pluto 5 controller manual - heber

57
File Name: H:\pluto5\manuals\pluto_5_controller.doc HEBER LTD Document No. 80-15151 Issue 6 User Manual Pluto 5 Controller Document No. 80-15151 Issue 6 HEBER LTD Current Issue :- Issue 6 – 2 nd September 2005 Previous Issue :- Issue 5r1 – 14 th May 2004 ©HEBER Ltd. 2005. This document and the information contained therein is the intellectual property of HEBER Ltd and must not be disclosed to a third party without consent. Copies may be made only if they are in full and unmodified.

Upload: others

Post on 06-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pluto 5 Controller Manual - Heber

File Name: H:\pluto5\manuals\pluto_5_controller.doc HEBER LTDDocument No. 80-15151 Issue 6

User ManualPluto 5 ControllerDocument No. 80-15151 Issue 6 HEBER LTD

Current Issue :- Issue 6 – 2nd September 2005

Previous Issue :- Issue 5r1 – 14th May 2004

©HEBER Ltd. 2005. This document and the information contained therein is the intellectual property ofHEBER Ltd and must not be disclosed to a third party without consent. Copies may be made only ifthey are in full and unmodified.

Page 2: Pluto 5 Controller Manual - Heber

File Name: H:\pluto5\manuals\pluto_5_controller.doc HEBER LTDDocument No. 80-15151 Issue 6

HEBER LTDBelvedere Mill

ChalfordStroud

GloucestershireGL6 8NTEngland

Tel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

Email: [email protected]://www.heber.co.uk

Page 3: Pluto 5 Controller Manual - Heber

Page i

Document No. 80-15151 Issue 6 HEBER LTD

CONTENTS

1 INTRODUCTION.................................................................................................................... 1

2 NEW IN THIS RELEASE ....................................................................................................... 1

3 OVERVIEW............................................................................................................................ 1

4 CIRCUIT SCHEMATIC DESCRIPTION ................................................................................ 2

4.1 SHEET 1 .................................................................................................................................. 24.2 SHEET 2 .................................................................................................................................. 24.3 SHEET 3 .................................................................................................................................. 24.4 SHEET 4 .................................................................................................................................. 24.5 SHEET 5 .................................................................................................................................. 24.6 SHEET 6 .................................................................................................................................. 24.7 SHEET 7 .................................................................................................................................. 24.8 SHEET 8 .................................................................................................................................. 34.9 SHEET 9 .................................................................................................................................. 34.10 SHEET 10 ................................................................................................................................ 34.11 SHEETS 11, 12 & 13 ................................................................................................................ 3

5 CIRCUIT OPERATION .......................................................................................................... 4

5.1 POWER SUPPLIES..................................................................................................................... 45.2 RESET AND POWER FAIL DETECTION......................................................................................... 45.3 BATTERY BACKUP .................................................................................................................... 55.4 THE MC68340 PROCESSOR..................................................................................................... 5

5.4.1 CPU32 Processor Module ................................................................................................. 65.4.2 SIM40 System Integration Module..................................................................................... 65.4.3 DMA Controller Module ..................................................................................................... 85.4.4 Serial Module ..................................................................................................................... 85.4.5 Timer Module ..................................................................................................................... 9

5.5 FPGA.................................................................................................................................... 105.6 EPROM SOCKETS / EPROM AUTOSELECT FEATURE ............................................................. 105.7 EPROM ADDRESS LINE SCRAMBLING IN 16 BIT MODE............................................................ 11

5.7.1 2*27C040 EPROMs......................................................................................................... 115.7.2 2*27C801 EPROMs......................................................................................................... 11

5.8 MEMORY EXPANSION.............................................................................................................. 135.9 OPEN DRAIN OUTPUTS, OP0-63............................................................................................. 135.10 AUX OUTPUTS, AUX0-7........................................................................................................ 145.11 INPUTS, IP0-31 ...................................................................................................................... 145.12 DIL SWITCHES ....................................................................................................................... 155.13 SOFTWARE CONTROLLED INDICATOR LED............................................................................... 155.14 ON-BOARD PUSH BUTTON ...................................................................................................... 155.15 MULTIPLEXER......................................................................................................................... 155.16 MULTIPLEXED LAMP CURRENT SENSE ..................................................................................... 175.17 SOUND GENERATION.............................................................................................................. 185.18 STEREO AMPLIFIER AND VOLUME CONTROLS........................................................................... 185.19 SERIAL I/O ............................................................................................................................. 195.20 INTERNAL I2C BUS.................................................................................................................. 19

5.20.1 Real Time Clock............................................................................................................... 195.20.2 E2PROM........................................................................................................................... 19

Page 4: Pluto 5 Controller Manual - Heber

Page ii

Document No. 80-15151 Issue 6 HEBER LTD

6 MACHINE OPERATION ...................................................................................................... 20

6.1 DRIVING REELS ...................................................................................................................... 206.2 READING THE DIL SWITCHES.................................................................................................. 206.3 READING THE SWITCH INPUTS................................................................................................. 206.4 INTERFACING TO COIN & NOTE ACCEPTORS ............................................................................ 216.5 INTERFACING TO COIN PAYOUT MECHANISMS.......................................................................... 216.6 DRIVING VACUUM FLUORESCENT DISPLAYS (VFD) .................................................................. 216.7 USING THE EXTERNAL I2C BUS ............................................................................................... 216.8 DRIVING METERS ................................................................................................................... 216.9 MAKING SOUNDS.................................................................................................................... 21

6.9.1 Single Channel/Single Speaker (Mono) Mode ................................................................ 226.9.2 Dual Channel/Dual Speaker (Stereo) Mode .................................................................... 226.9.3 Known DMA Problems..................................................................................................... 22

6.10 USING MULTIPLEXED LAMPS ................................................................................................... 226.11 USING MULTIPLEXED LEDS .................................................................................................... 226.12 USING THE MULTIPLEX EXPANSION CONNECTOR ..................................................................... 236.13 ADDING VIDEO CAPABILITIES................................................................................................... 23

7 SOFTWARE DEVELOPMENT ............................................................................................ 24

8 CONNECTOR TYPES AND PIN OUTS .............................................................................. 25

8.1 SCHEDULE OF CONNECTOR TYPES.......................................................................................... 258.2 P1 – RS232 CHANNEL A ....................................................................................................... 268.3 P2 – DATAPORT (RS232 CHANNEL B).................................................................................... 278.4 P3 – POWER INPUT................................................................................................................ 278.5 P4 – MULTIPLEXED LAMP SINKS ............................................................................................. 288.6 P5 ULTREX – MULTIPLEXED LEDS.......................................................................................... 288.7 P5 BOX HEADER – MULTIPLEXED LEDS.................................................................................. 298.8 P6 – MULTIPLEXED LAMPS SOURCES...................................................................................... 298.9 P7 ULTREX – REELS .............................................................................................................. 308.10 P7 BOX HEADER – REELS ...................................................................................................... 318.11 P8 ULTREX – GENERAL I/O #1 ............................................................................................... 328.12 P8 BOX HEADER – GENERAL I/O #1 ....................................................................................... 338.13 P9 ULTREX – GENERAL I/O #2 ............................................................................................... 348.14 P9 BOX HEADER – GENERAL I/O #2 ....................................................................................... 348.15 P10 – LOUDSPEAKERS........................................................................................................... 358.16 P11 – MULTIPLEX EXPANSION ................................................................................................ 358.17 P12 – AUX OUTPUTS ............................................................................................................. 358.18 P13 – EXTERNAL I2C BUS ...................................................................................................... 368.19 P14 – IO EXPANSION CARD CONNECTOR ............................................................................... 368.20 P15 – MEMORY EXPANSION CARD CONNECTOR...................................................................... 378.21 P16 – BACKGROUND DEBUG MODE CONNECTOR.................................................................... 37

Page 5: Pluto 5 Controller Manual - Heber

Page iii

Document No. 80-15151 Issue 6 HEBER LTD

LIST OF TABLESTable 1. Allocation of MC68340 Pins Controlled by SIM40 Module........................................................ 7Table 2. Allocation of MC68340 Pins Controlled by DMA Module .......................................................... 8Table 3. Allocation of MC68340 Pins Controlled by Serial Module......................................................... 9Table 4. Allocation of MC68340 Pins Controlled by Timer Module......................................................... 9Table 5. Possible EPROM Configurations ............................................................................................ 10Table 6. Re-Mapping of Address Lines in 2*27C040 Mode .................................................................. 11Table 7. Re-Mapping of EPROM Contents in 2*27C040 Mode ............................................................ 11Table 8. Re-Mapping of Address Lines in 2*27C801 Mode .................................................................. 11Table 9. Re-Mapping of EPROM Contents in 2*27C801 Mode ............................................................ 12Table 10. Mapping of Open Drain Outputs (OP0-63) to TPIC6259 Devices ........................................ 13Table 11. Mapping of Inputs IP0-31 ...................................................................................................... 14Table 12. Mapping of DIL Switch Inputs................................................................................................ 15Table 13. I2C Slave Addresses for RTC, U40 ....................................................................................... 19Table 14. I2C Slave Addresses for E2PROM, U37 ................................................................................ 19Table 15. Recommended Reel Stepper Motor Drive Connections ....................................................... 20Table 16. AMP Ultrex Connector Part Numbers ................................................................................... 25Table 17. Tyco Box Header Connector Part Numbers.......................................................................... 25Table 18. AMP MTA-100 Connector Part Numbers.............................................................................. 26Table 19. AMP MTA-156 Connector Part Numbers.............................................................................. 26

LIST OF FIGURESFigure 1 - Schematic Sheet 1 - Root Sheet........................................................................................... 38Figure 2 - Schematic Sheet 2 - CPU ..................................................................................................... 39Figure 3 - Schematic Sheet 3 - FPGA................................................................................................... 40Figure 4 - Schematic Sheet 4 - Memory................................................................................................ 41Figure 5 - Schematic Sheet 5 - Sound .................................................................................................. 42Figure 6 - Schematic Sheet 6 - Outputs ................................................................................................ 43Figure 7 - Schematic Sheet 7 - Inputs................................................................................................... 44Figure 8 - Schematic Sheet 8 - Power Supply ...................................................................................... 45Figure 9 - Schematic Sheet 9 – IO Connectors..................................................................................... 46Figure 10 - Schematic Sheet 10 - Reset/Battery/RS232....................................................................... 47Figure 11 - Schematic Sheet 11 - Lamp Column/LED Digit Drives....................................................... 48Figure 12 - Schematic Sheet 12 - Lamp Row Drives ............................................................................ 49Figure 13 - Schematic Sheet 13 - LED Segment Drives....................................................................... 50Figure 14 - Pluto 5 Component Ident .................................................................................................... 51Figure 15 - Photograph of Pluto 5 with Ultrex Connectors (Pluto 5U)................................................... 52

Page 6: Pluto 5 Controller Manual - Heber

Page 1

Document No. 80-15151 Issue 6 HEBER LTD

1 INTRODUCTION

The Pluto 5 Controller board is a natural progression in the Pluto family of products. It builds on theproven reliability and technical excellence of previous Pluto boards and provides improvedperformance and flexibility at lower cost. This manual covers the detail of the hardware operation ofPluto 5 Controller board, other boards in the system have their own manuals.

