plasma diagnostics using spectroscopic techniques

31
Plasma diagnostics using spectroscopic techniques Timo Gans York Plasma Institut

Upload: baba

Post on 24-Feb-2016

92 views

Category:

Documents


2 download

DESCRIPTION

Plasma diagnostics using spectroscopic techniques. Timo Gans. York Plasma Institute. YPI – Low temperature plasma activities. Plasma dynamics & chemical kinetics Advanced plasma diagnostics Special emphasis on optical diagnostics & laser spectroscopy. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Plasma diagnostics using spectroscopic techniques

Plasma diagnostics using spectroscopic techniquesTimo Gans

York Plasma Institute

Page 2: Plasma diagnostics using spectroscopic techniques

YPI – Low temperature plasma activities

• Plasma dynamics & chemical kinetics

• Advanced plasma diagnostics• Special emphasis on optical

diagnostics & laser spectroscopy

• Modelling & numerical simulations

• Technological exploitations

• Special emphasis on plasma medicine, plasma

etching, plasma deposition

Page 3: Plasma diagnostics using spectroscopic techniques

Plasmas & other disciplines

• Optics• Atomic & Molecular Physics• Laser Physics• Surface Science• Electro Dynamics• Statistics• Numerical Simulations

• Electrical Engineering• Chemistry• Bio-medical Sciences

Page 4: Plasma diagnostics using spectroscopic techniques

What is a plasma? ionised gas with variety of particles electrons positive and negative ions neutral particles

(atoms, molecules, radicals) excited species dust particles

What do we like to measure? densities distribution functions (temperatures) electric and magnetic fields

electrons

ionsradicals

neutralsbulkplasma

sheathchemistry

synergisms

physics

power

electrons

ionsradicals

neutralsbulkplasma

sheathchemistry

synergisms

physics

electrons

ionsradicals

neutralsbulkplasma

electrons

ionsradicals

neutralsbulkplasma

sheathchemistry

synergisms

physics

power

power

Plasma – Complex Multi-Particle System

Page 5: Plasma diagnostics using spectroscopic techniques

Multiphase interfaces:

Plasma – gas – liquid – surface (solid)

Multispecies:

Electrons, pos. ions, neg. ions, neutrals, radicals, excited species, photons

Multiscale problem – time:

Electron dynamics: ps – ns

Ion dynamics: 100 ns – μs

Plasma chemistry: 100 μs – ms

Surface chemistry: s – min

Multiscale problem – space:

Surface structures: nm – μm

Charged particle gradients: μm – m

Neutral particle gradients: 10 μm – m

Challenges & opportunities

Page 6: Plasma diagnostics using spectroscopic techniques

Electrical diagnostics charged particles and fields

external current and voltage measurements+ simple+ non-intrusive– indirect– model based– global information only

probe measurements+ simple+ local information+ direct– model based– reactive environment (gases)– intrusive

How do we measure plasma quantities?

Page 7: Plasma diagnostics using spectroscopic techniques

Mass spectrometry neutral particles and ions energy distribution functions

+ non-intrusive+ direct

How do we measure plasma quantities?

– complicated in detail– external measurement– reactive gases

Page 8: Plasma diagnostics using spectroscopic techniques

Optical diagnostics

in principle all plasma parameters+ non-intrusive+ high temporal and spatial resolution

Plasma physics

Atomic & molecular physics

Optical diagnostics

How do we measure plasma quantities?

Page 9: Plasma diagnostics using spectroscopic techniques

Emission spectroscopy+ passive+ simple+ robust– indirect– model based– data needed

Laser spectroscopy+ direct+ highly reliable– active– involving– expensive

Combination of passive and active methods

Optical Diagnostics

Page 10: Plasma diagnostics using spectroscopic techniques

Typical OES set-up

Page 11: Plasma diagnostics using spectroscopic techniques

line emission which emission lines (qualitative)

® species absolute intensities (calibration difficult)

® density of excited species line ratios

® robust model based analysis (this lecture!) line shapes (high experimental requirements)

® temperatures, fields, densities temporal variations

® plasma dynamicscontinuum radiation

spectral distributions absolute intensities

Optical Emission Spectroscopy (OES)

Page 12: Plasma diagnostics using spectroscopic techniques

Complete thermodynamic equilibrium (CTE) homogeneity unique temperature (Te = Ti = Tgas) black body radiation

Maxwell – Boltzmann distribution

1

2 :Planck3

2

Tk

hBec

hI

Plasma concepts - CTE

Page 13: Plasma diagnostics using spectroscopic techniques

Maxwell – Boltzmann distribution population distributions

TkEE

gg

nn

B

jk

i

k

j

k exp

:Boltzmann

® Spectroscopy: line intensities and ratios velocity distribution

Tk

mv

mTk

vndvvdn

BB2

exp2

4)(:Maxwell

2

23

2

® Spectroscopy: line shape, e.g. Doppler effect

Plasma concepts - CTE

Page 14: Plasma diagnostics using spectroscopic techniques

Main constraints and limitations inhomogeneities Planck

® Local thermodynamic equilibrium?

