plasma physics lecture 4 ian hutchinson

Upload: 005235

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    1/32

    Chapter4FluidDescriptionofPlasmaThesingleparticleapproachgetstobehorriblycomplicated,aswehaveseen.Basicallyweneedamorestatisticalapproachbecausewecantfolloweachparticleseparately.If the details of the distribution function in velocity space are important we have to staywiththeBoltzmannequation. Itisakindofparticleconservationequation.

    4.1 ParticleConservation(In3-dSpace)

    Figure4.1: ElementaryvolumeforparticleconservationNumberofparticles inboxxyz isthevolume, V = xyz, timesthedensityn.Rate of change of number is is equal to the number flowing across the boundary per unittime,theflux. (Inabsenceofsources.)

    [xyz n]= FlowOutacrossboundary. (4.1)

    t

    Takeparticlevelocitytobev(r) [norandomvelocity,onlyflow]andoriginatthecenteroftheboxrefertofluxdensityasnv=J.

    FlowOut = [Jz(0,0,z/2)Jz(0,0,z/2)] xy + x + y . (4.2)64

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    2/32

    ExpandasTaylorseries

    Jz(0,0,)=Jz(0)+ Jz . (4.3)z

    So,

    flowout (nvz)zxy + x +y (4.4) z

    = V .(nv).HenceParticleConservation

    n=.(nv) (4.5)

    tNoticewehaveessentialprovedanelementaryformofGaussstheorem

    .Ad3r = A.dS. (4.6)v

    The expression: FluidDescription refers to any simplified plasma treatment which doesnot keeptrackofv-dependenceoff detail.

    1. FluidDescriptionsareessentially3-d(r).2. Dealwithquantitiesaveragedovervelocityspace(e.g. density,meanvelocity,...).3. Omitsomeimportantphysicalprocesses(butdescribeothers).4. Providetractableapproachestomanyproblems.5.

    Will

    occupy

    most

    of

    the

    rest

    of

    my

    lectures.

    FluidEquationscanbederivedmathematicallybytakingmoments1 oftheBoltzmannEqua-tion.

    0th moment d3v (4.7)1stmoment vd3v (4.8)

    2ndmoment vvd3v (4.9)Theselead,respectively,to(0)Particle(1)Momentum(2)Energyconservationequations.We

    shall

    adopt

    amore

    direct

    physical

    approach.

    1Theyarethereforesometimescalled MomentEquations.

    65

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    3/32

    4.2 FluidMotionThemotionofafluidisdescribedbyavectorvelocityfieldv(r)(whichisthemeanvelocityof all the individual particles which make up the fluid at r). Also the particle densityn(r) is required. We are here discussing the motion of fluid of a single type of particle ofmass/charge,m/qsothechargeandmassdensityareqnandmnrespectively.Theparticleconservationequationwealreadyknow. ItisalsosometimescalledtheConti-nuityEquation

    n+.(nv)=0 (4.10)

    tItisalsopossibletoexpandthe.toget:

    n+(v.)n+n.v=0 (4.11)

    tThesignificance,here,isthatthefirsttwotermsaretheconvectivederivativeofn

    D d +v. (4.12)

    Dt dt tsothecontinuityequationcanbewritten

    DDt

    n=n.v (4.13)4.2.1 Lagrangian&EulerianViewpointsThereareessentially2views.

    1. Lagrangian. Sitonafluidelementandmovewithitasfluidmoves.

    Figure4.2: LagrangeanViewpoint2. Eulerian. Sit at a fixed point in space and watch fluid move through your volume

    element: identityoffluidinvolumecontinuallychanging meansrateofchangeatfixed point(Euler).tD d +v.meansrateofchangeatmoving point(Lagrange).Dt dt t

    dx +dy +dz : changeduetomotion.v.=t x t y t z

    66

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    4/32

    Figure4.3: EulerianViewpointOurderivationofcontinuitywasEulerian. FromtheLagrangianview

    D d N N d 1 dVDt n= dt V =V2 dt V =n V dt (4.14)

    since total number of particles in volume element (N) is constant (we are moving withthem). (V =xyz.)

    d dx dy dz

    Now V = yz+ zx+ yx (4.15)dt dt dt dt1 dx 1 dy 1 dz

    = V + + (4.16)x dt y dt x dt

    d(x)But = vx(x/2)vx(x/2) (4.17)

    dtvx

    x etc. ...y ...z (4.18)x

    Hence d vx vy vzV =V + + (4.19)dt x y z =V.v

    andsoDDt n=n.v (4.20)

    Lagrangian Continuity. Naturally, this is the same equation as Eulerian when one putsD = +v..Dt tThequantity.v istherateof(Volume)compressionofelement.

