plastic solar cells

71
| 1 Plastic solar cells M. A. Loi Zernike Institute for Advanced Materials University of Groningen, The Netherlands e-mail [email protected]

Upload: mercia

Post on 13-Jan-2016

66 views

Category:

Documents


1 download

DESCRIPTION

Plastic solar cells. M. A. Loi Zernike Institute for Advanced Materials University of Groningen, The Netherlands e-mail [email protected]. Overview. 1 st hour Solar cells in general Solar Radiation p-n junction The organic version 2 nd hour Improving plastic solar cells - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Plastic solar cells

| 1

Plastic solar cells

M. A. Loi

Zernike Institute for Advanced Materials

University of Groningen,

The Netherlands

e-mail [email protected]

RUG
To set the date:* >Insert >Date and Time* At Fixed: fill the date in format mm-dd-yy* >Apply to All
Page 2: Plastic solar cells

| 2

Overview

1st hourSolar cells in general Solar Radiation p-n junction The organic version

2nd hour Improving plastic solar cells Low band-gap polymers Charge transfer states is detrimental?

Page 3: Plastic solar cells

| 3

Solar Cells I

› Long duration power supply

• Satellites

• Space vehicles

• Remote locations on earth

› Valid alternative to fossil fuels

› Pollution free

Page 4: Plastic solar cells

| 4

› Photovoltaic effect

• Becquerel (1839)

• Fritts {Selenium} (1883)

• Ohl {semiconductor junction solar cell}(1946)

• Chapin, Fuller, Person {Silicon p-n junction solar cells} (1954)

Solar Cells II

Page 5: Plastic solar cells

| 5

Motivations

› ENERGY Increasing energy need

Exhaustion of fossil fuels

Diversification of energy sources

Energy for all (2 billion people without electricity)

› ECOLOGY Pollution of environment

CO2 Responsible Climate

change

› ECONOMY Energetically independent

Page 6: Plastic solar cells

| 6

Solar Radiation› Every second in the sun

6 x 1011 kg H2 → He + 4 x 1020 J ☼

› At the average distance of the earth the solar radiation is 1353 W/m2

› The atmosphere attenuates the solar radiation

• Absorption water - IR

• Absorption Ozone – UV

• Scattering

Air Mass

Page 7: Plastic solar cells

| 7

Air Mass

› Air mass = the path length of the light from a celestial source relative to that at the zenith at sea level.

› increases as the angle between the source and the zenith increases (AM38 at the horizon).

› Out of the atmosphere AM0

› On earth surface with sun at the zenith AM1

› Average for terrestrial applications - 45˚ from the zenith AM1.5

AM= sec zenith angle

Page 8: Plastic solar cells

| 8

Solar spectrum

Page 9: Plastic solar cells

| 9

Page 10: Plastic solar cells

| 10

Solar cells – inorganic case

› Single bandgap material

• Photons with h<Eg lost energy

• Photons with h=Eg used energy

• Photons with h>Eg (h-Eg) lost

energy

Illuminated p-n junction

Page 11: Plastic solar cells

| 11

P-n junction solar cells

Page 12: Plastic solar cells

| 12

Ideal solar cell

IL current produced by solar radiation

Is diode saturation current

RL load resistance

LkTqV

s IeII )1( /

Shockley diode equation

kTE

n

n

Ap

p

DVCs

geD

N

D

NNAqNI /11

A device area

Page 13: Plastic solar cells

| 13

IV characteristics

oc

Lsc

V

II Short circuit current

Open circuit voltage

LkTqV

s IeI oc )1(0 /

s

L

s

Loc I

I

q

kT

I

I

q

kTV 1ln

Page 14: Plastic solar cells

| 14

Ideal solar cell

VIeVIIVP LkTqV

s )1( /

mmm VIP

i

m

P

P

Page 15: Plastic solar cells

| 15

IV characteristics-realistic

Shunt resistance – leakage current

SH

SSsL

SHDL

R

IRV

kT

IRVqIII

IIII

1)(

exp

Series resistanceJunction, impurity concentration

Page 16: Plastic solar cells

| 16

IV characteristics-realistic

SH

SSsL

DL

R

IRV

kT

IRVqIII

III

1)(

exp

The effect RSH is negligible

Rs in Si solar cells 0.7-0.4

Page 17: Plastic solar cells

| 17

Conversion efficiency

› FF; IL; Voc should be maximized for efficient solar cells!