Plasma concepts - CTE

Page 15: Plasma diagnostics using spectroscopic techniques

Local thermodynamic equilibrium (LTE) local parameters collision dominated

® equilibrium of collisions® no equilibrium of radiation

requirement

example (hydrogen arc)

ne = 1016 cm-3, Te 104 K

® (Ek - Ei)LTE 4 eV

® Partial LTE

312106.1 ikee EETn

Plasma concepts - LTE

Page 16: Plasma diagnostics using spectroscopic techniques

Partial local thermodynamic equilibrium (PLTE) over population of the ground state LTE for excited states constraints and limitations

low electron densities® Corona model® collisional radiative models

Plasma concepts - PLTE

Page 17: Plasma diagnostics using spectroscopic techniques

Corona model model for plasmas with "low" electron densities

(ne < 1013 cm-3) applicable to most technological plasmas far from thermodynamic equilibrium most particles are in the ground state

electron impact excitation=

relaxation by radiation

(spontaneous emission)

Plasma concepts - Corona

Page 18: Plasma diagnostics using spectroscopic techniques

iiki,Ph nAn

ni : population density of state i

Aik : spontaneous emission rate

nPh,i : photons per unit volume and time

Plasma concepts - Corona

Electron impactexcitation

Ground state n0

i

kik

Corona model

electron impact excitation=

relaxation by radiation

(spontaneous emission)

Page 19: Plasma diagnostics using spectroscopic techniques

k

ikieeii AnTnEndtdn ,0

n0 : ground state density

Ei : electron impact excitation rate of state i,

(depending on ne and Te)

ikikA

1

i : radiative lifetime

Plasma concepts - Corona

dEEfmEEnvnEe

ieiei2

0

i : electron impact excitation cross-section of state i

f(E): normalised EEDF

Page 20: Plasma diagnostics using spectroscopic techniques

kik

ikik

i0iki0

kik

ikiiki,Ph

AAa

EnaEnAAnAn

aik : branching ratio

RF - discharges

iRFT

1

(later) OES Resolved Phase 0 dtdni

steady state of excited states

®

kik

ii

i

AEnn

dtdn 0 0

Plasma concepts - Corona

Page 21: Plasma diagnostics using spectroscopic techniques

Additional excitation and de-excitation processes applicable to most technological plasmas

cascades from higher electronic states

one dominating or effective cascade state

ccii

ii0

i nAnEndtdn

Aci : transition rate from the cascade state c

nc : population densities of the cascade state c

nc = ?

Corona: cascade transitions

Electron impactexcitation

Ground state n0

i

kik

Page 22: Plasma diagnostics using spectroscopic techniques

neglecting second order cascades:

ccii0iii

i

icc0cii0

i

cc0cc

c

cc0

c

EaEnn0dtdn

nEnAEndtdn

Enn0dtdn

nEndtdn

Determination of Ec is difficult(reabsorption!)

Corona: cascade transitions

Electron impactexcitation

Ground state n0

i

kik

Page 23: Plasma diagnostics using spectroscopic techniques

excitation out of metastable states

?

,0

m

mimi

iccii

i

n

EnnnAEndtdn

long lifetimes of metastable states transport problem plasma wall interaction

complex® avoid through proper choice of state i with small cross-

sections for excitation out of metastable states (small Ei,m)

® turn into diagnostics of metastable states by comparing with states excited out of metastable levels

Corona: stepwise excitation

Page 24: Plasma diagnostics using spectroscopic techniques

collisional de-excitation (quenching)

A* + Q ® ?

especially important at high pressures!

qq

qik

ikimimcciii knnAnEnnAEndtdn ,0

qq

qk

iki nkAA

kq : quenching coefficient with species Q

nq : density of species Q

Corona: collisional de-excitation

Page 25: Plasma diagnostics using spectroscopic techniques

q : quenching cross-section, Tgas indepedent

Tgas : gas temperature

<v> : mean velocity

: reduced mass

gasBqqgasq

TkvTk

8

® Importance of Tgas

® Which quenching partners are present?® What are the densities?

Corona: collisional de-excitation

Page 26: Plasma diagnostics using spectroscopic techniques

selection rules for emission lines good quality of electron impact excitation cross-sections

(same source!) negligible excitation out of metastables small cascade contribution short lifetimes

competition with quenching high intensities high temporal resolution

known quenching coefficient (better small) no excitation transfer with other species no spectral overlap with other emission

Which emission line should I analyse?

Page 27: Plasma diagnostics using spectroscopic techniques

Actinometry & Limitations

Direct excitation:

Dissociative excitation:

Page 28: Plasma diagnostics using spectroscopic techniques

Influence of the EEDF

Page 29: Plasma diagnostics using spectroscopic techniques

Time & space dependence of the EEDF

Page 30: Plasma diagnostics using spectroscopic techniques

N Knake, et al., APL, 93 (2008) 131503

Comparison with laser spectroscopy

K NIEMI, et al., Appl. Phys. Lett. 95 (2009) 151504

Page 31: Plasma diagnostics using spectroscopic techniques

Thank you!

York Plasma Institute