2 NEW IN THIS RELEASE

• Section 6.9 has revised audio information.

3 OVERVIEW

The Pluto 5 Controller board is a low cost, high performance single board controller for amusementmachines. An 8 reel machine with 256 lamps, 32 LED digits, Linewriter display, Coin Acceptors, NoteAcceptors and Payout Hoppers can be controlled without any additional boards.

Single channel sound can be played through one or two speakers. Two Channel (mono or stereo)sound is available by plugging in an additional IC.

Pluto 5 boards are supplied with either Ultrex or Box Header connectors.Pluto 5 with Ultrex connectors is referred to as Pluto 5U.Pluto 5 with Box Header connectors is referred to as Pluto 5B.These connectors and all the other connectors on the Pluto 5 board are documented in Section8 - Connector Types and Pin Outs in this user manual.

Add-on boards are available to increase the number of lamps by up to 512, LED Digits by up to 64 aswell as CGA/VGA Video and Memory Expansion.

The numbering system on all Pluto 5 boards is consistent, in that, where Lamps and LEDs areinvolved the product name has a suffix X/Y. X is the number of lamps and Y is the number of LEDdigits that that product drives. The Pluto 5 Controller board is available as a Pluto 5 128/16Controller and a Pluto 5 256/32 Controller.

Page 7: Pluto 5 Controller Manual - Heber

Page 2

Document No. 80-15151 Issue 6 HEBER LTD

4 CIRCUIT SCHEMATIC DESCRIPTION

This section is a walk through of the Pluto 5 Controller board (56-14084) circuit schematics, Figures1-13 of this document. A detailed description is given in Section 5 “CIRCUIT OPERATION”.

4.1 Sheet 1

This sheet shows the interconnection between the remaining sheets of this drawing.

4.2 Sheet 2

This sheet shows the following items:

• Motorola MC68340 Processor.• Pull-up resistors on Address Bus, Data Bus and other Control Signals.• Push Button Switch, SW3.• P16 “BACKGROUND DEBUG MODE” connector.

4.3 Sheet 3

This sheet shows the FPGA.

4.4 Sheet 4

This sheet shows the following memory related circuits:

• Sockets for 1 or 2 EPROMs, U1 and U2• 64Kbytes Battery backed RAM, U3 and U4• P15 “MEMORY EXPANSION” connector for plug-in Memory Cards

4.5 Sheet 5

This sheet shows the following sound related circuits:

• Standard Sound Channel #1, U8 (OKI MSM6585).• Optional Sound Channel #2, U39 (OKI MSM6585).• TDA7057AQ Stereo Audio Amplifier.• P10, “LS” connector for loudspeakers.

4.6 Sheet 6

This sheet shows the 64 Open Drain Outputs, OP0-63.

4.7 Sheet 7

This sheet shows the following circuits:

• External inputs, IP0-31• Two 8 way DIL switches, SW1 and SW2

Page 8: Pluto 5 Controller Manual - Heber

Page 3

Document No. 80-15151 Issue 6 HEBER LTD

4.8 Sheet 8

This sheet shows various Power Supply related functions:

• Current sensing +12V Meter supply• Power fail detection.• Current sensing from Lamp Multiplex.• Fuse and +5V regulator.• Voltage rail overvoltage and transient protection.• P3 “PWR IN” power input connector

4.9 Sheet 9

This sheet shows the following I/O connectors.

• P7 “REELS” carries enough I/O lines to run 6 reels, including a sub set of the lamp multiplexer andpower supplies for the motors.

• P8 “I/O 1” and P9 “I/O 2” are general purpose I/O.• P11 “MULTIPLEX EXPANSION” provides signals for the connection of Multiplex Expansion

boards.• P12 “AUX OUTPUTS” provides 6 open drain TTL outputs, typically for driving VFD displays.• P13 “I2C” provides a connector for external I2C expansion, e.g. E2PROM modules. Note that the

lines used to implement this connector are different to the lines allocated for the internal I2C bus toU40 and U37.

• P14 “I/O EXPANSION” is a position for a daughter board for I/O expansion.

4.10 Sheet 10

This sheet shows the following circuits and connectors:

• Reset circuit and LED.• Battery Backup for RAM and optional Real Time Clock.• Optional I2C Real Time Clock socket, U40, PCF8583.• Optional I2C E2PROM socket, U37, 24C04 (512 bytes) or 24C08 (1024 bytes).• RS232 buffers.• P1 “RS232” is a general purpose RS232 serial communication port.• P2 “DATAPORT” is the BACTA standard Dataport.

4.11 Sheets 11, 12 & 13

These sheets show the Multiplex Lamp and LED drive circuits and connectors.

• Sheet 11 shows the Lamp Columns/Digits Sink drivers.• Sheet 12 shows the Lamp Row/Source drivers• Sheet 13 shows the LED Segment drivers• P4 “LAMP SINKS” is the Lamp Array Column/Sink outputs• P5 “LED” is the connector for the 32 or 16 LED digits.• P6 “LAMP SRC” is the Lamp Array Row/Source outputs

Page 9: Pluto 5 Controller Manual - Heber

Page 4

Document No. 80-15151 Issue 6 HEBER LTD

5 CIRCUIT OPERATIONThis section describes how some elements of the circuit operate and their capabilities and limitations.A subsequent section deals with how the various capabilities of the board are used to implementspecific amusement machine functions.

5.1 Power Supplies

The Power Input to the board is on P3. There are 3 input voltages required, +12V, -12V and 36V or48V for the lamp multiplex.

The +12V supply is fused by F1 (3.15A) as it comes on the board. From the un-fused (input) side, the+12V is distributed to the Reel Connector, P7 where it may be used to provide the supply for theStepper Motors.

From the fused side, the +12V is used for the following:

• Regulated via U15 to provide the Vcc (+5V) supply for the board. This will draw up to 250mA fromthe +12V rail.

• To provide the Power Supply for the Stereo Audio Amplifier, U32. The load current drawn by thiswill depend on the audio volume, etc. but is not likely to exceed an average of about 200mA.

• Monitored by U16B to detect imminent failure of the +5V supply and cause a Level 7 (Non-Maskable) Interrupt, NMI-. The interrupt will occur if the +12V supply drops below approximately7.8V.

• To provide the Power Supply for the multiplexed LED drive circuits. With 32 LED digits fitted andall having all segments illuminated, the current drain is likely to be between 400mA and 550mA.

• Distributed to various connectors, P1, P2, P8, P9, P12 and P14 for optional use by externalcircuits.

When connecting external loads to the Fused +12V outputs on P1, P2, P8, P9, P12 and P14 makesure that the total current drawn is within the rating of fuse F1 (3.15A), making due allowances for theother loads as described above.

The –12V supply input provides the negative supply for the 1488 RS232 Transmitter Buffer, U33, andthe –12V supply required on the DATAPORT Connector, P2.

The Lamp Multiplex supply should be +36V or +48V, depending upon the duty cycle employed by thesoftware. See Section 6.10, “Using Multiplexed Lamps” for more information.

Transient suppressers (Tranzorbs) are fitted on the +12V supply (fused side), -12V supply and Vcc toprotect these lines against any overvoltage.

5.2 Reset and Power Fail Detection

TL7705 device, U17, (see Schematic Sheet 10 - Reset/Battery/RS232), provides the system reset. Atpower up, the system is held in a reset state (RESET- low, RESET high) for about 5 seconds. Thistime is determined by C14. The processor may initiate a full hardware reset at any time by assertingPort B, pin 0 (PB0) low, which will trigger the TL7705 via the RESIN- pin. The RESET lines will also beimmediately asserted by the TL7705 if the Vcc line drops below 4.75V.

While the system is in a reset state, i.e. RESET- is low, a red LED, LD1, is illuminated.

The power fail detection is a simple threshold detection on the 12V rail using one section of the quadcomparator LM339 (U16B), see Schematic Sheet 9 - IO Connectors.

When the +12V input falls below a threshold of approximately 7.8V, the output of the comparator goeslow which causes a Level 7 interrupt (NMI) to the processor. This will occur BEFORE the 7805regulator drops out of regulation and the Vcc line starts to drop, thus giving the processor a period oftime to react before the RESET is asserted by the TL7705, U17. The main purpose of giving the

Page 10: Pluto 5 Controller Manual - Heber

Page 5

Document No. 80-15151 Issue 6 HEBER LTD

processor the NMI in advance of the RESET is to avoid the risk of an incomplete RAM write operationoccurring if the RESET were to be asynchronously asserted while such an operation was beingcarried out.

