pletenev s.s., lapshin v.b., goncharuk v.v.*, kolesnikov m.v., smirnov a.n., syroeshkin a.v

63
PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N., SYROESHKIN A.V . THE GLOBAL NOVEL TRANSBOUNDARY SOURCE OF COASTAL ECOSYSTEMS’ POLLUTION: METHODS OF MONITORING AND MINIMIZATION OF DAMAGE TO HUMAN HEALTH OF THE SEA MEGAPOLISES State Oceanographic Institute Moscow Russia

Upload: madeline-golden

Post on 30-Dec-2015

29 views

Category:

Documents


0 download

DESCRIPTION

PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N., SYROESHKIN A.V. THE GLOBAL NOVEL TRANSBOUNDARY SOURCE OF COASTAL ECOSYSTEMS’ POLLUTION: METHODS OF MONITORING AND MINIMIZATION OF DAMAGE TO HUMAN HEALTH OF THE SEA MEGAPOLISES. State Oceanographic Institute Moscow - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*,

KOLESNIKOV M.V., SMIRNOV A.N., SYROESHKIN A.V. THE GLOBAL NOVEL TRANSBOUNDARY SOURCE OF COASTAL ECOSYSTEMS’ POLLUTION: METHODS OF

MONITORING AND MINIMIZATION OF DAMAGE TO HUMAN HEALTH OF THE SEA MEGAPOLISES

State Oceanographic Institute

Moscow

Russia

Page 2: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Contents of Presentation• Overview of State Oceanographic Institute

• Novel transboundary source of coastal ecosystems’ pollution

• The mechanisms of marine aerosols formation

• The mechanisms of SML enrichments by pollutants

• Pollution of marine aerosols by heavy metals, arsenic and oil hydrocarbons (Russian part of Black sea)

• The methods (routine and new ones) for monitoring of novel transboundary source of coastal ecosystems’ pollution

• The methods and approaches for minimization of damage to human health of the sea megapolises

Page 3: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

State Oceanographic Institute (SOI)

• Total staff number – 140 persons. Total scientists / engineers number – 120 persons.

• The Year of establishment – 1943.• Main research technologies fields: marine and costal

environmental monitoring (including monitoring of pollution), marine hydrology and marine hydrometeorology, mouth and estuary hydrochemistry and hydrology monitoring, satellite observation.

• SOI is the head marine institute in the research and environmental control system of the Russian Federal Service for Hydrometeorology and Monitoring of the Environment.

Page 4: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Excellent research achievements of SOI

• The discovery of the novel global transboundary source of coastal ecosystems’ pollution (the theme – “Toxicity of marine aerosols”) and development of the new approaches for monitoring for minimization of damage to human health of the sea megapolises

• The unabridged edition of in many volumes the full descriptions of Russian sea (meteorology, hydrology, hydrochemistry, pollution, conditions for marine bioproductivity)

• The discovery of existing in water solutions the giant heterophase clusters of water

• The creation of methods for frog condensation and dissipation• The creation of approaches for prevention of the icing up of roves• The observation of the new aspects of solar corpuscular radiation influence on

Earth global climate• The development and application of new model for description of evolution of

marine and coastal oil spills.

Page 5: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Structure of SOI

Director

Deputy

Director Deputy Director

Lab of marine estuary

Depart. of metrology

Deputy Director

Lab of hydrology

Group of fogs and icing

Lab of satellite and subsatellite observation

Lab of pollution databases

Lab of applied hydrochemistry and analytical chemistry

Lab of monograph’s preparation

Lab of waves

Group of Anal. Chem.

