenhagen: 22. August, 2013 14

Page 16: Planet-Disk Interaction

Planet Disk Goals

Evolution of planet in Disk

Require:

Torques(disk pulls on planet)=⇒ Migration rate

Accretion(planet attracts material)=⇒ Mass growth rate

On the right:Saturn mass planet in disk- Spiral arms- Envelope around planet- Gap formation

(A. Crida)

W. Kley Copenhagen: 22. August, 2013 15

Page 17: Planet-Disk Interaction

Planet Disk Modelling

The problem is full 3D: requires MHD, radiation transport, self-gravityOften simplifications are used

• Dimensions- assume that the disk is flat⇒ vertical averaging- perform simulations in 2D (r − ϕ Coordinates)- recently simulations in 3D

• Physics- often isothermal, to avoid solving an energy equation- use pure hydrodynamics (no MHD)- model angular momentum transport through (eff.) viscosity- no self-gravity of disk- no radiative transport

• Numerics- in 2D: cylindrical coordinates- in 3D: sperical polar coordinates- velocities in φ are much larger→ special treatment- Planet: pointmass potential, special treatment in 2D required

W. Kley Copenhagen: 22. August, 2013 16

Page 18: Planet-Disk Interaction

Modelling A test project

ActorsStar (1 M), Disk (0.01 M), Planet (Mp = MJup)

Disk: Hydrodynamical Evolution (Grid-Sample: 128x128)

- In potential of Star & Planet- 2D (r, ϕ or x− y)- rmin = 2.08, rmax = 10.4 AU- locally isothermal: T ∝ r−1

- const. viscosity: ν = const.

Planet: At 5.2 AU- here on fixed orbit- point mass (smoothed potential)

Compare 17 Codes inDe Val-Borro & 22 Co-authors, MN(2006) -20 -10 0 10 20

-20

-10

0

10

20

EU comparison project: http://www.astro.princeton.edu/∼mdevalbo/comparison/

W. Kley Copenhagen: 22. August, 2013 17

Page 19: Planet-Disk Interaction

Modelling Equations-2D: Conservative

Mass Conservation

∂Σ

∂t+∇ · (Σu) = 0 u = (ur, uϕ) = (v, rω)

Radial Momentum

∂(Σv)

∂t+∇ · (Σvu) = Σ r(ω + Ω)2 − ∂p

∂r− Σ

∂Φ

∂r+ fr

Angular Momentum

∂[Σr2(ω + Ω)]

∂t+∇ · [Σr2(ω + Ω)u] = −∂p

∂ϕ− Σ

∂Φ

∂ϕ+ fϕ

EnergyH/r = const. =⇒ T ∝ 1/r p = ΣT/µ

Ω: rotation of coord. system = Ωp Φ: planet potential, fr, fϕ: viscosity

W. Kley Copenhagen: 22. August, 2013 18

Page 20: Planet-Disk Interaction

Modelling Typical Result

Viscous disc: Mp = 1 MJup, ap = 5.2 AU ()

W. Kley Copenhagen: 22. August, 2013 19

Page 21: Planet-Disk Interaction

Modelling EU comparison: Results on Gap profile

Types: solid - Upwind, HighOrder, short-dashed - Riemann,long-dashed SPH; (Cyl. vs. Cartesian)

W. Kley Copenhagen: 22. August, 2013 20

Page 22: Planet-Disk Interaction

Numerics Coriolis Terms I

Angular Momentum Equation ω = angular velocity in rotating frame

Conserved (as before)

∂[Σr2(ω + Ω)]

∂t+∇ · [Σr2(ω + Ω)u] =

−∂p∂ϕ− Σ

∂Φ

∂ϕ+ fϕ

Not-Conserved (Explicit)

∂[Σr2ω]

∂t+∇ · [Σr2ωu] = −2 Σ vΩ r

−∂p∂ϕ− Σ

∂Φ

∂ϕ+ fϕ

W. Kley Copenhagen: 22. August, 2013 21

Page 23: Planet-Disk Interaction

Numerics Coriolis Terms II

Non-ConservativeConservative

Conservative results: identical to inertial frame

=⇒ If rotating frame: Use conservative formulation

W. Kley Copenhagen: 22. August, 2013 22

Page 24: Planet-Disk Interaction

Numerics FARGO - Basics

A Fast eulerian transport Algorithm for differentially rotating disksDescription of the Fargo-Code: (Masset, A&A 2000) (http://fargo.in2p3.fr/)The problem:- Cylindrical coord. system- explicit code→ Courant condition:

∆t <∆ϕ

ω

with ω ∝ r−3/2 → ∆t ∝ r3/2

The solution:Calculate average velocity ωiof ring i, and perform Shift overni = Nint(ωi∆t/∆ϕ) gridcellsTransport on with remaining velocity=⇒ much larger ∆t

Take care: no ring separation

FARGO-method implemented in many codes: e.g. PLUTO

W. Kley Copenhagen: 22. August, 2013 23

Page 25: Planet-Disk Interaction

Numerics FARGO - Results

Azimuthally averaged surface density

.5 1 1.5 2 2.5

.6

.8

1

1.2

1.4

r

Σ

t=25 orbits

r−phi (128x384)

inertial, std.

rotating, std.

inertial, Fargo

rotating, Fargo

Fargo vs. Standardinertial vs. rotating

Jupiter mass planetafter 25 Orbits

Used Timesteps– 51000– 39000– 5800– 5800

=⇒ Identical results !=⇒ Huge Savings !

larger savings forlog-grid

Implemented also in3D

W. Kley Copenhagen: 22. August, 2013 24

Page 26: Planet-Disk Interaction

Numerics The Grid

Azimuthally averaged surface density

.5 1 1.5 2 2.5

.6

.8

1

1.2

1.4

r

Σ

t=25 orbits

q01, cyl, std

q04, cart, 320

q05, cart, double

Cartesian vs. Cylindrical(inertial frame)

Jupiter mass planetafter 25 Orbits

Models– Cyl.: 128×384– Cart.: 320×320– Cart.: 640×640

=⇒ Cartesian problematic !

– no operator-splitting– 2nd order RK-integrator

[only PENCIL code reasonable(HiOrder)]

W. Kley Copenhagen: 22. August, 2013 25

Page 27: Planet-Disk Interaction

Numerics Nested Grid I

Nested-Grid System: Centered on Planet - corotating frameAdvantage: High resolution near planet, grid fixed in advance (no AMR)(D’Angelo et al. 2002/03)

l = 1

l = 3 l = 2

W. Kley Copenhagen: 22. August, 2013 26

Page 28: Planet-Disk Interaction

Numerics Nested Grid II 1 MJ (here 2D, ϕ− r plots)

(D’Angelo et al., 2002, PhD Thesis Tubingen, 2004)

W. Kley Copenhagen: 22. August, 2013 27

Page 29: Planet-Disk Interaction

Numerics Torque calculation

Sum over all grid-cells, Γtot =∑cells (xpFy − ypFx)

Which parts belong to planet ?

Use Truncation RadiusRtrunc ≈ 0.5− 1.0RrocheSmooth tapering-function fb

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

f b (

s )

s / rHill

b=0.2 b=0.4 b=0.6 b=0.8

b = 1.

Migration of Saturn mass planet

0.8

0.85

0.9

0.95

1

300 305 310 315 320 325

SE

MI -

MA

JOR

- A

XIS

TIME [orbit]

Mp = 3.10-4M* ; Nr = 460 ; Ns = 1572

Method :(A)

(B) b = 1. (B) b = 0.9(B) b = 0.8(B) b = 0.7(B) b = 0.6(B) b = 0.5(B) b = 0.4(B) b = 0.3

(B) b=0. <=> none

(A. Crida)– (A) fully self-gravitating=⇒ need b ≈ 0.5− 0.6

W. Kley Copenhagen: 22. August, 2013 28

Page 30: Planet-Disk Interaction

Torque & Wake The linear isothermal Torque

Torque on the planet:

Γtot = −∫

disk

Σ(~rp × ~F ) df =

∫disk

Σ(~rp ×∇ψp) df =

∫disk

Σ∂ψp

∂ϕdf (1)

3D analytical (Tanaka et al. 2002) and numerical (D’Angelo & Lubow, 2010)

Γtot = −(1.36 + 0.62βΣ + 0.43βT ) Γ0. (2)

whereΣ(r) = Σ0 r

−βΣ and T (r) = T0 r−βT (3)

and normalisation

Γ0 =

(mp

M∗

)2 (H

rp

)−2 (Σpr

2p

)r2pΩ2

p, (4)

⇒ Migration Jp = Γtot ⇒ ap

ap= 2

Γtot

Jp(5)

Low Planet Mass (Type I): Typically Negative & fast

W. Kley Copenhagen: 22. August, 2013 29

Page 31: Planet-Disk Interaction

Torque & Wake Standard model

Parameter Symbol Valuemass ratio q = Mp/M∗ 6× 10−6

aspect ratio h = H/r 0.05nonlinearity parameter M = q1/3/h 0.36kinematic viscosity ν inviscidpotential smoothing εp 0.1Hradial range rmin – rmax 0.6 – 1.4angular range φmin – φmax 0 – 2πnumber of grid-cells Nr ×Nφ 256× 2004spatial resolution ∆r H/16damping range at rmin 0.6 – 0.7damping range at rmax 1.3 – 1.4