ocL

mm

VI

VIFF Fill factor

Conversion efficiency

in

ocL

in

mm

P

VIFF

P

VI

EQE or IQE, quantum efficiency-percentage of photon converted in carriers (ISC)

Page 18: Plastic solar cells

| 18

Ideal efficiencies

Page 19: Plastic solar cells

| 19

Real efficiency

Page 20: Plastic solar cells

| 20

Plastic Solar cells

2000

2008

Page 21: Plastic solar cells

| 21

Pro & conAdvantages

› tailoring of opto-electronic properties

› large areas

› low temperatures (RT)

› processing from solution

› roll to roll manufacturing

› light weight

› transparent

› low cost…….maybe…

Power paint?

Page 22: Plastic solar cells

| 22

Problems

› low ambient stability

› strongly bound excitons (Frenkel like)

› Exciton diffusion length rather short 5-20 nm.

› low mobility of charge carriers

•μn (c-Si) > 1000 cm2/Vs

•μh (polymer) ≈ 0.1 cm2/Vs

› difficult to obtain low band-gap materials

Pro & con

Page 23: Plastic solar cells

| 23

Nevertheless

Disposable low-end applications!

http://www.konarka.com

Page 24: Plastic solar cells

| 24

-

+

-

+

Frenkel exciton Stronghly bound (0.4 eV in PPV); radius 5 Å

Molecola-

+

Charge Transfer exciton

Polarons

Molecular semiconductorsMolecular semiconductors• coulomb interaction • elettron-phonon coupling

To start - photoexcitations

Page 25: Plastic solar cells

| 25

Triplet excitons

Frenkel excitons

Ground state

Flu

ores

cenc

e

Intermolecular excitons

non radiative states

Non

rad

iativ

e-em

issi

on

Phos

phor

esce

nce

Page 26: Plastic solar cells

| 26

The first examples

› Early works inspired by nature (photosynthesis)

› Porphyrins, phthalocyanines, perylenes (xerography), merocyanines

› Organic heterojunction devices: p-type / n-type organic semiconductors

› – 1970’s until 1995: organic heterojunction bilayers

› – 1985 Tang cell: PTCBI (45 nm) and CuPc (25 nm)

› 1% efficiency

Page 27: Plastic solar cells

| 27

The Kodak approach

Tang et al., APL 2005

Page 28: Plastic solar cells

| 28

The polymer approach!

› Active layer:

bulk heterojunction - hole conducting material - electron conducting material

› Operation principle:

• Exciton photoexcitation

• Diffusion of the excitons towards the organic-organic interface

• Charge separation/electron transfer

• Transport of charge carriers towards the electrodes

Page 29: Plastic solar cells

| 29

Photoinduced Charge Generation

MDMO PPV 3,7 - dimethyloctyloxy methyloxy

PPV

PCBM1-(3-methoxycarbonyl) propyl-1-

phenyl [6,6]C61

O

O n

DONOR ACCEPTOR

N. S. Sariciftci et al., Science 258, 1474 (1992)

An ultra-fast e- transfer occurs between Conjugated Polymer / Fullerene composites upon illumination. The transition time is less than 40 fs.

exciton

Back transfer very slow! s - ms

Page 30: Plastic solar cells

| 30

The driving force!

› Electron affinity fullerene derivatives!

OMe

O

PolymerPCBM

-6 eV-5.2 eV

-4.2 eV

-3.5 eV

Page 31: Plastic solar cells

| 31

Bulk Heterojunctions

h MDMO-PPVPCBMPCBM

e-

ITO on Glass / Plastic

e-

P+

e-

e-

e-

e-

e-

P+

Al Electrode

Al Electrode

e-

Page 32: Plastic solar cells

| 32

P-Solar Cells - FILM PREPARATION

Spin Casting is a easy coating technique for small areas. Material loss is very high. Doctor Blade Technique

was developed for large area coating

Doctor Bladehas no material loss

Page 33: Plastic solar cells

| 33

Production - Large Area

a)

b)

Large Area Thin Film Production using Doctor/Wire Blading

Page 34: Plastic solar cells

| 34

Plastic Solar Cells - CONTACTING

The cathode electrode is

applied by evaporation.