    4.2.2 Momentum(Conservation)EquationEachoftheparticlesisactedonbytheLorentzforceq[E+uiB](ui isindividualparticlesvelocity).HencetotalforceonthefluidelementduetoE-Mfieldsis

    (q[E+ui B])=N q(E+vB) (4.21)i

    67

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    5/32

    (Usingmean: v= iu/N.)E-MForcedensity (perunitvolume)is:

    FEM =nq(E+vB). (4.22)The

    total

    momentum

    of

    the

    element

    is

    mui =mNv=V mnv (4.23)

    isoMomentumDensity ismnv.Ifnootherforcesareactingthenclearlytheequationofmotionrequiresustosetthetimederivative of mnv equal toFEM. Because we want to retain the identity of the particlesunderconsiderationwewantD/Dti.e. theconvectivederivative(Lagrangianpicture).Ingeneralthereareadditionalforcesacting.

    (1)Pressure (2)CollisionalFriction.4.2.3 PressureForceInagasp(=nT) istheforceperunitareaarisingfromthermalmotions. Thesurroundingfluidexertsthisforceontheelement:

    Figure4.4: Pressureforcesonoppositefacesofelement.Netforceinxdirectionis

    p(x/2)yz+p(x/2)yz (4.24)p p

    xyz =V =V (p)x (4.25) x xSo(isotropic)pressureforcedensity (/unitvol)

    Fp = (4.26)pHowdoesthisariseinourpictureabove?Answer: Exchangeofmomentumbyparticlethermalmotionacrosstheelementboundary.Although inLagrangianpicturewemovewiththeelement(asdefinedbymeanvelocityv)individualparticlesalsohavethermalvelocitysothattheadditionalvelocitytheyhaveis

    wi =ui v peculiarvelocity (4.27)68

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    6/32

    Because of this, some cross the element boundary and exchange momentum with outside.(Eventhough there isnonetchangeofnumberof particles in element.) Rateofexchangeofmomentumduetoparticleswithpeculiarvelocityw,d3wacrossasurfaceelementdsis

    f(w)mwd3w

    w .ds (4.28)mom

    mdensityatw flowrateacrossds

    Integrateoverdistribfunctiontoobtainthetotalmomentumexchangerate:ds. mwwf(w)d3w (4.29)

    Thethingintheintegralisatensor. Writep = mwwf(w)d3w (PressureTensor) (4.30)

    Thenmomentumexchangerateisp.ds (4.31)

    Actually,iff(w)isisotropic(e.g. Maxwellian)thenpxy = mwx wy f(w)d3w=0 etc. (4.32)

    andpxx = mw2x f(w)d3w nT(=pyy =pzz =p) (4.33)Sothentheexchangerateispds. (ScalarPressure).IntegratedsoverthewholeV thenxcomponentofmomm exchangerateis

    px2

    yz px2

    yz=V (p)x (4.34)

    andsoTotalmomentumlossrateduetoexchangeacrosstheboundaryperunitvolumeis

    p (=Fp) (4.35)Intermsofthemomentumequation,eitherweputponthemomentumderivativesideorFp onforceside. Theresultisthesame.IgnoringCollisions,MomentumEquationis

    D(mnVv)=[FEM +Fp] V (4.36)

    DtDRecallthatnV =N ;Dt(N)=0;so

    DvL.H.S.=mnV . (4.37)

    dtThus,substitutingforFs:

    MomentumEquation.Dv v

    mn =mn +v.v (4.38)=qn(E+vB) pDt t

    69

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    7/32

    .{ .{

    +

    4.2.4 MomentumEquation: EulerianViewpointFixedelementinspace. Plasmaflowsthroughit.

    1. E.M.forceonelement(perunitvol.)FEM =nq(E+vB) asbefore. (4.39)

    2. Momentumfluxacrossboundary(perunitvol)= . m(v+w)(v+w)f(w)d3w (4.40)= m(vv+ vw+wv +ww)f(w)d3w} (4.41)

    integratesto0= mnvv+p} (4.42)=

    mn(v.)v

    +

    mv

    [ .(nv)]

    +

    p

    (4.43)

    (Takeisotropicp.)