“Water” Group

Group of marine aerosols

Group of water toxicity

Academic council

Council for Ph.D. thesis and thesis for a Doctor's degree (oceanology, geoecology)

Engineer. service

Lab of ebb and flow

Page 6: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Chemical Lab of SOI Collaboration in Black sea researches

(2002-2005)Financial supporting: Russian Foundation for Basic Researches (RFBR), Federal

programme “World Ocean” (through IORAS), UNDP projects

Institute of Oceanology, RAS

RPFU, Medical faculty

State Centre for hydrometeorology (SOCHI, “ЦГМС ЧАМ”)

Research centre for Toxicology, Russian ministry of health (Serpuhov)

Page 7: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Novel transboundary source of coastal ecosystems’ pollution

Reverse flux column water - sea surface

microlayer (SML) - aerosols

Page 8: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 9: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 10: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 11: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Al Cr Mn Ni Cu Zn As Cd Pb

1

10

100

1000 White sea 2004

Mediterranean 2003

Black sea 2004

Black sea 2003

00

íã/

ì3

Heavy metals, Al, As in marine aerosols of Black, Mediterranean and White sea

ng per m3

Page 12: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Heavy metals, Al, As in marine aerosols of Black, Mediterranean and White sea

Page 13: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The mechanisms of marine aerosols formation:

1) bubbles breaking,2) direct wind-waves interaction,

3) spontaneously aerosols generation by undisturbed water’s surface

Page 14: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 15: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

1. Gas emissions from bottom sediments

2. Gas emissions from living organisms

3. Waves breaks and “wind’s capture”

1. Chemical composition of aerosols is similar to SML

2. A large drop return to surface

3. Small drops (aerosols) may be captured by wind flow

Surface microlayer (SML)

Page 16: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The mechanisms of SML enrichments by pollutants

Page 17: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Mechanisms of SML chemical composition formation

1. Routine Langmuir enrichment of phase boundary (water-air) by SAC and hydrophobic compounds including detergents and oil hydrocarbons

2. Enrichment due to convections of particle matter. The type of convection is depended on type of particles (size, form, charge etc). Particles usually contain different toxicant (heavy metals, As, biotoxins, oil etc.)

3. These processes result in high

*concentration of pollutants in SML

*non-stationary multilayers structure

Page 18: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The main types of convections in SML 

Rayleigh’s convection Anisotropy heterogeneousconvection

“Driving forces” of convections: TEThermal neutrons flux

Page 19: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 20: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

0,05 0,10 0,15 0,20 0,25 0,30 0,350

5

10

15

20

V(мм/с)

0,04 0,06 0,08 0,10 0,120

5

10

15

20

25

V(мм/с)

Page 21: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The structure of column water

• The fundamentals of new LALS application – the existence of giant clusters of water

The visualization of water structure (mode 2 of the laser device) 2x2 mm

The image of water

The image of ddw

1 10 1000

5

10

15

мкм

%

Size spectra of giant clusters of water

Page 22: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 23: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

• The example of Sea Surface Microlayer (SML) fine structure analyzes and toxic marine aerosols generation

Page 24: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Fine structure of SML and some pollutants localization

0-200

0-1000

Colum water

Pb, Cd, As

“Old” emulsion of oil hydrocarbons

Page 25: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

column water

bottom

oil hydrocarbons

0,5 miles4 miles 2 miles

Page 26: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Cr Mn Ni Cu Zn As Cd Pb Fe SCH10

-4

10-3

10-2

10-1

100

101

102

Al Cr Ni Pb10

-2

10-1

100

200-мкм ПМС

аэрозоль

1-мм ПМС

объемная вода

Al Cr Ni Pb

0,01

0,1

1

10

100

1000

10000

мк

г/л

Page 27: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 28: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Pollution of marine aerosols by heavy metals, arsenic and oil

hydrocarbons (Russian part of Black sea)

Page 29: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Expedition’s region

Black Sea

Azov Sea

Page 30: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Heavy metals, Al, As in marine aerosols of Black, Mediterranean and White sea

Al Cr Mn Ni Cu Zn As Cd Pb

1

10

100

1000

Whi

te s

ea 2

004

Med

itte

rene

an 2

003

Bla

ck s

ea 2

004

Bla

ck s

ea 2

003

00

ng/ m

3

Page 31: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Heavy metals in marine aerosols near Sochi

before and after storm (maximum permissible concentration (MPC) for air of plants - red

arrows)