The time available between the assertion of NMI and the assertion of RESET will depend on the rateof fall of the +12V line, which will obviously be dependent upon the power supply and the loading onthe +12V, but will typically be several milliseconds.

5.3 Battery Backup

A backup battery, BT1, is provided (see - Schematic Sheet 10 - Reset/Battery/RS232) to allow the twoRAMs U3 and U4 to retain data while the board is powered down and to keep the optional Real TimeClock chip, U40, running.

BT1 is a two cell rechargeable NiMH (Nickel Metal Hydride) battery, capacity 70mA/hr. The circuitcomprising BT1, Q2, R43 and R132 provides the battery trickle charge and switchover of the securedpower supply rail, Vbatt.

While Vcc is at 5V, current flows through the base-emitter junction of Q2 through R43 into the battery.On charge, the voltage on BT1 will be about 2.6V so the current through R43 will be (5-VBE-2.6)/3300,about 0.5mA. Thus Q2 will be turned ON and Vbatt will be a VCEsat below Vcc. Current will thereforealso flow through R132 into Vbatt, (5-VCEsat-2.6)/3300, about 0.7mA. Total trickle charge current istherefore 0.5 + 0.7 = 1.2mA. The specification of the cells calls for a trickle charge of between .01Cand .03C. C is 70mA, so the acceptable range is between .7mA and 2.1mA.

When power is removed, Vcc collapses to ground. The base-emitter junction of Q2 is now reversebiased and therefore no current flows through R43 and Q2 is OFF. Vbatt is now connected to thepositive end of BT1 via R132. The discharge current into the RAMs and RTC should not exceed 40µA,which will result in a voltage drop in R132 of less than 0.15V. This gives a worst case battery life inexcess of two months, and in practice much higher.

When on battery backup it is vital that the RAMs are placed in the standby state by ensuring that theCS- line is high. Q1 and R42 achieve this. When the RESET- line goes low, which may occur either asa result of a Reset occurring or Vcc collapsing, Q1 turns OFF causing the CS- lines to the RAMs to bepulled to Vbatt by R42.

5.4 The MC68340 Processor

Full details of the operation of the processor is given in the Motorola MC68340 User Manual [seeAdobe Acrobat File 68340um.pdf, plus Addenda files 68340um_ad.pdf and 68340um_ad2.pdf]

The MC68340 contains the following functional blocks:

Page 11: Pluto 5 Controller Manual - Heber

Page 6

Document No. 80-15151 Issue 6 HEBER LTD

5.4.1 CPU32 Processor ModuleThe CPU32 is a processing core which is basically 68000 code compatible but with a number ofenhancements. For full details of operation please refer to both the Motorola MC68340 User Manualand the Motorola M68000 Family Programmers Reference Manual [see Adobe Acrobat File68kprm.pdf].

All modern 68000 Compilers and Assemblers have various options for the target CPU. Whengenerating code for the Pluto System, the CPU32 option should be used.

If the Compiler/Assembler is old it is possible that it may not have a CPU32 option. In this case, theCompiler (if used) should be run with the 68000 option set. The assembler may be run in 68020 modewhich will allow the use of the MOVES command which is required during initialisation to set up theModule Base Address Register (MBAR) in the MC68340. Care must be taken not to write code thatcalls any other 68020 instructions that may not be implemented on the CPU32.

The Pluto 5 Development Kit includes a suitable C Compiler and Assembler.

5.4.2 SIM40 System Integration ModuleThis module controls various aspects of the operation of the processor, such as configuration, clock,external bus, etc.

When used in the Pluto System, the main considerations in the use of this module are:

5.4.2.1 Module Base Address RegisterSet the Module Base Address Register, MBAR, to a suitable address during initialisation.This sets the base address of all the internal module registers. In the example code it is setin Module “except.asm” to value 0xffff f000. There is nothing magic about this value, butobviously it must be set to an address that is clear of any other devices in the processormemory map. This register must be set before any other module initialisation is attempted.

5.4.2.2 Chip SelectsSet-up the 4 Chip Select outputs, CS0- to CS3-. The Pluto 5 System allocates these asfollows:

CS0 - is used to map the system programme memory. This consists of any EPROM fitted tothe on-board EPROM sockets, U1 and U2 plus any extra EPROM or FLASH devices fitted tothe Memory Expansion Connector, P14. Exact mapping, within the area defined by CS0-, iscarried out be the system FPGA.

CS1 - is used to map the on-board, battery backed RAM and, if fitted, any external RAM ona memory card on connector P15.

CS2 - is used to map both the internal registers of the FPGA and the on-board I/O,

CS3 - is normally spare and is available on the I/O expansion connector, P14. Its main use isfor the selection of the optional add-on CGA/VGA Video Card.

After hardware reset, CS0- will be asserted for memory accesses anywhere in the memorymap which allows the processor to boot. However, the chip selects must be programmedimmediately after Reset and prior to any function or subroutine calls, because until they are,CS1- will not be active and therefore it will not be possible for the processor to access RAM.

Example code for setting up the 4 pairs of Chip Select Base and Mask registers is given inModule except.asm

5.4.2.3 Periodic Interrupt Timer.The “sim40_m.c” Module in the Sample Software sets this timer to provide a high priority1mS interrupt which is normally used by the software to provide basic system timing. Thisfunction is controlled by the PICR and the PITR.

Page 12: Pluto 5 Controller Manual - Heber

Page 7

Document No. 80-15151 Issue 6 HEBER LTD

5.4.2.4 Clock Synthesiser ControlThe SYNCR controls the operation of the main processor clock. The MC68340 is providedwith a 32.768KHz reference to which the main clock is phase locked. After reset, the mainclock defaults to 8.39MHz. The maximum clock frequency of the standard MC68340 is16.77MHz.

5.4.2.5 System ProtectionThe SYPCR controls the bus monitors and software watchdog. Other safeguards in thedesign give adequate protection against programme malfunction as a result of noise, etc.The Software Watchdog feature is disabled, however, it could be used if required.

The Bus Monitor should be enabled and may be left set at its default of 64 clock cycles time-out.

5.4.2.6 SIM40 Module Pin AllocationsPins under the control of the SIM40 module are allocated as follows.

Table 1. Allocation of MC68340 Pins Controlled by SIM40 Module

NAME PIN I/O FUNCTIONPA0/A24- 123 O To I/O Expansion Connector P14, Pin b1, 3K3 pull-up &

RESET to Sound Channel #1, U8PA1/A25/IACK1- 122 O To I/O Expansion Connector P14, Pin b2, 3K3 pull-up &

RESET to Sound Channel #2, U39PA2/A26/IACK2- 121 O To I/O Expansion Connector P14, Pin b3, 3K3 pull-up &

Drive for Indicator LED LD2PA3/A27/IACK3- 120 I To I/O Expansion Connector P14, Pin b4, 3K3 pull-up &

Push Button SW3 InputPA4/A28/IACK4- 117 I/O To I/O Expansion Connector P14, Pin b5, 3K3 pull-up &

SCL line (I2C) to RTC, U40 and E2PROM, U37PA5/A29/IACK5- 116 I/O To I/O Expansion Connector P14, Pin b6, 3K3 pull-up &

SDA line (I2C) to RTC, U40 and E2PROM, U37PA6/A30/IACK6- 115 I/O Drives S1 pin on SFX Channel #2 (U39) 3K3 pull-up &

MPX Lamp Current Sense InputPA7/A31/IACK7- 114 I/O Drives S2 pin on SFX Channel #2 (U39) 3K3 pull-up &

MPX Lamp Short Circuit Sense InputPB0/MODCK 87 O Drive LOW to initiate hardware reset.PB1/IRQ1-/CS1- 2 O CS1- Maps RAMPB2/IRQ2-/CS2- 3 O CS2- Maps FPGA registers and I/OPB3/IRQ3- 4 I Vmeter current sense input.PB4/IRQ4-/CS3- 5 I/O To I/O Expansion Connector P14, Pin a3PB5/IRQ5- 8 I/O To I/O Expansion Connector P14, Pin b15, 3K3 pull-upPB6/IRQ6- 9 I/O To I/O Expansion Connector P14, Pin b16, 3K3 pull-upPB7/IRQ7- 10 I IRQ7-/NMI input from Power Fail Detection CircuitCS0-/AVEC- 1 O CS0- Maps ROM, both on-board U1/U2 and on Memory

Expansion Connector (via FPGA).

Page 13: Pluto 5 Controller Manual - Heber

Page 8

Document No. 80-15151 Issue 6 HEBER LTD

5.4.3 DMA Controller ModuleThe DMA Module provides 2 DMA Channels. On the Pluto 5 these are used for sending sound datafrom the Programme Memory to the OKI MSM6585 Sound Chip(s). DMA Channel 1 is used to senddata to Sound Channel #1, which is fitted as standard to the Pluto 5 Board. DMA Channel 2 is used forthe optional add-on Sound Channel #2 if fitted (IC39).

The DMA channel should be set to work in following modes:

• External request• Dual address• Source address incrementing (Memory)• Destination address not incrementing (FPGA sound register)• Transfer size = byte• Interrupt on completion

Pins controlled by the DMA module are allocated as follows:

Table 2. Allocation of MC68340 Pins Controlled by DMA Module

PIN NO. I/O FUNCTIONDREQ1- 16 I SFX Channel 1 DMA requestDACK1- 15 O No connectionDONE1- 14 IO Not used, 3K3 pull-upDREQ2- 13 I SFX Channel 2 DMA requestDACK2- 12 O No connectionDONE2- 11 IO Not used, 3K3 pull-up

5.4.4 Serial ModuleThe Serial Module provides Asynchronous Comms on 2 Channels, Channel A and Channel B. It isfunctionally very similar to the 1681/68681 range of DUARTs.

Channel A is buffered to RS232 levels and connected to connector P1. Signals RX, TX, RTS and CTSare provided.

Channel B is buffered to RS232 levels and connected to DATAPORT connector P2. Signals RX, TX,RTS and CTS are provided.