    3. Rateofchangeofmomentumwithinelement(perunitvol)

    = (mnv) (4.44)t

    Hence,totalmomentumbalance:

    (mnv)+mn(v.)v+mv[ .(nv)]+p=FEM (4.45)t

    Usethecontinuityequation:n

    .(nv)=0 , (4.46)t

    tocancelthethirdtermandpartofthe1st: n v v

    (mnv)+mv(.(nv))=mv{ +.(nv)} +mn =mn (4.47)t t t t

    ThentakeptoRHStogetfinalform:MomentumEquation:

    vmn +(v.)v =nq(E+vB) p. (4.48)

    tAsbefore,viaLagrangianformulation. (Collisionshavebeenignored.)

    70

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    8/32

    4.2.5 EffectofCollisionsFirstnoticethatlikeparticlecollisionsdonotchangethetotalmomentum(whichisaveragedoverallparticlesofthatspecies).Collisionsbetweenunlike particlesdo exchangemomentumbetweenthespecies. Thereforeoncewerealizethatanyquasi-neutralplasmaconsistsofatleasttwodifferentspecies(elec-tronsand ions)andhencetwodifferent interpenetratingfluidswemayneedtoaccount foranothermomentumloss(gain)term.Therateofmomentumdensitylossbyspecies1collidingwithspecies2is:

    12n1m1(v1 v2) (4.49)Hencewecanimmediatelygeneralizethemomentumequation to

    m1n1 v1t +(v1.)v1 =n1q1(E+v1 B) p1 12n1m1(v1 v2) (4.50)

    Withsimilarequationforspecies2.

    4.3 TheKeyQuestion forMomentumEquation:Whatdowetakeforp?Basicallyp=nT isdeterminedbyenergybalance,whichwilltellhowT varies. Wecouldwriteanenergyequationinthesamewayasmomentum. However,thiswouldthencontainatermforheatflux,whichwouldbeunknown. Ingeneral,thekth momentequationcontainsatermwhichisa(k+1)th moment.Continuity, 0th equationcontainsvdeterminedbyMomentum,1st equationcontainspdeterminedbyEnergy, 2nd equationcontainsQdeterminedby...Inordertogetasensibleresultwehavetotruncate thishierarchy. Dothisbysomesortofassumptionabouttheheatflux. ThiswillleadtoanEquationofState:

    pn =const. (4.51)The value of to be taken depends on the heat flux assumption and on the isotropy (orotherwise)

    of

    the

    energy

    distribution.

    Examples

    1. Isothermal: T =const.: =1.2. Adiabatic/Isotropic: 3degreesoffreedom = 5.

    33. Adiabatic/1degreeoffreedom =3.

    71

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    9/32

    +

    4. Adiabatic/2degreesoffreedom =2.Ingeneral,n(/2)T =p(V/V) (Adiabaticdegrees)

    T V n(4.52)= = +

    2 T V nSo

    p n T 2 n= + = 1+ , (4.53)

    p n T ni.e.

    pn(1+2)=const. (4.54)In a normal gas, which holds together by collisions, energy is rapidly shared between 3space-degreesoffreedom. Plasmasareoftenrathercollisionlesssocompressionin1dimensionoften

    stays

    confined

    to

    1-degree

    of

    freedom.

    Sometimes

    heat

    transport

    is

    so

    rapid

    that

    the

    isothermal approach is valid. It depends on the exact situation; so lets leave undefinedfornow.

    4.4 SummaryofTwo-FluidEquationsSpeciesjPlasmaResponse

    1. Continuity:nj .(njvj )=0 (4.55)t

    2. Momentum:vj

    mjnj +(vj .)vj jknjmj(vj vk) (4.56)t =njqj(E+vj B) pj

    3. Energy/EquationofState:pjn

    =const.. (4.57)j(j =electrons,ions).

    MaxwellsEquations.B = 0 .E=/o (4.58)

    B 1 E B= oj+c2 t E= t (4.59)

    72

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    10/32

    With = qene +qini =e(ne +Zni) (4.60)j = qeneve +qinivi =e(neve +Znivi) (4.61)

    = ene(ve vir) (Quasineutral) (4.62)Accounting

    Unknowns Equationsne,ni 2 Continuitye,i 2ve,vi 6 Momentume,i 6

    pe,pi 2 Statee,i 2E,B 6 Maxwell 8

    16 18but

    2of

    Maxwell

    (.

    equs)

    are

    redundant

    because

    can

    be

    deduced

    from

    others:

    e.g.

    .( E)and.( B)

    ==

    0=t(.B)

    0=o.j+ 1c2

    t (.E)=

    1c2

    t

    o +.E

    (4.63)(4.64)

    So16equsfor16unknowns.EquationsstillverydifficultandcomplicatedmostlybecauseitisNonlinearIn some cases can get a tractable problemby linearizing. Thatmeans, takesomeknownequilibrium solution and suppose the deviation (perturbation) from it is small so we canretain

    only

    the

    1st

    linear

    terms

    and

    not

    the

    others.