Al Cr Mn Ni Cu Zn As Cd Pb

1

10

100

1000

10000

100000

00

ng

/ m

3

Page 32: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

0,1 1 10 100 1000

0,1

1

10

100

1000

10000Al

0,1 1 10 100 1000

0,1

1

10

100

1000

10000Cr

ng /

m3

0,1 1 10 100 1000

0,1

1

10

100

1000

10000

Mn

altitude, m

Page 33: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

0,1 1 10 100 1000

0,1

1

10

100

1000

10000 Ni

0,1 1 10 100 1000

0,1

1

10

100

1000

10000Cu

ng /

m3

0,1 1 10 100 1000

0,1

1

10

100

1000

10000 Zn

altitude, m

Page 34: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

0,1 1 10 100 1000

0,1

1

10

100

1000

10000 Ni

0,1 1 10 100 1000

0,1

1

10

100

1000

10000Cu

ng /

m3

0,1 1 10 100 1000

0,1

1

10

100

1000

10000 Zn

altitude, m

Page 35: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

0,1 1 10 100 10001000

10000

100000

saturated oil hydrocarbons

ng/m

3

0,1 1 10 100 10001000

10000

100000

polyaromatic O.H.

ng/m

3

Page 36: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Oil hydrocarbon in aerosols of different origin

g/m3 

 

Marine aerosols - 0-40 (Black sea - very seldom event, Mediterranean and Finland Gulf - every day)

City aerosols (Moscow) - 0 (0 = < 0,5 g/m3 )

Terrestrial aerosols (russian coastal zone of Black sea, Neva bay, Caucasian mountains) - 0

Page 37: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Time-dependent variation of heavy metals and Al in marine aerosols

(coastal sampling, 2 m alt., Golubaya bay (Geledzshik))

10.06 10.06 13.06 14.06 15.06 23.06 29.06 30.06 01.09

0,1

1

10

100

1000

10000

Zn

Cd

Cr

Ni

Al

нг/м

3

Page 38: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Spatial distribution of heavy metals and Al in marine aerosols

from Novorossiysk to Adler (<10 miles from coast)

0,1

1

10

100

1000

Cd

Cr

Cu

Mn

Ni

Al

AdlerLazoevskaya-SochiArhipovo-OsipovkaNovorossiysk

ng /

m3

Page 39: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Spatial distribution of heavy metals and Al in marine aerosols

from Gelendzshik to open sea (south direction) 0-100 miles f

0 20 40 60 800,1

1

10

100

1000

Cd Cu

Fe

Mn

Ni

Cr

ng /

m 3

miles

0 20 40 60 800,1

1

10

100

1000

As

Pb

Al

Zn

miles

Page 40: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Toxicity of marine aerosols

1) Medical trace element studies

2) Cell biosensor assay

3) Direct inhalation of SML probe in aerosol’s camera

4) Monitoring of adenoviruses as markers of air pollution

Page 41: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Cr Mn Ni Cd Pb0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

blood

Moscow

terrestialmarine

m t i g

Relative (normalized to Al) element profiles in different aerosols and human blood

terrigenous

Page 42: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

26 27 28 29 30 31 32 33 344

5

6

7

8

9

10

Toxicity of SML and aerosol filtres' extract for cell biosensor

L, m

in

t, oC

3,26 3,28 3,30 3,32 3,34

-6,4

-6,2

-6,0

-5,8

-5,6

Еа=70 кJ/mol

ln (

1/ L

)

1000/T, K-1

Page 43: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Conclusions

• All artificial and nature pollutants in the sea may to return in human beings with marine aerosols

• Very dangerous (!): Destruction of marine biocenosis lead to increase of marine aerosols toxicity due to biotoxins concentrations in SML (US programme “Marine biotoxins”)

• The men with asthma, allergic diseases, tuberculosis may to rest in marine coastal zone only after expert estimation of marine aerosols’ toxicity