The 4 Channel A signals are also made available on the TTL Expansion Connector, P14, at TTLlevels. Thus, alternative interfaces may be provided on an Add-on Board to allow, say, RS485 or MarsHII interfaces to be implemented.

The exact set up of the Serial Module will obviously depend upon the functionality required.

Page 14: Pluto 5 Controller Manual - Heber

Page 9

Document No. 80-15151 Issue 6 HEBER LTD

Pins controlled by the Serial module are allocated as follows:

Table 3. Allocation of MC68340 Pins Controlled by Serial Module

PIN NO. I/O FUNCTIONRXDA 33 I RX DATA Channel A, P1, Pin 2 (RS232 level) &

To IO Expansion Connector P14, Pin c9 (TTL level)TXDA 32 O TX DATA Channel A, P1, Pin 3 (RS232 level) &

To IO Expansion Connector P14, Pin c10 (TTL level)RXDB 25 I RX DATA Channel B, DATAPORT P2 (RS232 level)TXDB 24 O TX DATA Channel B, DATAPORT P2 (RS232 level)OP0/RTSA- 29 O RTS Channel A, P1, Pin 5 (RS232 level) &

To IO Expansion Connector P14, Pin c12 (TTL level)OP1/RTSB- 23 O RTS Channel B, DATAPORT P2 (RS232 level)OP4/RXRDYA- 27 O SFX Channel #1 – U8, Pin S1 (Select Sample Rate)OP6/TXRDYA- 26 O SFX Channel #1 – U8, Pin S2 (Select Sample Rate)CTSA- 28 I CTS DUART Channel A, P1, Pin 4 (RS232 level) &

To IO Expansion Connector P14, Pin c11 (TTL level)CTSB- 22 I CTS Channel B, DATAPORT P2 (RS232 level)

5.4.5 Timer Module

The Timer Module provides 2 General Purpose Timers.

The Pluto 5 Board uses these to provide a variable duty-cycle signals on TOUT1 and TOUT2 that isused to control the volume setting on each channel of the TDA7057AQ Stereo Audio Amplifier.

Timer 1 (TOUT1) controls the volume of Sound Channel #1. Timer 2 TOUT2) controls the volume ofSound Channel #2 if it is fitted. If Sound Channel #2 is not fitted, then Timer 2 may be used for otherpurposes.

See Section 6.9, “Making Sounds” for detailed information on the operation of the Volume Controls.

Pins TGATE1- and TGATE2- are allocated as general purpose inputs which are used to read the SCLand SDA lines on the External I2C Connector, P13.

Pins controlled by the Timer Module are allocated as follows:

Table 4. Allocation of MC68340 Pins Controlled by Timer Module

PIN NO. I/O FUNCTIONTGATE1- 79 I Read External I2C line SCL on P13, Pin 3 (inverted)TIN1 81 I Not Used – Strapped To VccTOUT1 80 O Variable Duty Cycle Volume Control SFX Channel #1TGATE2- 36 I Read External I2C Line SDA on P13, Pin 2 (inverted)TIN2 34 I Not Used - Strapped To VccTOUT2 35 O Variable Duty Cycle Volume Control SFX Channel #2

Page 15: Pluto 5 Controller Manual - Heber

Page 10

Document No. 80-15151 Issue 6 HEBER LTD

5.5 FPGA

The Pluto 5 Controller is fitted with an 84 lead PLCC socket, position U6, into which is plugged anFPGA. The standard FPGA type used is an Actel A40MX04-PL84. The purpose of fitting an FPGA tothe system is twofold. First, to allow the Pluto 5 Controller to be uniquely configured for each user ofthe system to give commercial and software security (see the FPGA SECURITY MANUAL).Secondly, it allows particular advanced features, for example, the EPROM Autoselect and Multiplexdimming, to be economically implemented.

The following main functions are carried out by the FPGA:

• Control automatic EPROM mode selection• Generate control signals for on-board EPROM and RAM• Generate control signals for Memory Expansion Connector P15.• Generate DMA requests and multiplex data for Sound Channels 1 & 2.• Control and drive of data to Multiplex Arrays, both on-board MPX1 and expansion MPX2.• Provide various levels of Software Security.• Form an oscillator with 14.75MHz resonator:• Generate Main Clock, EXTAL for MC68340 Processor @32.768kHz.• Generate clock for MC68340 Serial Module @3.6864MHz.• Generate clock for OKI MSM6585 devices, U8/39 @640KHz.

5.6 EPROM Sockets / EPROM Autoselect Feature

The 2 EPROM positions, U1 and U2, are configured such that 4 possible configurations of programmememory are possible (assuming no external memory expansion via P15):

Table 5. Possible EPROM Configurations

U1 U2 Mode Configuration Total Size Addressesscrambled

27C040 omit 8 bit 512k*8 512Kbyte no27C040 27C040 16 bit 512K*16 1Mbyte yes27C801 omit 8 bit 1024k*8 1Mbyte no27C801 27C801 16 bit 1024k*16 2Mbyte yes

It is not necessary to change any links on the board in order to switch between different memoryconfigurations. All relevant switching is carried out within the FPGA, which contains an “EPROMAutoselect” feature. After Power-up, during the reset period, the FPGA reads the top byte address ofU1. Data contained in this byte defines the memory configuration required and the FPGAsets up the control lines to the EPROM sockets accordingly, so that, at the end of reset, theprocessor is able to read the EPROM(s) correctly.

Thus, after the final linked EPROM software module has been created, prior to being blown intoEPROM, the top location of the memory must be overwritten with suitable data to signify the EPROMconfiguration that will be used.

This is the feature referred to as EPROM Autoselect. A full operational description of this feature isgiven in the User manual for the FPGA in use on the Pluto 5 Controller Board.

As with the Pluto 1 System, in order to facilitate the option to use either 1 or 2 EPROMs, i.e. run in 8bit or 16 bit mode, it is necessary to have some scrambling of the address lines to the EPROMs whenoperating in 16 bit mode. Therefore, prior to blowing 16 bit EPROMs, the data must be re-arranged tocompensate. A software utility is provided with the Pluto 5 Development Kit to carry this out.

Page 16: Pluto 5 Controller Manual - Heber

Page 11

Document No. 80-15151 Issue 6 HEBER LTD

Note that this scrambling of address lines is applicable ONLY to sockets U1 and U2 on the Pluto 5Controller Board. Any EPROM sockets on Memory Expansion Cards are connected 1:1 to theaddress bus and do NOT require any special processing.

5.7 EPROM Address Line Scrambling in 16 Bit Mode

5.7.1 2*27C040 EPROMsIn 16 bit mode, running with 2 * 27C040 EPROMs, the scrambling of the address lines cause thefollowing effect on the memory mapping in the EPROMs. Note that this table applies to the re-mappingthat occurs to the EPROM contents, rather than the actual address lines.

Table 6. Re-Mapping of Address Lines in 2*27C040 Mode

68340 Address Bus EPROM AddressA0 Not Used in 16 Bit ModeA1-A18 A2-A19A19 A1

Thus, for example, addresses will be translated as follows so the contents of the EPROM must be re-arranged to compensate:

Table 7. Re-Mapping of EPROM Contents in 2*27C040 Mode

68340 Access Address Will Read From This Location inEPROM

0000 0000 0000 00000000 0002 0000 00040000 0004 0000 00080000 0006 0000 000C0000 0008 0000 0010

| |0007 FFFC 000F FFF80007 FFFE 000F FFFC0008 0000 0000 00020008 0002 0000 0006

| |000F FFFC 000F FFFA000F FFFE 000F FFFE

5.7.2 2*27C801 EPROMsIn 16 bit mode, running with 2 * 27C801 EPROMs, the scrambling of the address lines cause thefollowing effect on the memory mapping in the EPROMs. Note that this table applies to the re-mappingthat occurs to the EPROM contents, rather than the actual address lines.

Table 8. Re-Mapping of Address Lines in 2*27C801 Mode

68340 Address Bus EPROM AddressA0 Not Used in 16 Bit ModeA1-A18 A2-A19A19 A1A20 A20

Page 17: Pluto 5 Controller Manual - Heber

Page 12

Document No. 80-15151 Issue 6 HEBER LTD

Thus, for example, addresses will be translated as follows so the contents of the EPROM must be re-arranged to compensate:

Table 9. Re-Mapping of EPROM Contents in 2*27C801 Mode

68340 Access Address Will Read From This Location inEPROM

0000 0000 0000 00000000 0002 0000 00040000 0004 0000 0008

| |0007 FFFC 000F FFF80007 FFFE 000F FFFC0008 0000 0000 00020008 0002 0000 0006

| |000F FFFC 000F FFFA000F FFFE 000F FFFA0010 0000 0010 00000010 0002 0010 00040010 0004 0010 0008

| |0017 FFFC 001F FFF80017 FFFE 001F FFFC0018 0000 0010 00020018 0002 0010 0006

| |001F FFFC 001F FFFA001F FFFE 001F FFFA

Page 18: Pluto 5 Controller Manual - Heber

Page 13

Document No. 80-15151 Issue 6 HEBER LTD

5.8 Memory Expansion

Various optional memory cards may be fitted to the Memory Expansion Connector P15. Seven linesfrom the FPGA are included along with 16 data lines and 21 address lines.

The default functionality of the FPGA lines allows memory cards fitted with up to 4 EPROM or FLASHdevices to be accommodated along with a pair of RAM devices with no additional mappingcomponents.

If a memory card is fitted with 5V FLASH devices, then Write facilities are available. EPROMAutoselect is also available with devices fitted on a Memory Card.

5.9 Open Drain Outputs, OP0-63

A block of 64 Open Drain Outputs, OP0-63, are provided by 8 off TPIC6259 devices U22-U29 (seeSchematic Sheet 6 - Outputs).