    4.5 Two-FluidEquilibrium:DiamagneticCurrent Slab: =0

    y,z =0.x StraightB-field: B=Bz.

    Equilibrium:t =0 (E=)

    Collisionless: 0.MomentumEquation(s):

    mjnj(vj.)vj (4.65)=nj qj(E+vj B) pjDropj suffixfornow. Thentakex,ycomponents:

    d dpmnvx vx = nq(Ex +vyB) (4.66)

    dx dxd

    mnvx vy = nq(0 vxB) (4.67)dx

    73

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    11/32

    Eq 4.67issatisfiedbytakingvx =0.Then4.66dp

    nq(Ex +vyB) =0. (4.68)dx

    i.e.1 dpvy = Ex + (4.69)B nqB dx

    or,invectorform:B

    v= EB p (4.70)B2 nq B2

    EB drift Diamagnetic DriftNotice:

    Inmagneticfield()fluidvelocityisdeterminedbycomponentofmomentumequationorthogonal toit(andtoB).

    Additionaldrift(diamagnetic)arisesinstandardFBformfrompressureforce. Diagmagneticdriftisoppositeforoppositesignsofcharge(electronsvs. ions).

    Nowrestorespeciesdistinctionsandconsiderelectronsplussingle ionspecies i. Quasineu-tralitysaysniqi =neqe. Henceaddingsolutions

    BEB(niqi +neqe) +pi)neqeve +niqivi =

    B2 (pe (4.71)B2=0

    Hencecurrentdensity: Bj=(pe +pi) (4.72)

    B2Thisisthediamagneticcurrent. Theelectricfield,E,disappearsbecauseofquasineutrality.(Generalcase jqjnjvj =( pj)B/B2).

    4.6 Reduction ofFluidApproach to the SingleFluidEquations

    So far we have been using fluid equations which apply to electrons and ions separately.ThesearecalledTwoFluid equationsbecausewealwayshavetokeeptrackofbothfluidsseparately.AfurthersimplificationispossibleandusefulsometimesbycombiningtheelectronandionequationstogethertoobtainequationsgoverningtheplasmaviewedasaSingleFluid.

    74

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    12/32

    Recall2-fluidequations:nj

    Continuity(Cj) +.(njvj )=0. (4.73)t

    Momentum(Mj) mjnj +vj . vj =njqj(E+vj B) pj +Fjk (4.74)

    t(wherewejustwriteFjk = vjknjmj(vj vk)forshort.)Nowwerearrangethese4equations(2 2species)byaddingandsubtractingappropriatelytogetnewequationsgoverningthenewvariables:

    MassDensity m = neme +nimi (4.75)Cof MVelocity V = (nemeve +nimivi)/m (4.76)Chargedensity q = qene +qini (4.77)ElectricCurrentDensity j = qeneve +qinivi (4.78)

    = qene(ve vi) byquasineutrality (4.79)TotalPressure p = pe +pi (4.80)

    1stequation: takeme Ce +mi Ci m

    (1) +.(mV)=0 MassConservation (4.81)t

    2ndtakeqe Ce +qI Ci (2)

    q+.j=0 ChargeConservation (4.82)t

    3rdtakeMe +Mi. Thisisabitmoredifficult. RHSbecomes:=qE+jB (pe +pi) (4.83)njqj(E+vj B) pj +Fjk

    (weusethefactthatFei Fie sononet friction). LHSis

    mj nj +vj. vj (4.84)tj

    Thedifficultyhereisthattheconvectivetermisnon-linearandsodoesnoteasilylenditselftoreexpressionintermsofthenewvariables. Butnotethatsinceme

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    13/32

    so:

    (3) m +V. V=q (4.86)t E+jB p

    qeFinallywetakemeMe + qi Mi toget:mi

    njq2j qj qj+(vj.) (E+vj B) Fjk} (4.87)pj +{njqj vj =t mj mj mjj jAgainseveraldifficultiesarisewhichitisnotveryprofitabletodealwithrigorously. ObservethattheLHScanbewritten(usingquasineutralityniqi +neqe =0)asmt j providedmwe discard the term in (v.)v. (Think of this as a linearization of this question.) [The(v.)vconvectiveterm isatermwhich isnotsatisfactorilydealtwith inthisapproachtothesinglefluidequations.]IntheR.H.S.weusequasineutralityagaintowrite