Different electrodes are used

for different applications.

Sealing is absolutely necessary for anincreased life time of plastic solar cells.

Page 35: Plastic solar cells

| 35

Characterization under A.M. 1.5

Page 36: Plastic solar cells

| 36

Bulk Heterojunctions

h MDMO-PPVPCBMPCBM

e-

ITO on Glass / Plastic

e-

P+

e-

e-

e-

e-

e-

P+

Al Electrode

Al Electrode

e-

Page 37: Plastic solar cells

| 37

The morphology issue…

S. E. Shaheen, Appl. Phys. Lett., 78, 841–843 (2001)

2,5%< 1%

Page 38: Plastic solar cells

| 38

Now..

Organic solar cells performances depend on the material properties and microscopic structure of the bulk heterojunction!

P3HT

4,5-5.0 %

> 60 polymers checked last 5 years!

Page 39: Plastic solar cells

| 39

Optimization

eff = Isc * Voc * FF / Iinc

Isc Tuning of the Transport Properties - Mobility

Voc Tuning of the Electronic Levels of the Donor Acceptor

Systems

FF Tuning of the Contacts and Morphology

Iinc Tuning of the Spectral Absorbance/Absorbing more

light (low bandgap)

Page 40: Plastic solar cells

| 40

The future?

Page 41: Plastic solar cells

| 41

Intermezzo!

Page 42: Plastic solar cells

| 42

Organic Solar cells

Polymer(donor)

PCBM(acceptor)

Power conversion efficiency ~ 5 - 6%

bulk heterojunction

bulk heterojunction3D heterostructure

hole conducting material

+electron conducting material

Page 43: Plastic solar cells

| 43

Remember-Organic Solar Cells› Working mechanism-steps

• Excitons photoexcitation

• Diffusion of the excitons towards the interface

• Charge separation/electron transfer

• Transport of charge carriers towards the electrodes

› Organic solar cells performances depend on

• the material properties

• the microscopic structure of the bulk hetero-junction

Page 44: Plastic solar cells

| 44

The driving force!

› Donor and acceptor LUMO energy offset!

OMe

O

PolymerPCBM

-6 eV-5.2 eV

-4.2 eV

-3.5 eV

Ultrafast phenomena!

Page 45: Plastic solar cells

| 45

Enhancing devices efficiency

› Optimize the materials properties• Matching solar spectrum! NIR materials

• Relative position of the energy levels of the donor and acceptor

optimal offset between LUMO (D) – LUMO(A)

for electron transfer at least 0.3 – 0.5 eV

P3HT:PCBM: LUMO (D) – LUMO(A) ~1.1 eV

› Optimize the morpholog• microscopic phase separation

( exciton diffusion length ~ 5 – 7 nm )

• presence of a percolation pathway

Page 46: Plastic solar cells

| 46

Remember-Solar cells parameters

› JSC – short-circuit current

› Jph – photocurrent

› FF – fill factor:

› VOC – open circuit voltage

SCOC JV

JVFF

maxmax

light

SCOC

lightin

out

P

JVFF

P

P

P

P max

› power conversion efficiency

LUMO (A)3

4

5

6

Don

or

Acc

epto

r

En

ergy

(eV

)

Voc

HOMO (D)

LUMO (D)

Page 47: Plastic solar cells

| 47

En

ergy

(eV

)

P3HT:PCBM

The reduction of the LUMO offset

• power conversion efficiency ~ 3.8 %• LUMO offset ~ 1.1 eV• Voc~ 0.59 V

Voc

3

4

5

6

Don

or

Acc

epto

r

bisPCBM

• LUMO offset ~ 1.0 eV• Voc~ 0.73 V

Power conversion efficiency ~ 4.5 % !!!