These are memory mapped as the least significant byte of a block of 8 words of address space. Thechip select for these devices, CS_OP-, is provided by the FPGA. Consult the User Manual of theFPGA being used for exact mapping.

Please note that the chips are bit wide, not byte wide. Thus, Bit 0 of each word drives one device,U22: Bit 1 drives U23, etc.

Table 10. Mapping of Open Drain Outputs (OP0-63) to TPIC6259 Devices

Bit D7 D6 D5 D4 D3 D2 D1 D0Pin U29 U28 U27 U26 U25 U24 U23 U22 Addr.Q7 OP63 OP62 OP61 OP60 OP59 OP58 OP57 OP56 Base+14Q6 OP55 OP54 OP53 OP52 OP51 OP50 OP49 OP48 Base+12Q5 OP47 OP46 OP45 OP44 OP43 OP42 OP41 OP40 Base+10Q4 OP39 OP38 OP37 OP36 OP35 OP34 OP33 OP32 Base+8Q3 OP31 OP30 OP29 OP28 OP27 OP26 OP25 OP24 Base+6Q2 OP23 OP22 OP21 OP20 OP19 OP18 OP17 OP16 Base+4Q1 OP15 OP14 OP13 OP12 OP11 OP10 OP9 OP8 Base+2Q0 OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 Base+0

Basically, the drive capability of these devices is 250mA per output, continuous, with all outputs ON. Ifless than 8 outputs are ON in any one package, or any outputs are operating with a small load, thecapacity of the other outputs increases. For example, at 25°C, the TPIC6259 can sink 400mAcontinuously from 3 outputs. Please refer to the data sheet for the TPIC6259 (tpic6259.pdf) fordetails.

When allocating any output to a load greater than 250mA, consideration should be given to theloading on each device. See Section 6.1, “Driving Reels” for details on driving standard reelmechanism stepper motors.

Note also that, because they are MOSFETs, the outputs are resistive (<2Ω) and do not suffer from theminimum saturation voltage of about 1V which would be the case if they were darlingtons. Therefore,at low currents, they pull down close to Gnd and may be safely used to drive TTL Inputs, SwitchStrobes, Coin Mechanism Enables, etc.

Page 19: Pluto 5 Controller Manual - Heber

Page 14

Document No. 80-15151 Issue 6 HEBER LTD

5.10 AUX Outputs, AUX0-7

8 auxiliary TTL level open drain outputs are provided by U30 (see Schematic Sheet 9 - IOConnectors). U30 is a TPIC6B259 which functions exactly the same as the TPIC6259 devices used todrive OP0-63, but with a lower drive capability (see data sheet “tpic6b259.pdf”).

They are memory mapped as the least significant bit of a block of 8 bytes of address space at anaddress determined by the FPGA fitted to the board. See the appropriate FPGA User Manual fordetails.

They are open drain outputs fitted with 1K pull-up resistors to Vcc.

AUX0-5 are routed to connector P12 “AUX OUTPUTS”.

AUX6-7 are routed to Connector P13 “I2C”.

5.11 Inputs, IP0-31

External inputs are catered for by 32 input lines, IP0-31 (see Schematic Sheet 7 - Inputs). Like theOpen Drain outputs these are memory mapped as the least significant byte of a block of 4 words ofaddress space.

Each input is provided with a 3K3 pull-up resistor to Vcc (+5V) and feeds into a 74HC family device(rather than 74HCT). This give the inputs a low level threshold of <1.5V and a high threshold of>3.5V. The 47K resistor in series with the input protects the 74HC253 devices from noise spikes orhigh voltages on the inputs.

The 1.5V low threshold allows the inputs to be safely driven as a multiplexed array with a diode inseries with each switch with the strobes generated using a number of the Open Drain Outputs, OP0-63, described above.

The 32 inputs are mapped as shown in the following table. The top 4 bits of each word are read as“1”s and bits 8 to 11 contain the DIL Switch Settings (as described in the next section). The baseaddress is defined by the FPGA.

Table 11. Mapping of Inputs IP0-31

D15-12 D11-8 D7 D6 D5 D4 D3 D2 D1 D0Base+6 0xF

DILSW

IP31 IP30 IP29 IP28 IP27 IP26 IP25 IP24

Base+4 0xF IP23 IP22 IP21 IP20 IP19 IP18 IP17 IP16Base+2 0xF IP15 IP14 IP13 IP12 IP11 IP10 1P9 IP8Base 0xF IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0

Page 20: Pluto 5 Controller Manual - Heber

Page 15

Document No. 80-15151 Issue 6 HEBER LTD

5.12 DIL Switches

The Pluto 5 board is equipped with two 8 way DIL Switches, SW1 and SW2. These are read at thesame addresses as the 32 Inputs (see preceding Section).

Table 12. Mapping of DIL Switch Inputs

D15-D12 D11 D10 D9 D8 D7-D0Base+6 0xF SW2:8 SW2:7 SW1:8 SW1:7 IP31-24Base+4 0xF SW2:6 SW2:5 SW1:6 SW1:5 IP23-16Base+2 0xF SW2:4 SW2:3 SW1:4 SW1:3 IP15-8Base 0xF SW2:2 SW2:1 SW1:2 SW1:1 IP7-0

5.13 Software Controlled Indicator LED

LD2 is a green LED that may be turned on or off under software control (see Schematic Sheet 9 - IOConnectors). The LED may be used to provide an indication that software is running or perhaps forfault diagnosis.

The PORTA2 line from the MC68340 SIM40 Module drives the LED. After reset, the PORTA pins arehigh impedance and pulled high by resistor network N11. This signal passes through the inverter U7Fwhich thus turns ON the LED. Therefore, initially and with no action on the part of the software, theLED will be ON indicating that Vcc is present.

If the software sets PORTA2 pin as an output and drives it low, the LED will go OFF.

The PORTA pins are taken to the I/O Expansion Connector P14. Future I/O Expansion Cards may usethe PORTA2 pin for some other function, in which case this will have to be taken into considerationwhen operating the indicator LED.

5.14 On-board Push Button

A Push Button Switch, SW3, is provided on the board (see Schematic Sheet 2 - CPU). The function ofthis switch is at the discretion of the user of the board.

It is connected so as to pull the PORTA3 line from the MC68340 SIM40 Module to Gnd whenoperated.

The PORTA pins are taken to the I/O Expansion Connector P14. Future I/O Expansion Cards may usethe PORTA3 pin for some other function, in which case the possible interaction with SW3 will have tobe taken into account.

5.15 Multiplexer

The Pluto 5 Controller board provides hardware assistance (within the FPGA) to the Processorallowing two 32*16 Multiplex Arrays (referred to below as MPX1 and MPX2) to be controlled. From a“logical” or software point of view, these arrays are uncommitted and may be configured to be eitherLamp or LED drives, depending on what interface components are fitted. When running the lampsfrom a 48V supply, a 1 in 16 duty cycle is employed on the column strobes (sinks) allowing the fullcapabilities of the two arrays, MPX1 and MPX2 to be utilised. If the multiplexed lamps are run from a36V supply, a 1 in 8 duty cycle must be utilised and the useable size of the two arrays reduces to32*8.

The Pluto 5 256/32 Controller Board is intended for customers who run with a 48V lamp supply andrequire the maximum drive capability of the board. It has ½ of MPX1 configured as a 16*16 (256)Lamp Drive Array and the other ½ configured as a 16*16 (32 seven-segment digits) LED Drive Array.

Page 21: Pluto 5 Controller Manual - Heber

Page 16

Document No. 80-15151 Issue 6 HEBER LTD

The Pluto 5 128/16 Controller Board is intended for users who require less drive capability or whowish to run the lamps at 36V. It has ¼ of MPX1 configured as a 16*8 (128) Lamp Drive Array and theother ¼ configured as a 16*8 (16 seven-segment digits) LED Drive Array.

The other 32*16 Multiplex Array (MPX2) is utilised by adding external low-cost Pluto 5 MultiplexExpansion Boards, wired to Connector P11. Each board only requires 5 signal wires from P11 plusPower Supplies.

Pluto 5 Multiplex Expansion Boards will be available in a number of different sizes, but all based onproviding additional 8*8 blocks of either Lamp or LED drivers. Thus, the basic Pluto 5 configurationmay be expanded externally by another 8 blocks which may be any mix of Lamps or LEDs.

Pluto 5 Multiplex Expansion Boards may also be added to Multiplex Array MPX1 (which is alreadyused by the on-board drivers). Thus, for example, the Pluto 5 128/16 Controller Board, running at48V, could have Expansion Boards added to increase its drive capability to that of the Pluto 5 256/32Controller Board.

The Lamp Multiplex Drive Circuitry is designed to drive 12V, 100mA bulbs. However, it is permissiblefor a small number (up to 16) of positions to drive either a higher power bulb (12V, 180ma) or a pair of100mA bulbs. These "high load" positions should be arranged such that no more than one is on anyone Row or Column drive.

Multiplex Array MPX1 has hardware assistance from the FPGA to enable dimming control. Dimminglevel may be set independently for each of the 16 Column strobes, e.g. the 8 lamps on one ColumnStrobe could be set to one brightness level while the 8 lamps on a different Column Strobe could beset to another brightness. The overall basic timing of the multiplexing remains under software controlallowing “overdrive” of lamps for special effects.

Multiplex Array MPX2 may be optionally configured with its full 32*16 capacity without the availabilityof hardware assisted dimming, or with 16*16 capability with the hardware assisted dimming facilityintact. This option is selected by a bit in the FPGA – see the relevant FPGA User Manual for details.

Dimming is achieved changing the data presented to the Lamp Row/LED Segment drives at anadjustable time within the 1mS strobe time. Thus each lamp/LED has two bits of data associated withit in software – the first bit is the data applied during the first part of the 1mS Strobe period, the secondbit is applied during the second period. The duration of the period that the first bit is applied for may beset in units of 1/16 mS.