Page 44: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The methods for monitoring of novel transboundary source of coastal ecosystems’ pollution

Page 45: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

1. Aerosols sampling – up to 20 m3 per hour, transmission factor of filters <1.0% for 0,17 particles

2. SML sampling – capillary sampler (fixed thickness SML sampling) and Garret sampler

3. Element assay – graphite Zeeman AAS with acid microwaves probe’s preparation

4. Oil hydrocarbons assay - gas-liquid capillary chromatography, IR-spectrometer, UV-fluorometer

5. Express water quality control: LALLS and laser interferometer

6. Size spectra control – laser diffraction particle sizer

Page 46: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Cr Mn Ni Cu Zn As Cd Pb10

-4

10-3

10-2

10-1

100

101

III II

IV - терригенные игородские арозоли

I -морские аэрозолиMarine aerosols

Terrestrial aerosols

Page 47: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

2 4 6 8 10

1

10

100

1000

marine terrestial marine (without wind)

4No of channels

321

Size spectrum of aerosols from different sources

pa

rtic

les

pe

r lit

re

terrestrial

Page 48: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 49: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 50: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

• Key technologies, methods and equipmentKnow-how – the new technology for LALS image analyzes for computation of size spectra, the new technology for giant water structure visualization

Methods of quantitative water structure (size spectra of giant water’s clusters – chemical composition relation

Own pre-production model of LALS equipments with own original software

Own patent SML sampler for sampling of the fixed thickness layer• Strong points of SOI in the project: more than 20 years experience in practical marine pollution’s

monitoring experience, 15 years - in SML researching, 5 years - in water structure investigation

participation in creation of Russian metrology standard for dispersed system (suspensions, emulsion, aerosols etc)

The new technology of the surface marine water express monitoring using LALS and

new data on the water structure

Page 51: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Application Areas

• Complex marine water’s pollution monitoring

• Sweet water’s pollution monitoring

• Monitoring of the novel transboundary source of air pollution in coastal zone and open sea (the “reverse way” – sea column water – SML – marine aerosols)

• Determinations of identity and quality control of water solutions like as springs, drinks or drugs

• “Trivial” particle sizer’s analysis

Page 52: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology Description

• Technology target:The determination of sea water quality using size spectra and relaxation times of the giant heterophase water clusters

• Expected results:The technology will allow to provide express monitoring of surface marine water with possibilities to obtain advanced data on SML structure

• Output: The model of new two-mode laser device with original software and new technology for express monitoring of water pollution including with such consequence as marine aerosols pollution

Page 53: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

• Scheme of Technology

• Sampling of the sea SML of fixed thickness

• Analyzes the probe for description of suspensions using LALS (1st mode of the device) and laser projector (2nd mode of the device) for obtaining of particles’s size spectra, concentration and their hydrophilic behavior

• Analyzes the probe using laser projector (2nd mode of the equipment) for description of suspensions

• The filtering of the probes and using 1st or 2nd mode of the device for obtaining of size spectra of giant water clusters and image analysis of their arrangement

• The comparison of obtained results with normal standard sea water, standards for different salinity, temperature etc and computer database of changing in the presence of different pollutants

Page 54: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology Description

• The fundamentals of new LALS application – the existence of giant clusters of water

The visualization of water structure (mode 2 of the laser device) 2x2 mm

The image of water

The image of ddw

1 10 1000

5

10

15

мкм

%

Size spectra of giant clusters of water

Page 55: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology Description

The mode 1 of the laser device - LALS

n 100f 135

rad f

del10 1 0 0

ndel1 1.3 10

5

del20 1 0 0

n del2 1.414

bet i( ) s 0 0

s s del1

x 1 ifor

ro i( ) s 0 0

s s del2

x 1 ifor

rad

0 1

0

1

2

3

4

5

6

7

8

9

10

11

0.459 0.635

0.635 0.877

0.877 1.21

1.21 1.661

1.661 2.281

2.281 3.132

3.132 4.32

4.32 5.913

5.913 8.1

8.1 11.205

11.205 15.39

15.39 21.06

Page 56: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology Description

 

0.371428

2.367536103

K5i

990 i0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

The examples of size spectra of giant water’s clusters in different probes of sea

water

Page 57: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology DescriptionThe mode 2 of the laser device – laser projector/ 2D laser refractometer

1 – laser. 2 – lens.