2D, isothermal, inviscid, high resolution, low mass planets. Parameter for astudy to test the accuracy and stability of the FARGO-algorithm.Analyze, torque distribution, wake profile, gravitational smoothing(Kley ea. 2012)

W. Kley Copenhagen: 22. August, 2013 30

Page 32: Planet-Disk Interaction

Torque & Wake Density: Standard Modell

2D Simulation, FARGO, q = 6× 10−6, h = 0.05,Σ0 = const.

(Tobias Muller, Tubingen)

W. Kley Copenhagen: 22. August, 2013 31

Page 33: Planet-Disk Interaction

Torque & Wake Results: Γtot(t), dΓ/dm(r), Wake

Γtot = 2π

∫dΓ

dm(r) Σ(r) rdr(

dm

)0

= Ω2p(ap)a

2pq

2

(H

ap

)−4

Γ0 = Σ0 Ω2p(ap)a

4pq

2

(H

ap

)−2

-12

-10

-8

-6

-4

-2

0

2

0 100 200 300 400 500

Γto

t/Γ0

t [Torb]

-0.1

-0.05

0

0.05

0.1

-4 -3 -2 -1 0 1 2 3 4

dΓ/d

m /

(dΓ

/dm

) 0

(r-ap)/H

t = 30 Torbt = 200 Torb

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

(Mth

/Mp)

(δΣ

/Σ0)

/ (x

/H)1/

2

– (y/H) - 3 (x/H)2/4

rp + 4/3 Hrp - 4/3 H

W. Kley Copenhagen: 22. August, 2013 32

Page 34: Planet-Disk Interaction

Torque & Wake Codes Comparision

-0.1

-0.05

0

0.05

0.1

-4 -3 -2 -1 0 1 2 3 4

dΓ/d

m /

(dΓ

/dm

) 0

(r-ap)/H

NirvanaRH2DFARGOFARGO3D

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

3 4 5 6 7 8

dΓ/d

m /

(dΓ

/dm

) 0

(r-ap)/H

NirvanaRH2DFARGOFARGO3D

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

(Mth

/Mp)

(δΣ

/Σ0)

/ (x

/H)1/

2

(y/H) - 3 (x/H)2/4

NirvanaRH2DFARGOFARGO3D

• all codes agree very well- on torque density and wake form• all see the torque reversal at r− rp ≈ 3.2H

W. Kley Copenhagen: 22. August, 2013 33

Page 35: Planet-Disk Interaction

Grav. Potential Vertical Averaging

In 2D simulations: Epsilon-potential (s is distance from planet to gridpoint)

Φ2Dp = −GMp

1

(s2 + ε2)1/2

But: 2D eqns. are obtained from 3D by vertical averaging: ⇒ force density (force/area)

Fp(s) = −∫ρ∂Φp

∂sdz = −GMps

∫ρ

(s2 + z2)32

dz

s

z

NOTE: In general ∇Φ2Dp 6=

∫ρ∇Φ dz

Σ(specific force)

W. Kley Copenhagen: 22. August, 2013 34

Page 36: Planet-Disk Interaction

Grav. Potential Calculate optimum ε

What ε makes ∇Φ2Dp =

∫ρ∇Φ dz

Σ

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

ε [H

]

s [H]

10% errorOptimum value

Muller ea 2012

• optimum ε distance dependend, • ε⇒ 1 for s⇒∞

W. Kley Copenhagen: 22. August, 2013 35

Page 37: Planet-Disk Interaction

Grav. Potential Torque and Wake profile

Torque-density

-0.1

-0.05

0

0.05

0.1

-4 -3 -2 -1 0 1 2 3 4

dΓ/d

m /

(dΓ

/dm

) 0

(r-ap)/H

2D: ǫ = 0.1 H2D: integrated force3D

Linear wake-profile

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

(Mth

/Mp)

(δΣ

/Σ0)

/ (x

/H)1/

2

(y/H) - 3 (x/H)2/4

2D: ǫ = 0.1 H2D: integrated force3D

• ε = 0.1 leads to large overestimate of torques• ε = 0.6− 0.7 agrees with 3D results• good agreement vertical integrated force with 3D results