The multiplex is software driven. Every 1mS, data for the next strobe is written to the FPGA which inturn formats and serialises the data before clocking out the MPX1 data to the on-board 4094 shiftregisters (U18,U19,U20,U21,U35,U36) and the MPX2 data, via P11, to any Multiplex ExpansionBoards used.

The exact format of the data to be written each millisecond is determined by the design of the FPGAbeing used, but in general it is as follows.

• 32 bits of MPX1 Row/Segment data. First period data.• 32 bits of MPX1 Row/Segment data. Second period data.• 32 bits of MPX2 Row/Segment data. First period data.• 32 bits of MPX2 Row/Segment data. Second period data.• 4 bits defining Column/Digit strobe number to activate.• 4 bits defining First Period duration (units of 62.5S).

Consult the User Manual of the actual FPGA in use for exact details of operation.

Page 22: Pluto 5 Controller Manual - Heber

Page 17

Document No. 80-15151 Issue 6 HEBER LTD

5.16 Multiplexed Lamp Current Sense

A facility is provided to allow the processor to check the 256/128 possible lamp positions of MPX1 todetermine:

a. Is a light bulb present?b. Is there a short circuit in this position?

This facility is intended to be run at power up and, perhaps, as a production test. The facility cannot beused during normal operation of the machine.

A resistance of approximately 24mΩ is implemented, as a copper track on the PCB, between commonsource connection of all the Lamp Column/LED Digit sinks, Q35-50 and Gnd (see Schematic Sheet 11- Lamp Column/LED Digit Drives). The voltage across this resistor is compared against 2 thresholdsformed by resistor chain R124, R125 and R126 by comparators U16C and U16D (see SchematicSheet 8 - Power Supply). These thresholds correspond to nominal currents of about 375mA and 4.8A.

The outputs of the 2 comparators, U16C and U16D are connected to processor lines PORTA6 andPORTA7. The current sensing comparators may be disabled by SFX_CLK being enabled. WhenSFX_CLK, a 640kHz clock, is enabled by setting a bit in the FPGA (see FPGA User Manual), the “+”inputs of the 2 comparators are pulled up to about +5V by D21/C9/C10 which forces the comparatoroutputs (which are open collector) OFF. In this state the lines PORTA6 and PORTA7 are free to beused as outputs driving the S1 & S2 pins of SFX Channel #2 or as required by any card fitted to theI/O Expansion Connector, P14. When the SFX-CLK is turned OFF (and forced low), any voltage onC9/10 is discharged by R127, and the current sensing circuit is enabled.

With no current through the Column/Digit Sinks, both outputs PORTA6/7 will be LOW because V+ < V-on the comparators. When the current through the 24mΩ resistor exceeds a nominal 375mA, PORTA6will go high. When the current exceeds a nominal 4.8A, PORTA7 will also go high.

The sequence of operation to test a lamp is as follows:

• Turn off SFX_CLK in FPGA to enable circuit.• Turn off all Row/Digit drives on MPX1.• Ensure PORTA6 and PORTA7 both read 0• Turn on lamp to be tested on multiplex by writing appropriate data to FPGA.• Start a 1mS timer.• Loop watching lines PORTA6 and PORTA7.• If PORTA7 line goes high, there is a short circuit in this position, so immediately disable the

multiplex drives by turning off Multiplex OE line in the FPGA.• If PORTA6 line goes high but not PORTA7, then there is a light bulb connected and apparently

working.• If 1mS timer times out without either line going high, then either no bulb present or it is open

circuit.• Record result and go on to next bulb.• When complete, act as required on results. Re-enable SFX-CLK to allow Sound Channels to work.

Page 23: Pluto 5 Controller Manual - Heber

Page 18

Document No. 80-15151 Issue 6 HEBER LTD

5.17 Sound Generation

The sound generation circuits are shown on Schematic Sheet 5 - Sound.

U8 and (optionally) U39 are the source of Sound Channel 1 & 2 respectively with the audio outputbeing pin 10, Aout. These OKI MSM6585 devices are 4 bit ADPCM D-A converters capable of runningat sample rates of 4KHz, 8KHz, 16KHz or 32KHz. This rate is selected by software by setting levels onthe S1 and S2 pins. On Channel 1 (U8) these pins are controlled by the OP4 and OP6 lines from theMC68340 Serial Module. On Channel 2 (U39) these pins are controlled by the PORTA6 and PORTA7lines from the MC68340 SIM40 Module.

The VCK- output from the MSM6585 is a square wave at the sampling frequency selected by S1 andS2. The MSM6585 reads the 4 bit sample immediately after the rising edge of VCK-.

The VCK- from the MSM6585 is connected to the FPGA where it is divided by 2 to produce a DMARequest signal to the processor. Sound data is transferred, a byte at a time (1 byte = 2 * 4 bit soundsamples), to the appropriate register within the FPGA by the DMA Module if a sound is being played.The FPGA in turn presents alternately the high and low nibble to the MSM6585 OKI chip.

The sound channel requests a byte of data (via the FPGA) at half the sound sample rate. E.g., if theMSM6585 has been set to run at 16KHz sample rate, the FPGA will issue DMA requests at 8KHz.

These requests are issued continuously to the DMA Module, but in times of silence, the DMAchannels are inactive and therefore no new data is transferred into the FPGA sound register. In thiscase, the user must ensure that the last data written to the FPGA sound register before a period ofsilence is 0x80. This will ensure that, during a silent period, the MSM6585 is being continuously fed arepeated sequence of alternate 0x8 and 0x0 nibbles. This keeps the ADPCM converter in its quiescentstate. If the sound data is generated using the Heber Sound Solutions software, the last byte of thedata is always 0x80, so this condition will automatically be satisfied.

Sound Channel 1 (U8) is fitted as standard and uses DMA Channel 1. Sound Channel 2 (U39) isoptional and uses DMA Channel 2.

The RESET pin of each channel is under individual software control. Pin PORTA0 drives SFXChannel #1 RESET. Pin PORTA1 drives SFX Channel #2 RESET. After Power –Up, these pins willdefault to being inputs and therefore the Resistor network N11 will pull them High, holding both SoundChannels in a RESET state. Before the Sound Channels can be used, these two pins must be set asoutputs by the SIM40.

5.18 Stereo Amplifier and Volume Controls

The Stereo Amplifier is shown on Schematic Sheet 5 - Sound.

U32 is a Philips TDA7057AQ Stereo Audio Amplifier with independent DC volume controls. Note thatthe loudspeaker outputs, on Connector P10, are bridge driven so neither of the loudspeaker wires maybe connected to Gnd.

The DC volume controls of the TDA7057 work over the range 0.4V(min) to 1.2V (Max). The variableduty cycle outputs on pins TOUT1/2 from the two timers in the MC68340 Timer Module are integratedby the combination of two 3K3 resistors and a 1µF capacitor (R108, R109, C45 on Channel 1: R110,R113, C46 on Channel 2) to provide the control voltage needed. The control voltage is given by theformula 2.5*duty cycle where “duty cycle” is the proportion of the time that the TOUT Pin is HIGH.

Normally, Sound Channel 1 (U8, DMA Channel 1) feeds Amplifier Section 1 (volume control - TimerChannel 1) driving LS1. Sound Channel 2 (U39, DMA Channel 2) feeds Amplifier Section 2 (volumecontrol – Timer Channel 2) driving LS2.

A pin on the Loudspeaker Connector, P10, pin 3, which allows the output signal from AmplifierChannel 1 to be fed back into the input of Amplifier Channel 2. This allows various alternative modes

Page 24: Pluto 5 Controller Manual - Heber

Page 19

Document No. 80-15151 Issue 6 HEBER LTD

of operation, for example, if only Sound Channel 1 is fitted, then by linking the LS1+ output to thefeedback pin, the same signal can drive BOTH loudspeakers. See Section 6.9, “Making Sounds”below for a more detailed explanation of the different operational modes that are possible.

5.19 Serial I/O

P1 provides connections to RS232 Channel A, Data Receive & Transmit plus RTS/CTS.

P2 provides connections to RS232 Channel B, Data Receive & Transmit plus RTS/CTS and is in theformat specified by the BACTA standard.

Operation of the above two ports is determined by the operation of the Serial Module in the MC68340Processor. Refer to the Serial Module Section of Motorola MC68340 User Manual for a fullexplanation.

5.20 Internal I2C Bus

An internal I2C Bus is implemented using SIM40 Lines PORTA4 (SCL) and PORTA5 (SDA). This busallows the processor to read and write the optional Real Time Clock chip, U40, and the optionalE2PROM, U37. If neither of these devices is fitted, then these 2 lines are also available on the I/OExpansion Connector P14 and are free for other uses.

5.20.1 Real Time ClockU40 is a position that accepts a Philips PCF8583 I2C Real Time Clock. The standard Pluto 5 Controllerhas a socket fitted in this position along with the 32.768KHz Crystal, X2. However, the PCF8583 IC isNOT fitted as standard but is available as an optional extra or may be fitted by the user.

The I2C Slave Address of the RTC is as follows:

Table 13. I2C Slave Addresses for RTC, U40

READ: 0xA1WRITE: 0xA0

5.20.2 E2PROMU37 position is fitted with a socket that accepts an “Industry Standard” E2PROM, 24C04 (512 bytes) or24C08 (1024 bytes) with pin 7, which serves a different function on devices from differentmanufacturers, connected to GND. The Pluto 5 Controller Boards, as standard, do not have anE2PROM fitted but they are available as an optional extra or may be fitted by the user.

We strongly recommend that, if a user supplies or fits his own devices, that only NM24C04 orNM24C08 devices should be used (manufactured by Fairchild or National Semiconductor). Hebercannot offer Technical Support for the use of devices from alternate manufacturers.

To avoid a clash of I2C addressing between the PCF8583 RTC and the 24Cnn E2PROM, A2 (Pin 3) ofthe E2PROM is strapped to Vcc and A0/A1 to GND and this socket is restricted to accepting devicesno larger than the 24C08. Note, however, that there is no such size restriction on the devices that maybe connected via P13, the External I2C Bus Connector.