    2j 1 1 mini +menenjq qeqi22 22E E=n E= mE, (4.88)+= neq eqe e

    mj neme nimi nemenimi memij2 2 2

    injq neq niqq eve +vj = vimj me mi

    qeqi neqemi niqime= ve + vi}

    memi{ qi qeqeqi mi me

    = nemeve +nimivi + (qeneve +qinivi)}memi{ qi qe

    qeqi mi me(4.89)=

    memi{mV qi + qe j}Also,rememberingFei =

    j

    einemi(ve vi)=Fie,qj

    mjFjk = ei

    neqe neqimemi

    (ve vi)

    = ei 1qe

    qimemi j (4.90)

    Soweget m

    tjm =

    qeqimemi mE+ mV

    miqi +

    meqe j B

    qe

    mepe qi

    mipi 1qeqi

    memi eij (4.91)

    memiRegroupaftermultiplyingbyqeqim:

    memi j 1 mi meE+VB = + + jB (4.92)

    qeqi t m m qi qeqe qi memi qeme memi

    pe pi eijme +mi mqeqi 1 qi mi qeqim

    76

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    14/32

    NoticethatthisisanequationrelatingtheElectricfieldintheframemovingwiththefluid(L.H.S.)tothingsdependingoncurrentji.e. thisisageneralizedformofOhmsLaw.OneessentiallyneverdealswiththisfullgeneralizedOhmslaw. MakesomeapproximationsrecognizingthephysicalsignificanceofthevariousR.H.S.terms.

    memi j arisesfromelectroninertia.qeqi t m

    itwillbenegligibleforlowenoughfrequency.1 mi me

    + jBiscalledtheHallTerm.m qi qe

    andarises because current flow ina B-fieldtendstobedivertedacrossthemagnetic field.Itisalsooftendroppedbutthejustificationfordoingsoislessobviousphysically.

    qi q

    e

    pi term pe forcomparablepressures,mi meandthelatteristheHallterm;soignoreqipi/mi.Lastterminjhasacoefficient,ignoringme/mi c.f. 1whichis

    memiei meei= = theresistivity. (4.93)

    q2qeqi(nimi) eneHencedroppingelectroninertia,Halltermandpressure,thesimplifiedOhmslawbecomes:

    E+VB=j (4.94)Finalequationneeded: state:

    pene +pini =constant.e i

    Takequasi-neutrality ne ni m. Takee =i,thenp =const. (4.95)m

    4.6.1 SummaryofSingleFluidEquations:M.H.D.MassConservation: m

    t + (mV)=0 (4.96)ChargeConservation: q

    t +.j=0 (4.97)

    Momentum: mt+V. V=qE+jB p (4.98)

    OhmsLaw: E+VB=j (4.99)Eq.of State: pm =const. (4.100)

    77

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    15/32

    4.6.2 HeuristicDerivation/ExplanationMassCharge: Obvious.

    Momm m

    t+V. V= qE + jB p (4.101) Electric Magnetic Force Pressure

    rate of change of body force on currenttotal momentum density

    OhmsLawTheelectricfield seenbyamoving(conducting)fluid isE+VB=EV electricfield inframeinwhichfluidisatrest. Thisisequaltoresistiveelectricfieldj:

    EV =E+VB=j (4.102)TheqE term isgenerallydroppedbecause it ismuchsmallerthanthejBterm. Toseethis,takeordersofmagnitude:

    .E=q/0 so q E0/L (4.103)1E

    + so E=j B/0L (4.104) B=0jc2 t

    Therefore 2 qE 0 B L0 L2/c2

    = lighttransittime2

    . (4.105)jB L 0L B2 (0L2)2 resistiveskintime

    Thisisgenerallyaverysmallnumber. Forexample,evenforasmallcoldplasma,sayTe =1eV

    (

    2

    10

    3mho/m),

    L

    =

    1cm,

    this

    ratio

    is

    about

    10

    8.

    Conclusion: theqE force ismuch smallerthanthejBforce foressentiallyallpracticalcases. Ignoreit.Normally,also,oneusesMHDonlyforlowfrequencyphenomena,sotheMaxwelldisplace-mentcurrent,E/c2tcanbeignored.AlsoweshallnotneedPoissonsequationbecausethatistakencareofbyquasi-neutrality.4.6.3 MaxwellsEquations forMHDUse

    .B=

    0

    ; B

    ;

    .