M. Lenes et al, Adv. Mater. 2008, 20, 2116

Page 48: Plastic solar cells

| 48

PL of thermally annealed films

The devices performance:

P3HT:PCBM – 3% P3HT:bisPCBM – 3.6%

electron transfer is more efficient for P3HT:PCBM

P3HT:bisPCBM – PL ≈ 60 ps P3HT:PCBM – PL ≈ 41 ps

Page 49: Plastic solar cells

| 49

PL of solvent annealed films

The devices performance:

P3HT:PCBM – 3.8% P3HT:bisPCBM – 4.6%

electron transfer is more efficient for P3HT:PCBM

P3HT:bisPCBM – PL ≈ 38 ps P3HT:PCBM – PL ≈ 31 ps

Page 50: Plastic solar cells

| 50

AFM measurementsP3HT:PCBM P3HT:bisPCBM

spin coated

slow dried

3.9 nm

12.4 nm10.7 nm

4.6 nm

• surfaces is smoother for

samples prepared by

thermal annealing

• difference in RMS

roughness between

P3HT:PCBM and

P3HT:bisPCBM

10x10m

Page 51: Plastic solar cells

| 51

The blend in solution

P3HT:PCBM & P3HT:bisPCBM

PL ≈ 156 ps

→ the efficiency of the electron transfer is the same in both blends

Page 52: Plastic solar cells

| 52

Conclusion 1› Increasing power conversion efficiency by tailoring

the energy levels

• P3HT:bisPCBM – higher Voc

• P3HT:bisPCBM – higher power conversion efficiency

• P3HT:PCBM – faster PL decay in the thin film

• In solution – the same PL decay

› A small reduction of the LUMO offset does not have a significant influence on the electron transfer

› The P3HT:bisPCBM blend is limited by diffusion -the morphology can be still optimize

Page 53: Plastic solar cells

| 53

-

+

-

+

Frenkel exciton Stronghly bound (0.4 eV in PPV); radius 5 Å

Molecule-

+

Charge Transfer exciton

Polarons

Molecular semiconductorsMolecular semiconductors• coulombic interaction • elettron-phonon coupling

Remember-Photoexcitations

Page 54: Plastic solar cells

| 54

Intermediate state?

M. A. Loi et al., Adv. Funct. Mat. 17, 2111 (2007)

CT like intermediate states

are considered for

modelling IV of solar cells

V.D. Mihailetchi et al., PRL (2004)

Recent reports consider the energy transfer from the polymer to the PCBM as the first step of the charge separation

OMe

ONN

S

R

R

*

*

n

*RR

S NSN

S*

n

Page 55: Plastic solar cells

| 55

OMe

O

PCBM

NN

S

R

R

*

*

n

F8BT

10-4

10-3

10-2

10-1

100

101

102

-0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Ph

oto

curr

ent

(mA

/cm

2 )

Voltage (V)Very poor PV performances!!

Energy transfer?

Page 56: Plastic solar cells

| 56

450 500 550 600 650 700 750 800 850

PCBM PLcorr

P2+66%PCBM PLcorr

P2+33%PCBM PLcorr

P2+20%PCBM PLcorr

P2+0.5%PCBM PLcorr c

P2 PLcorr c

Pho

tolu

min

esc

en

ce

Wavelength (nm)

F8BT

0,5% PCBM

20% PCBMPCBM

33%PCBM

66%PCBM

M. A. Loi et al., Adv. Funct. Mat. 17, 2111 (2007)

OMe

O

PCBM

NN

S

R

R

*

*

n

F8BT

Energy transfer?

400 500 600 700 800

Pho

tolu

min

esce

nce

Wavelength (nm)

F8BT

0,5% PCBM

20% PCBM

PCBM

33%PCBM 66%PCBM

Page 57: Plastic solar cells

| 57

0 500 1000 1500 2000

F8BT @ 530 nm

66%PCBM @ 520nm

PCBM @ 720nm

66%PCBM @ 720nm

Pho

tolu

min

esce

nce

Time (ps)

Energy Transfer?

The polymer PL

decay becomes very

fast upon PCBM

blending

Energy transfer?

Page 58: Plastic solar cells

| 58

-10 0 10 20 30 40 50

PCBM-TR1 Nlaser N66%F8BTP

hoto

lum

ines

cenc

eTime (ps)

No clear evidence!

Long rise-time also in pristine PCBM

M. A. Loi et al., Adv. Funct. Mat. 17, 2111 (2007)

Energy transfer to the PCBM singlet state then transferred to the triplet state.