The I2C Slave Address of each of the 256 byte “Page Blocks” in the E2PROM, U37, is as follows:

Table 14. I2C Slave Addresses for E2PROM, U37

BLOCK 024C04 or 24C08

BLOCK 124C04 or 24C08

BLOCK 224C08 only

BLOCK 324C08 only

READ 0xA9 0xAB 0xAD 0xAFWRITE 0xA8 0xAA 0xAC 0xAE

Page 25: Pluto 5 Controller Manual - Heber

Page 20

Document No. 80-15151 Issue 6 HEBER LTD

6 MACHINE OPERATION

This section discusses how various standard amusement machine functions can be implemented.

6.1 Driving Reels

Up to six 12V Stepper Motor Reel Mechanisms may be connected to the “REEL” connector, P7. +12Voutputs are available for the motor common connection and GND/Vcc are available for the Optosupply. A 6*6 subset of the Lamp Multiplex is configured so up to 6 lamps per reel may beaccommodated, in either “sinking” or “sourcing” mode (depending on the wiring of the ReelMechanism. 6 inputs, IP0-5, are provided for the Opto Inputs

When driving stepper motor reels, because the maximum (static) current load of each winding is400mA (assuming 30Ω, 12V windings), it is important to connect the motors to distribute the loadevenly amongst the TPIC6259 driver chips.

The recommended method of connection is to wire the reel motors as follows:

Table 15. Recommended Reel Stepper Motor Drive Connections

REEL 1 OP0-3REEL 2 OP4-7REEL 3 OP8-11REEL 4 OP12-15REEL 5 OP16-19REEL 6 OP20-23

This guarantees that a maximum of 3 motor windings are driven simultaneously by any one TPIC6259device which is within the ratings of the device even under the worst case of a reel being stationaryand unchopped. Of course, when the motor is running or is being chopped the average current dropssignificantly.

Extra reels could be connected via pins on the other connectors. Providing the software chops thecurrent to the reels when they are not spinning, an extra 2 reels can be wired to OP24-27 andOP28-31 and should allow the TPIC6259s to remain within their ratings.

NB: The +12V outputs on P7 Pins 45-50 are fed directly from the +12V Input to the Pluto 5 Board onP3, Pin 4. It does not go via Fuse F1 on the board.

6.2 Reading the DIL Switches

The state of the DIL Switches may be read at any time by reading the memory locations as describedin Section 5.12.

6.3 Reading the Switch Inputs

The 32 switch inputs may be read at any time by reading the memory locations as described inSection 5.11 above.

In most applications, these inputs should be debounced in software. A typical debounce algorithmmight be to read the switches every 1mS, but only register a change of state on the input after it hasbeen stable for 3 consecutive readings.

It is possible to implement, say, a 256 multiplexed switch input array by using, 8 of the Open DrainOutputs OP0-63 as strobes and 8 of the Inputs IP0-31. In this case, a diode would need to beconnected in series with each switch.

Page 26: Pluto 5 Controller Manual - Heber

Page 21

Document No. 80-15151 Issue 6 HEBER LTD

6.4 Interfacing to Coin & Note Acceptors

Most Coin or Note Acceptors have open collector (“sink to ground”) outputs. These may be connecteddirectly to any of the Pluto 5 Inputs (IP0-31). Mechanism “Enable” or “Control” inputs may usually bedriven directly from any of the Pluto 5 Open Drain Output lines (OP0-63).

6.5 Interfacing to Coin Payout Mechanisms

Payout Hoppers that require relatively low drive currents, e.g. Coin Controls Universal Hopper, may bedriven directly from an Open Drain Output. Higher current devices, such as 50Vac or 24Vdc PayoutSolenoids, should be driven using Open Drain Outputs via a suitable Triac or Relay Interface Card.Heber produces a number of suitable interfaces.

6.6 Driving Vacuum Fluorescent Displays (VFD)

The standard VFD/Linewriter display used in most Gaming/Amusement Machines is driven by 3 TTLlevel signals, Clock, Data and Reset.

Connector P12 has 6 TTL level outputs which could drive up to 2 display modules.

The mapping of these outputs as the LSB of 6 bytes makes it convenient for the software to implementthe bitwise drive required.

6.7 Using the External I2C Bus

Connector P13 is intended for driving external boards containing I2C Bus components. A common usefor this could be the provision of a removable E2PROM Module for use in Spain or any other countrywith a similar requirement.

Heber have available a small PCB containing a NM24C04 or NM24C08 E2PROM that plugs directly onto P13.

On this connector, the SDA line is driven by the Open Drain Output, AUX7 and may be read by the68340 Timer Module as the (inverted) TGATE2- signal.

Similarly, the SCL line is driven by AUX6 and read by TGATE1.

6.8 Driving Meters

Electromechanical Meters or Counters should be 12V DC parts. The common +12V supply to themshould be the Vmeter+ supply from Connector P9 (“I/O 2”), pin B17 and each should be driven by anOpen Drain Output (OP0-63).

As the meter is pulsed ON, the software should check that the Vmeter Current Sense Input hasoperated, i.e. that pin PORTB4 has gone high.

Because of possible delays in responding to a meter being turned on it is recommended that thesoftware checks the current sense pin immediately before the meter is turned OFF at the end of apulse. To detect tampering or a failure of the current sense circuitry, the software should also checkthat the current sense pin goes LOW when no meter is operated.

6.9 Making Sounds

Loudspeaker outputs on connector P10 are bridge driven, so do NOT connect either connection of aloudspeaker to ground or to any other loudspeaker drive. Ideally 8Ω loudspeaker(s) should be used,but higher impedance components could be used without any risk of damage to the amplifier. The useof 3 or 4ohm loudspeakers should be avoided.

Page 27: Pluto 5 Controller Manual - Heber

Page 22

Document No. 80-15151 Issue 6 HEBER LTD

It is possible to run the sound in the following modes:

6.9.1 Single Channel/Single Speaker (Mono) ModeThis is the lowest cost option, using the standard Pluto 5 Board with a single loudspeaker.

The optional SFX Channel 2, U39, is not fitted and only SFX Channel 1, U8, is operational. A singleloudspeaker is connected to LS1 pins (1 & 2) only. Pins 3,4,5 should be left open.

6.9.2 Dual Channel/Dual Speaker (Stereo) ModeIn Stereo Mode, the optional second channel IC U39 is fitted and 2 loudspeakers are used, connectedto LS1 and LS2 pins. Pin 3 is left open. Channel 1 Volume Control will adjust the level of LS1, Channel2 Volume Control will adjust the level of LS2.

In this mode true stereo sound effects may be reproduced, although the subjective effect heard by theplayer will depend upon the placement of the loudspeakers in the cabinet.

6.9.3 Known DMA ProblemsThe “E” version of the Motorola 68340 mask that is current at the time of this manual being written(MC68340PV16E, Mask # 2G67F) exhibits a DMA fault which can cause audible disturbances on asound effect.

This disturbance occurs when the memory area being transferred to the SFX Register in the FPGAincludes the hexadecimal address range xxx3 FFxx. (x meaning any hexadecimal digit).

Thus, to avoid this problem occurring, precautions should be taken when linking sound effect modulesInto the final EPROM map. We suggest that, programme and EPROM size permitting, the area fromhex 0000 0000 to 0003 FFFF (256Kbytes) be reserved for the executable portion of the code, withsound effects commencing at hex address 0004 0000. If the total EPROM size exceeds 1Mbyte, thenno sound effect should include data in the range 0013 FF00 to 0013 FFFF. Similarly, with largerEPROM maps, regions at 0023 FFxx, 0033 FFxx, etc should also be avoided.There is NO problem with code execution in these areas, the only difficulty occurs when a Sound DMAtransfer passes through these regions.

We believe that these problems are reduced or eliminated when the Function Code Register (FCR)in the DMA Module is initialised to value 0xDD.

6.10 Using Multiplexed Lamps

On all Multiplex lamp outputs, the Column Drives, LC0-15, SINK current to ground and the RowDrives, LR0-15, SOURCE current from the Lamp Supply (+36V or +48V). Thus, any lamps should beconnected between a Row and a Column drive with their series diodes orientated with the cathodetowards the Column Drive.

The choice of operation at 36V or 48V is determined by the Power Supply and the software. Whenrunning at 48V, the software will sequentially drive all 16 Columns, LC0-15, on a 1/16 duty cycle, eachcolumn being ON for 1mS and OFF for 15.

When running at 36V, the software will sequentially drive only the first 8 Columns (LC0-7) on a 1/8duty cycle, each column being ON for 1mS and OFF for 7.

The Lamp Multiplex Drive Circuitry is designed to drive 12V, 100mA bulbs. However, it is permissiblefor a small number (up to 16) of positions to drive either a higher power bulb (12V, 180ma) or a pair of100mA bulbs. These "high load" positions should be arranged such that no more than one is on anyone Row or Column drive.

6.11 Using Multiplexed LEDs

The multiplexed LED drive circuit is intended to be used with Common Cathode digits, either 7segment plus decimal point or 14 segment. The common cathode connection of each digit should be

Page 28: Pluto 5 Controller Manual - Heber

Page 23

Document No. 80-15151 Issue 6 HEBER LTD

connected to a digit drive output, DIG0-15, on connector P5. Each digit drive output can drive two 7Segment Digits, the segment anodes for one connecting to drive SEG0-7 and the other to SEG8-15.By convention, segment “a” would connect to SEG0 or SEG8.

Alternatively, 14 segment starburst digits can be used, in which case each digit output would drive onedigit and the 14 segment anodes should each be connected to one of the segment drive lines, SEG0-13.

The LED Digit drive circuitry shares the same Current Sink transistors as the Lamp Column drives.Thus, if the system is being driven in a 1/8 duty cycle to allow a 36V Lamp Supply, only Digit drivelines DIG0-7 are active (or the board is a Pluto 5 128/16). In this case only 16 Seven Segment LEDdigits may be driven from the controller.