3- water solution.

4 – подставка.

5 – oobject. 6 – screen.

7 – object’s image.

Page 58: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Technology Description

The examples of 2nd mode of the laser device application

1) for particle hydrophilic behavior analysis

2) for analysis of arrangement of giant water’s clusters in SML and column water

Page 59: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V
Page 60: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The methods and approaches for minimization of damage to human health

of the sea megapolises1) Routine monitoring with system of forecasting and operative tracking cleanliness of air [Bugaev S.N. et al., 2003] of coastal ecosystems and megapolises

2) National and international regulation of maximum permissible sea and river burials (new Russian rules for seas have made by SOI), including dispersed matter

3) Monitoring and information system (in progress)

4) International co-operation (for example “Black sea aerosols” (possible)

5) Direct prevention of very dangerous aerosols flux in local area

(device for aerosols dissipation (and condensation) was created in SOI and worked in airport “Bykovo” and on japan mountains road)

Page 61: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Routine monitoring with system of forecasting and operative tracking cleanliness of air [Bugaev S.N. et al., 2003] of

coastal ecosystems and megapolises

1) The system of verification of the source of aerosols origin (marine, terrestrial, city) based on element profiles (Al and d-element) (fig. 2), size spectra and data of marine bacteria transfer (PCR-detecting).

2) The new approaches for sea surface microlayer sampling using as Carret screen as new capillary multiplayer sampler with sampling of fixed thickness of SML.

3) Complex of laser methods for estimation of water and aerosols dispersions.

4) The complex of models about water surface’s aerosol

generation and aerosols’ transfer.

Page 62: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

The main components of monitoring system developing by SOI of the novel transboundary source of pollution of the coastal ecosystems and the diminution of damage to human health

of sea megapolises are:

The information monitoring system filled up in real time behind sources of receipt of hazard substances in the sea environment (river drains, sewage and city waste-water, bottom sediments, marine biotoxins etc.).2. Information and analytical system of tracking for the processes of receipt, mixture and dilution the hazard substances, including the hydrodynamic description of evolution of the pollutants in the sea environment of coastal zones.3. Information system of tracking filled up in real time for the utilizations of hazard substances (volital, mechanical evaporation (marine aerosols), precipitation (bottom sediments), biological consumption, etc.)4. Development of the subsystem about the accumulation of volumetric hazard substances in subsurface layer taking into account hydrodynamical, physical, hydrochemical and hydrobiological processes (gravity and capillary and heterogeneous convections, describing the subsurface layer’s enrichment due to the new transfer mechanism). The quasi-stratified structure of subsurface layer with the differentiated level-by-level separately accumulation of hazard substances will be quantitatively described. Based on the data on 2-D laser refractometry the coupled processes of mass and energy across interface of ocean and atmosphere will be first described .5. The development of the subsystem describing the mechanism of marine aerosols’ generation due to wind-wave interaction of atmosphere and ocean (the main source of the marine aerosols is the 1-mm subsurface layer enriched by hazard substances). 6. Information and analytical system of tracking for the processes: transport and mixing of marine aerosols with terrestrial ones (with additional enrichment by hazard substances due to water evaporation from aerosol particles). 7. The subsystem for the estimation of toxicity of the polluted marine aerosols on coastal ecosystems and human health of sea megapolises (sanitary and medical aspects).

Page 63: PLETENEV S.S., LAPSHIN V.B., GONCHARUK V.V.*, KOLESNIKOV M.V., SMIRNOV A.N.,  SYROESHKIN A.V

Thank you for attention!