W. Kley Copenhagen: 22. August, 2013 36

Page 38: Planet-Disk Interaction

Disk-Planet Gap formation: Type I⇒ Type II

Mp = 0.01 MJup

Mp = 0.03 MJup

Mp = 0.1 MJup

Mp = 0.3 MJup

Mp = 1.0 MJup

Depth depends on:- Mp

- Viscosity- Temperature

Torques reduced:Migration slowsType I⇒ Type IIlinear⇒ non-linearPlanet moves with(viscous) disk

W. Kley Copenhagen: 22. August, 2013 37

Page 39: Planet-Disk Interaction

Disk-Planet Saturation - Effect

2D hydro-simulations:- small mass- inviscid

Note:for barotropic andinviscid flows:

d

dt

(ωzΣ

)= 0

dS

dt= 0

Torque depends on:Gradients of ωz/Σ, Sωz VorticityS EntropyGradients are wiped out in

the corotation region

Total torque vs. time - isothermal - adiabatic

W. Kley Copenhagen: 22. August, 2013 38

Page 40: Planet-Disk Interaction

Disk-Planet Saturation - Origin

(F. Masset)

Red and BlueOrbits havedifferent periods⇒ Phase mixing

(Balmforth & Korycanski) 3D radiative disk (B. Bitsch)

W. Kley Copenhagen: 22. August, 2013 39

Page 41: Planet-Disk Interaction

Radiation Disk physics

∂ΣcvT

∂t+∇ · (ΣcvTu) = −p∇ · u+D −Q−2H∇ · ~F

Adiabatic: Pressure Work, Viscous heating (D), radiative cooling (Q) (∝ T 4eff )

radiative Diffusion: in disk plane (realistic opacities)

-4e-05

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

0 100 200 300

Spe

cific

Tor

que

[(a2 Ω

2 ) Jup

]

Time [Orbits]

isothermal

adiabatic

local cool/heat

fully radiative

Mp = 20Mearth

(Kley&Crida ’08)

Disk Physics determinesDirection of motionsee also:

Paardekooper & Mellema ’06Baruteau & Masset ’08Paardekooper & Papaloizou ’08

W. Kley Copenhagen: 22. August, 2013 40

Page 42: Planet-Disk Interaction

Radiation Role of viscosity

Total torquevs. viscosity:

in viscous α-disk2D radiative model- in equilibrium

Efficiency dependsof ratio of timescalesτvisc/τlibratτrad/τlibrat

Local disk propertiesmatter

(Kley & Nelson 2012)⇒ Need viscosity to prevent saturation !

W. Kley Copenhagen: 22. August, 2013 41

Page 43: Planet-Disk Interaction

Radiation Mass dependence

Isothermal and radiative models. Outward migration for Mp ≤ 40 MEarth

Vary Mp

(Kley & Crida 2008)

In full 3D(Kley ea 2009)

With irradition:Bitsch ea. (2012)

W. Kley Copenhagen: 22. August, 2013 42

Page 44: Planet-Disk Interaction

Radiation Compare density

−1.2 −1.1 −1 −.9 −.8

−.2

−.1

0

.1

.2

x

y

−1.2 −1.1 −1 −.9 −.8

−.2

−.1

0

.1

.2

x

y

Isothermal

−1.2 −1.1 −1 −.9 −.8

−.2

−.1

0

.1

.2

xy

−1.2 −1.1 −1 −.9 −.8

−.2

−.1

0

.1

.2

xy

Radiative

- wider spirals in radiative case (reduce torque)- density maximum ’ahead’ of planet (pulls planet forward)

=⇒ possibly positive torques

W. Kley Copenhagen: 22. August, 2013 43

Page 45: Planet-Disk Interaction

Radiation Role of viscosity

Total torquevs. viscosity:

in viscous α-disk2D radiative model- in equilibrium

Efficiency dependsof ratio of timescalesτvisc/τlibratτrad/τlibrat

Local disk propertiesmatter

(Kley & Nelson 2012)⇒ Need viscosity to prevent saturation !