S. Cook et al., APL (2006)

Page 59: Plastic solar cells

| 59

Electron transfer

*RR

S NSN

S*

n

OMe

O

F8DTBTPCBM

~4%

Polyfluorene copolymers

promising low-band gap

materials for PV

applications 10-4

10-3

10-2

10-1

100

101

102

-0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Ph

otoc

urr

ent

(m

A/c

m2 )

Voltage (V)

M. Svensson et al., Adv. Mat. 15, 988 (2003);Q. Zhou et al., Appl. Phys. Lett. 84, 1653 (2004);F. Zhang et al., Adv. Funct. Mater. 16, 667 (2006)

Page 60: Plastic solar cells

| 60

OMe

O

PCBM 550 600 650 700 750 800 850

Pho

tolu

min

esce

nce

Wavelegth (nm)

F8DTBT

0.5% PCBM

10%PCBM20% PCBM

66% PCBM

*RR

S NSN

S*

nF8DTBT

Page 61: Plastic solar cells

| 61

Charge transfer excitons

550 600 650 700 750 800 850

Pho

tolu

min

esce

nce

Wavelegth (nm)

F8DTBT

5% PCBM

20% PCBM

PCBM 33%PCBM 66%PCBM

Red-shift with the increasing of the average dielectric constant

ε(PCBM) ~ 3.9;ε(Polymer) ~ 2.5-3.0

222

4

2 n

eEE gn

Rydberg-like transitions

Page 62: Plastic solar cells

| 62

PCBM1 = 320 ps; 2 = 3.1 ns

PCBM1 = 350ps; 2 = 1.0 ns

M. A. Loi et al., Adv. Funct. Mat. 17, 2111 (2007)

0 500 1000 1500 2000

F8DTBT @ 630nm

66%PCBM @ 630nm

F8DTBT @ 730nm

66%PCBM @ 730nm

PCBM @ 820nm

66%PCBM @ 820nm

Pho

tolu

min

esce

nce

Time (ps)

Page 63: Plastic solar cells

| 63

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

300 400 500 600 700 800

PCBM

F8DTBT

66%F8DTBT+33%PCBM

33%F8DTBT+66%PCBM

66%F8DTBT+33%PCBM CALC

33%F8DTBT+66%PCBM CALC

Abs

orpt

ion

Coe

ffici

ent (

105 c

m-1

)

Wavelength (nm)

OMe

O

PCBM

*RR

S NSN

S*

n

F8DTBT

Ground state interaction?

Page 64: Plastic solar cells

| 64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

300 350 400 450 500 550 600

PCBMF8BT66%F8BT+33%PCBM33%F8BT+66%PCBM66%F8BT+33%PCBM CALC33%F8BT+66%PCBM CALC

Wavelength (nm)

Abso

rptio

n C

oeffic

ien

t (1

05 c

m-1

)OMe

O

PCBM

NN

S

R

R

*

*

n

F8BT

Page 65: Plastic solar cells

| 65

Charge separation

There is an intermediate state between the Frenkel exciton and the free charge!

Page 66: Plastic solar cells

| 66

Is it general?Are more systems showing this phenomena?Typical of narrow band gap polymers?

D. Muehlbacher et al. Adv. Mater. 2006

Solar cells efficiency: =3.2 %

FIRST narrow band-gap O-semiconductor

PCPDTBT

nSS

NS

N

*

*

Page 67: Plastic solar cells

| 67

Narrow band-gap polymer

PCPDTBTblend PCBM 1:1

Page 68: Plastic solar cells

| 68

Concentration dependence

0 PCBM

1/11 PCBM1/3 PCBM

1/2 PCBM

Charge Transfer Exciton

(1,0)

(10,1) (2,1)(1,1)

Page 69: Plastic solar cells

| 69

New excited state in the blend with long decay time!

0 PCBM= 100ps

1/11 PCBM1 = 50ps2 = 1190ps

1/3 PCBM = 510ps

1/2 PCBM = 478ps

1/2 PCBM= 5ps

(ns)

0 PCBM= 150ps

Exciton CT Exciton

Page 70: Plastic solar cells

| 70

CTE detrimental for PV?

PCPDTBT/PCBM 1:1

Page 71: Plastic solar cells

| 71

Conclusions II

Evidences of an excited state intermediate between

the exciton and the free carriers in heterojunctions

containing narrow band gap polymers – present also in

working devices!

Additives can reduce the CTE component acting on

the microstructure of the blend.

The suppression of the intermediate states in bulk

hetero-junctions is extremely important for the

optimization of organic solar cells. PCPDTBT/PCBM 3.8%

→5.5%