    (4.106)

    E=

    t B=oj

    The MHD equations find their major use in studying macroscopic magnetic confinementproblems. InFusionwewantsomehowtoconfinetheplasmapressureaway fromthewallsofthechamber,usingthemagneticfield. InstudyingsuchproblemsMHDisthemajortool.On the other hand if we focus on a small section of the plasma as we do when studyingshort-wavelength waves, other techniques: 2-fluid or kinetic are needed. Also, plasma isapprox. uniform.

    78

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    16/32

    MacroscopicPhenomenaMHDMicroscopicPhenomena2-Fluid/Kinetic

    4.7 MHDEquilibriaStudy of how plasma can be held by magnetic field. Equilibrium V = = 0. So

    tequationsreduce. MassandFaradayslawareautomatic. Weareleftwith

    (Momm) ForceBalance 0=jB p (4.107)Ampere B=oj (4.108)

    Plus .B=0,.j=0.NoticethatprovidedwedontaskquestionsaboutOhms law. Edoesntcome intoMHDequilibrium.ThesedeceptivelysimplelookingequationsarethesubjectofmuchofFusionresearch. Thehardpartistakingintoaccountcomplicatedgeometries.Wecandosomeusefulcalculationsonsimplegeometries.4.7.1 -pinch

    Figure4.5: -pinchconfiguration.Socalledbecauseplasmacurrentsflowin-direction.UseMHDEquationsTaketobelength,uniforminz-dir.BysymmetryBhasonlyzcomponent.Bysymmetryjhasonly- comp.Bysymmetryphasonlyrcomp.

    79

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    17/32

    Soweonlyneed

    Force (jB)r (p)r =0 (4.109)Ampere ( B) = (oj) (4.110)

    i.e. jBz rp=0 (4.111)

    rBz = oj (4.112)Eliminatej : Bz

    oBzr

    pr = 0 (4.113)

    i.e.

    r

    B2z2o +p

    = 0 (4.114)

    Solution B2z2o +p = const. (4.115)

    Figure4.6: BalanceofkineticandmagneticpressureB2 B2z z ext+p= (4.116)2o 2o

    [RecallSingleParticleProblem]Thinkoftheseasapressureequation. Equilibriumsaystotal pressure=const.

    B2z + p =const. (4.117)2o kinetic pressure

    magnetic pressure

    80

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    18/32

    Ratioofkinetictomagneticpressureisplasma.2op

    =B2z

    (4.118)measures efficiency of plasma confinement by B. Want large for fusion but limited byinstabilities,etc.4.7.2 Z-pinch

    Figure4.7: Z-pinchconfiguration.so

    called

    because

    j

    flows

    in

    z-direction.

    Again

    take

    to

    be

    length

    and

    uniform.

    j=jzez B=B e (4.119)

    pForce (jB)r (p)r =jzB =0 (4.120)r

    1 Ampere = (rB) ojz =0 (4.121)( B)z (oj)z rr

    Eliminatej:B p

    (rB) =0 (4.122)orr r

    or B2 B2 + + p =0 (4.123)or r 2o

    Extra Term Magnetic+Kinetic pressureExtratermactslikeamagnetictension force. ArisesbecauseB-fieldlinesarecurved.

    81

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    19/32

    Canintegrateequation b B2 bdr B2 + +p(r) =0 (4.124)a o r 2o a

    Ifwechoosebtobeedge(p(b)=0)andseta=rweget

    Figure4.8: Radiiofintegrationlimits.B2(b) B2(r) b B2drp(r)= + (4.125)

    2o 2o r o rForce balance in z-pinch is somewhat more complicated because of the tension force. Wecantchoosep(r)andj(r)independently;theyhavetobeselfconsistent.Example j=const.

    1r

    r(rB)=ojz B =

    ojz2 r (4.126)

    Hencep(r) =

    12o

    ojz

    2 2

    {b2

    r2 + br 2r

    dr

    } (4.127)= oj2z

    4 {b2 r2} (4.128)

    Figure4.9: ParabolicPressureProfile.AlsonoteB(b)= ojzb2 so

    p= B2b2o

    2b2{b

    2 r2} (4.129)

    82

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    20/32

    4.7.3 StabilizedZ-pinchAlsocalledscrewpinch, z pinchorsometimeslooselyjustz-pinch.Z-pinchwithsomeadditionalBz aswellasB

    (Force)r jBz jzB =0 (4.130)r

    Ampere: Bz =oj (4.131)r

    1 (rb)=ojz (4.132)

    rrEliminatej:

    Bz Bz B p(rB) =0 (4.133)

    o r orr ror

    B2 B2 + + p =0 (4.134)or r 2o

    Mag Tension Mag (+z)+Kinetic pressure only

    4.8 SomeGeneralPropertiesofMHDEquilibria4.8.1 Pressure&Tension

    jB p=0 : (4.135) B=ojWecaneliminatejinthegeneral casetoget

    1p. (4.136)

    o ( B)B=Expandthevectortripleproduct:

    1 1(4.137)p=

    o (B.)B B22oBputb=|B|

    sothatB=Bb=Bb+bB. Then1 1

    p =o{B

    2(b.)b+Bb(b.)B} 2oB

    2 (4.138)B2 1

    = ( b(b.))B2 (4.139)o (b.)b2oB2 B2

    =o (b.)b 2p (4.140)

    83

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    21/32

    Now B2 istheperpendicular(toB)derivativeofmagneticpressureand(b.)bisthe2ocurvature ofthemagneticfieldlinegivingtension.

    (b.)b hasvalue 1. R: radiusofcurvature.R

    | |

    4.8.2 MagneticSurfaces0=B.[jB p] =B.p (4.141)

    *Pressureisconstantonafieldline(inMHDsituation).(Similarly,0=j.[jB p] =j.p.)

    Figure4.10: Contoursofpressure.Considersomearbitraryvolumeinwhichp=0. Thatis,someplasmaofwhatevershape.Drawcontours(surfacesin3-d)onwhichp=const. Atanypointonsuchanisobericsurfacepisperptothesurface. ButB.p=0impliesthatBisalsoperptop.

    Figure4.11:Bisperpendiculartopandsoliesintheisobaricsurface.HenceBliesinthesurfacep=const.Inequilibriumisobaricsurfaces aremagneticsurfaces.[Thisargumentdoesnotwork ifp=const. i.e. p= 0.Thenthereneedbenomagneticsurfaces.]

    84

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    22/32

    4.8.3 CurrentSurfacesSincej.p=0inequilibriumthesameargumentappliestocurrentdensity. Thatisjliesinthesurfacep=const.IsobaricSurfacesareCurrentSurfaces.MoreoveritisclearthatMagneticSurfacesareCurrentSurfaces.(sincebothcoincidewithisobaricsurfaces.)[It is important to note that the existence of magnetic surfaces is guaranteed only in theMHD approximation when p = 0 > Taking account of corrections to MHD we may nothavemagneticsurfacesevenifp=0.]4.8.4 Low equilibria: Force-FreePlasmasInmanycasestheratioofkinetictomagneticpressureissmall,

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    23/32

    Bz = BoJo(or) (4.149)B = BoJ1(or) (4.150)

    foror>1stzeroofJo thetoroidalfieldreverses. Thereareplasmaconfinementschemeswithconst. ReversedFieldPinch.

    4.9 ToroidalEquilibriumBendaz-pinchintoatorus

    Figure4.12: Toroidalz-pinchB fieldsduetocurrentarestrongeratsmallRsidePressure(Magnetic)Forceoutwards.HavetobalancethisbyapplyingaverticalfieldBv topushplasmabackbyj Bv.

    Figure4.13: ThefieldofatoroidalloopisnotanMHDequilibrium. Needtoaddaverticalfield.Benda-pinchintoatorus: BisstrongeratsmallRside outwardforce.CannotbebalancedbyBv becausenoj. Noequilibriumforatoroidallysymmetric-pinch.UnderlyingSingleParticlereason:Toroidal-pinchhasB only. Aswehaveseenbefore,curvaturedriftsareuncompensatedinsuchaconfigurationandleadtorapidoutward motion.

    86

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    24/32

    Figure4.14: Charge-separationgivingoutwarddriftisequivalenttothelackofMHDtoroidalforcebalance.Weknowhowtosolvethis: RotationalTransform: getsomeB. Easiestway: addj. FromMHDviewpointthisallowsyoutopushtheplasmabackbyj Bv force. Essentially,thisisTokamak.

    4.10Plasma

    Dynamics

    (MHD)

    Whenwewanttoanalyzenon-equilibriumsituationswemustretainthemomentumterms.This will give a dynamic problem. Before doing this, though, let us analyse some purelyKinematicEffects.IdealMHD Seteta=0inOhmsLaw.Agoodapproximationforhighfrequencies,i.e. timesshorterthanresistivedecaytime.

    E+VB=0. IdealOhmsLaw. (4.151)Also

    B

    FaradaysLaw. (4.152) E= tTogetherthesetwoequations implyconstraintsonhowthemagneticfieldcanchangewithtime: EliminateE:

    B+ (VB)=+ (4.153)

    tThisshowsthatthechangesinBarecompletelydeterminedbytheflow,V.