W. Kley Copenhagen: 22. August, 2013 44

Page 46: Planet-Disk Interaction

Radiation Radial Torque density

3D-simulations, radiative diffusion, 20 MEarth planet (Kley, Bitsch & Klahr 2009)dΓ/dm, with Γtot = 2π

∫(dΓ/dm)Σdr Radiative: ⇒ additional positive contrib.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Torq

ue

r [aJup]

isothermaladiabatic

fully radiative

W. Kley Copenhagen: 22. August, 2013 45

Page 47: Planet-Disk Interaction

Eccentricity Planets on eccentric Orbits

Torque on planet due to disk

Tdisk = −∫

disk

(~r × ~F )∣∣∣zdf

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10 10.5 11 11.5 12

Tor

que

Time [Orbits]

e0 = 0.00e0 = 0.02e0 = 0.05e0 = 0.10e0 = 0.15e0 = 0.20e0 = 0.30

Lp = mp

√GM∗a

√1− e2

Lp

Lp=

1

2

a

a− e2

1− e2

e

e=Tdisk

Lp

Power: Energy loss of planet

Pdisk =

∫disk

~rp · ~F df

Ep = − 1

2

GM∗mp

a

Ep

Ep=

a

a=Pdisk

Ep

W. Kley Copenhagen: 22. August, 2013 46

Page 48: Planet-Disk Interaction

Eccentricity In 3D radiative disks

Planet mass Mp = 20MEarth

- Vary Eccentricity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

10

eccentr

icity

Time [Orbits]

e0=0.0e0=0.05e0=0.10e0=0.15e0=0.20e0=0.25e0=0.30e0=0.35e0=0.40

Vary Planet Mass 10− 200MEarth

- Fixed e0 = 0.40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200

eccentr

icity

time [Orbits]

20 MEarth30 MEarth50 MEarth80 MEarth

100 MEarth200 MEarth

(Bitsch & Kley 2010)

• e-damping for all planet masses.Small e: exponential damping, large e: e ∝ e−2

• Need e < 0.01− 0.02 for outward migration to work (radiative disks)

=⇒ Need multiple objects ! (Scattering)

W. Kley Copenhagen: 22. August, 2013 47

Page 49: Planet-Disk Interaction

Radiation Resonant capture & Gap

2 massive planets in disk (HD 73526 ≈ 2.5MJup each)

Two planets:joint, large gap

Outer planet :Pushed inwardby outer disk

Inner planet :Pushed outwardby inner disk

Separation reduction:Resonant capture

(Sandor, Kley & Klagyivik2007)

compare: HD142527

W. Kley Copenhagen: 22. August, 2013 48

Page 50: Planet-Disk Interaction

Radiation Eccentricity Pumping

Here: System-parameter of GJ 876 (damping of inner & outer disk)

Compactification

Excitation

(Crida ea 2008)

System ends in: apsidal corotation, with correct eccentricitiesLess disk damping: ⇒ much higher e ⇒ possible Instability

W. Kley Copenhagen: 22. August, 2013 49

Page 51: Planet-Disk Interaction

Disk-Planet Evidence

• RV-Obs.: ≈ 50 multi-planet extrasolar planetary systems≈ 1/4 contain planets in a low-order mean-motion resonance (MMR)

In Solar System: 3:2 between Neptune and Pluto (plutinos)

• Resonant capture through convergent migration processdissipative forces due to disk-planet interaction

• Existence of resonant systems

- Clear evidence for planetary migration

• Hot Jupiters (Neptunes) & Kepler systems

- Clear evidence for planetary migration

W. Kley Copenhagen: 22. August, 2013 50

Page 52: Planet-Disk Interaction

Kepler 38 System Architecture

W. Kley Copenhagen: 22. August, 2013 51

Page 53: Planet-Disk Interaction

Kepler 38 Kepler 38

Animation of disk around Binary Star(shown is the surface density)

Binary Parameter:M1 = 0.95M,M2 = 0.25MaB = 0.15 AUeB = 0.10

Planet Parameter:mp = 0.36MJup

ap = 0.46 AUep = 0.03

W. Kley Copenhagen: 22. August, 2013 52

Page 54: Planet-Disk Interaction

Kepler 38 Kepler 38

Migration of planet in disk

(Kley & Haghighipour, in prep.)

(see also: Pierens & Nelson, 2013)

Planet stops atgap edge with:ap = 0.43 AUep = 0.15 AU

ObservedPlanet Parameter:mp = 0.36MJup

ap = 0.46 AUep = 0.03

W. Kley Copenhagen: 22. August, 2013 53

Page 55: Planet-Disk Interaction

Disk-Planet Summary/Outlook

New properties of extrasolar Planets• High Masses• Large eccentricities• Close distances

Planet-disk simulations• Coord. System• Angular momentum conservation• FARGO-Accelaration• Grid-Refinement• Thermodynamics

Accurate accretion & migration history of planets requires• Full 3D simulations• High resolution (locally)• Radiation transport• Self-Gravity• Magnetic Fields

W. Kley Copenhagen: 22. August, 2013 54

Page 56: Planet-Disk Interaction

Disk-Planet The End

Thank you for your attention !

(A. Crida)

W. Kley Copenhagen: 22. August, 2013 55