    4.11 FluxConservationConsideranarbitraryclosedcontourC andspawningsurfaceS inthefluid.FluxlinkedbyC is

    = B.ds (4.154)S

    LetC andS movewithfluid:Totalrateofchangeofisgivenbytwoterms:

    87

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    25/32

    Figure4.15: Motionofcontourwithfluidgivesconvectivefluxderivativeterm.

    B = .ds + B.(V dl) (4.155)

    CS

    t

    DuetochangesinB DuetomotionofC

    = (VB).dl (4.156)S E.ds C

    = (E+VB).dl=0 byIdealOhmsLaw. (4.157)C

    Fluxthroughanysurfacemovingwithfluidisconserved.

    4.12 FieldLineMotionThinkofafieldlineastheintersectionoftwosurfacesbothtangentialtothefieldeverywhere:

    Figure4.16: Fieldlinedefinedbyintersectionoftwofluxsurfacestangentialtofield.Letsurfacesmovewithfluid.Sinceallpartsofsurfaceshadzerofluxcrossingatstart,theyalsohavezeroafter,(byfluxconserv.).Surfacesaretangentaftermotion

    88

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    26/32

    Theirintersectiondefinesafieldlineafter.Wethinkofthenewfieldlineasthesamelineastheoldone(onlymoved).Thus:

    1. Numberoffieldlines(flux)throughanysurfaceisconstant. (FluxCons.)2. Alineoffluidthatstartsasafieldlineremainsone.

    4.13 MHDStabilityThe factthatonecanfindanMHDequilibrium (e.g. z-pinch)doesnotguaranteeausefulconfinementschemebecausetheequil. mightbeunstable. Ballonhillanalogies:

    Figure4.17: PotentialenergycurvesAn equilibrium is unstable if the curvature of the Potential energy surface is downward

    d2awayfromequil. Thatisifdx2{Wpot}

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    27/32

    Figure4.19: Skin-current,sharpboundarypinch.Attheplacewhereitpinchesin (A)B and 1 increase Mag. pressure& tension increase inward forceno longer balancerbypperturbationgrows.Atplacewhereitbulgesout (B)B & 1 decrease Pressure&tensionperturbationgrows.rConclusionasmallperturbationinducesaforcetendingtoincreaseitself.Unstable(W

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    28/32

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    29/32

    Figure4.24: Invertedwaterglassanalogy. RayleighTaylorinstability.

    2B2AB B

    2o 2oPerturbationGrows.

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    30/32

    Figure4.26: Examplesofmagneticconfigurationswithgoodandbadcurvature.

    93

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    31/32

    |

    4.16 QuickandSimpleAnalysisofPinches-pinch B|=const. outsidepinch|Nofieldlinecurvature. Neutralstabilityz-pinch B|awayfromplasmaoutsideBadCurvature(Towardsplasma)Instability.Generally it is difficult to get the curvature to be good everywhere. Often it is sufficientto make it good on average on a field line. This is referred to as Average Minimum B.Tokamakhasthis.Generalideaisthatiffieldlineisonlyinbadcurvatureoverpartofitslengththentoperturbinthatregionandnotinthegoodregionrequiresfieldlinebending:

    Figure4.27: Parallellocalizationofperturbationrequiresbending.Butbendingisnot preferred. Sothismaystabilize.Possiblewaytostabilizeconfigurationwithbadcurvature: ShearShearofFieldLines

    Figure4.28: Depictionoffieldshear.DirectionofBchanges. AperturbationalongB atz3 isnot alongBatz2 orz1 soitwouldhavetobend fieldthereStabilizingeffect.GeneralPrinciple: Fieldlinebendingisstabilizing.Example: Stabilizedz-pinchPerturbations(e.g. sausageorkink)bendBz sothetension inBz actsasarestoring forcetoprevent instability. Ifwave lengthvery long bending is less. Leaststabletendstobelongestwavelength.Example: CylindricalTokamak

    94

  • 8/3/2019 Plasma Physics Lecture 4 Ian Hutchinson

    32/32

    Tokamakisinsomewayslikeaperiodiccylindricalstabilizedpinch. Longestallowablewavelength=1turnroundtorusthelongway,i.e.

    kR=1: =2R. (4.159)Express this in terms of a toroidal mode number, n (s.t. perturbation expi(n+m):= z n=kR.

    RMostunstablemodetends toben=1.[Careful! Tokamak has important toroidal effects and some modes can be localized in thebadcurvatureregion(n=1).

    Figure4.29: Ballooningmodesarelocalizedintheoutboard,badcurvatureregion.