6.12 Using the Multiplex Expansion Connector

The outputs on P11 are all CMOS signals swinging between GND and +12V. These signals may beconnected to Pluto 5 Multiplex Expansion Boards to increase the Lamp and/or LED drive capability ofthe system.

See the PLUTO 5 MULTIPLEX EXPANSION BOARD USER MANUAL for details of connection andoperation.

6.13 Adding Video Capabilities

A Calypso 16 Video Card is available from Heber Ltd. which plugs directly onto the Pluto 5 board viathe 2 DIN41612 connectors P14 and P15.

See the CALYPSO 16 USER MANUAL for details.

The Calypso 16 Video Card supersedes the Pluto 5 CGA/VGA Video Card. For further information onthe Pluto 5 CGA/VGA Video Card refer to the PLUTO 5 CGA/VGA BOARD USER MANUAL.

Page 29: Pluto 5 Controller Manual - Heber

Page 24

Document No. 80-15151 Issue 6 HEBER LTD

7 SOFTWARE DEVELOPMENTA number of options exist for the development and debug of software for use on Pluto 5.

Software will normally be generated using a Cross Assembler, Cross Compiler and Linker package. Asuitable package is included with the Pluto 5 Development Kit.

When software has been successfully compiled, assembled and linked, it may be tested anddebugged using the Background Debug Mode facility built in to the 68340 Processor.

For full details of debugging, refer to the PLUTO 5 DEVELOPMENT KIT QUICK START GUIDE andother documentation supplied with the Development Kit.

Page 30: Pluto 5 Controller Manual - Heber

Page 25

Document No. 80-15151 Issue 6 HEBER LTD

8 CONNECTOR TYPES AND PIN OUTS

8.1 Schedule of Connector Types

There are two types of Pluto 5 Board with either Ultrex or Box Header connectors, and 3 other familiesof connectors:

• Pluto 5 with Ultrex connectors is referred to as Pluto 5U• Pluto 5 with Box Header connectors is referred to as Pluto 5B

Pluto 5U uses the following 4 different families of connectors for connection to the cableform in themachine:

• AMPMTA-100. 2.54mm single in-line headers with friction lock and polarisation.• AMP MTA-156. 3.96mm single in-line headers with friction lock and polarisation.• AMP Ultrex. 2.54mm dual row headers.• 25 way “D” Type

Pluto 5B uses the following 4 different families of connectors for connection to the cableform in themachine:

• AMPMTA-100. 2.54mm single in-line headers with friction lock and polarisation.• AMP MTA-156. 3.96mm single in-line headers with friction lock and polarisation.• Tyco Box Header 2.54mm dual row headers• 25 way “D” Type

The actual part numbers of the board headers fitted to the Pluto 5 PCBs along with the part numbersof suitable mating (cableform) parts are given in the following tables:

Table 16. AMP Ultrex Connector Part Numbers

Ident Description PCB HeaderAMP Part No.

AMP IDC Connector Part Number

28-24 AWG WireP5 32W Ultrex 3-172870-2 3-172866-2P7 50W Ultrex 5-172870-0 5-172866-0P8 40W Ultrex 4-172870-0 4-172866-0P9 34W Ultrex 3-172870-4 3-172866-4

Table 17. Tyco Box Header Connector Part Numbers

Ident Description PCB HeaderTyco Part No.

Tyco IDC Connector Part Number

28-24 AWG WireP5 34W Box Header 7-1437061-5 102387-8P7 50W Box Header 9-1437061-5 102387-0P8 40W Box Header 8-1437061-5 102387-9P9 34W Box Header 7-1437061-5 102387-8

Page 31: Pluto 5 Controller Manual - Heber

Page 26

Document No. 80-15151 Issue 6 HEBER LTD

Table 18. AMP MTA-100 Connector Part Numbers

Ident Description PCB HeaderAMP Part No.

AMP IDC Connector Part Number

24 AWG (0.22mm2)(Colour Natural)

22 AWG Wire(0.35mm2)(Colour Red)

P1 6W MTA-100 640456-6 640621-6 640620-6P4 18W MTA-100 1-640456-8 1-640621-8 1-640620-8P6 16W MTA-100 1-640456-6 1-640621-6 1-640620-6P10 5W MTA-100 640456-5 640621-5 640620-5P11 7W MTA-100 640456-7 640621-7 640620-7P12 8W MTA-100 640456-8 640621-8 640620-8P13 4W MTA-100 640456-4 640621-4 640620-4

Table 19. AMP MTA-156 Connector Part Numbers

Ident Description PCB HeaderAMP Part No.

AMP IDC Connector Part Number

24 AWG (0.22mm2)(Colour Natural)

20 AWG Wire(0.5mm2)(Colour Yellow)

P3 6W MTA-156 640388-6 640429-6 640427-6

The above MTA-100 and MTA-156 IDC Connector Part Numbers are for illustration and are of the“Feed-Through Receptacle without Polarising Tabs” type. A number of alternatives exist that couldalso be used, for example “Closed-End” types. Please consult the relevant AMP information for anexhaustive list. If you have Internet Access, the information is also available on the AMP Web Site athttp://www.amp.com/.

Strain relief covers are also available.

8.2 P1 – RS232 Channel A

Reference: P1Type: Header 6W AMP MTA-100Description: RS232 Channel A

1 GND2 RXA Input to Pluto 53 TXA Output from Pluto 54 CTSA Input to Pluto 55 RTSA Output from Pluto 56 +12V

Page 32: Pluto 5 Controller Manual - Heber

Page 27

Document No. 80-15151 Issue 6 HEBER LTD

8.3 P2 – Dataport (RS232 Channel B)

Reference: P2Type: 25W ‘D’ SocketDescription: BACTA Dataport / RS232 Channel B

nc 114 nc

RXB (Input to Pluto 5) 215 nc

TXB (Output from Pluto 5) 316 nc

CTSB (Input to Pluto5) 417 nc

RTSB (Output from Pluto 5) 518 GND

nc 619 nc

GND 720 nc

nc 821 nc

nc 922 nc

nc 1023 nc

-12V 1124 nc

nc 1225 +12V

nc 13

8.4 P3 – Power Input

Reference: P3Type: Header 6W AMP MTA-156Description: Power

1 -12V Neg supply for RS232 buffers2 GND Ground3 GND Ground4 +12V Main supply5 GND Ground6 Vmpx+ Lamp MPX supply, +36V or +48V

Page 33: Pluto 5 Controller Manual - Heber

Page 28

Document No. 80-15151 Issue 6 HEBER LTD

8.5 P4 – Multiplexed Lamp Sinks

Reference: P4Type: Header 18W AMP MTA-100Description: Lamp Columns/Sinks

1 LC0 Lamp Column/Sink 02 LC1 Lamp Column/Sink 13 LC2 Lamp Column/Sink 24 LC3 Lamp Column/Sink 35 LC4 Lamp Column/Sink 46 LC5 Lamp Column/Sink 57 LC6 Lamp Column/Sink 68 LC7 Lamp Column/Sink 79 LC8* Lamp Column/Sink 8 (PLUTO 5 256/32 only)10 LC9* Lamp Column/Sink 9 (PLUTO 5 256/32 only)11 LC10* Lamp Column/Sink 10 (PLUTO 5 256/32 only)12 LC11* Lamp Column/Sink 11 (PLUTO 5 256/32 only)13 LC12* Lamp Column/Sink 12 (PLUTO 5 256/32 only)14 LC13* Lamp Column/Sink 13 (PLUTO 5 256/32 only)15 LC14* Lamp Column/Sink 14 (PLUTO 5 256/32 only)16 LC15* Lamp Column/Sink 15 (PLUTO 5 256/32 only)17 nc No Connection18 nc No Connection

* Column Sinks LC8-15 are omitted on Pluto 5 128/16

8.6 P5 Ultrex – Multiplexed LEDs

Reference: P5Type: Header 32W AMP UltrexDescription: LED - Drive for 16 or 32 seven-segment LED Digits.

Cathodes, Digit 0 DIG0 A1 B1 DIG1 Cathodes, Digit 1Cathodes, Digit 2 DIG2 A2 B2 DIG3 Cathodes, Digit 3Cathodes, Digit 4 DIG4 A3 B3 DIG5 Cathodes, Digit 5Cathodes, Digit 6 DIG6 A4 B4 DIG7 Cathodes, Digit 7Cathodes, Digit 8 DIG8 A5 B5 DIG9 Cathodes, Digit 9Cathodes, Digit 10 DIG10 A6 B6 DIG11 Cathodes, Digit 11Cathodes, Digit 12 DIG12 A7 B7 DIG13 Cathodes, Digit 13Cathodes, Digit 14 DIG14 A8 B8 DIG15 Cathodes, Digit 15Anodes, Segment 0 SEG0 A9 B9 SEG1 Anodes, Segment 1Anodes, Segment 2 SEG2 A10 B10 SEG3 Anodes, Segment 3Anodes, Segment 4 SEG4 A11 B11 SEG5 Anodes, Segment 5Anodes, Segment 6 SEG6 A12 B12 SEG7 Anodes, Segment 7Anodes, Segment 8 SEG8* A13 B13 SEG9* Anodes, Segment 9Anodes, Segment 10 SEG10* A14 B14 SEG11* Anodes, Segment 11Anodes, Segment 12 SEG12* A15 B15 SEG13* Anodes, Segment 13Anodes, Segment 14 SEG14* A16 B16 SEG15* Anodes, Segment 15

* Common Cathode Drives DIG8-15 are omitted on Pluto 5 128/16

Page 34: Pluto 5 Controller Manual - Heber

Page 29

Document No. 80-15151 Issue 6 HEBER LTD

8.7 P5 Box Header – Multiplexed LEDs

Reference: P5Type: Header 34W Tyco Box HeaderDescription: LED - Drive for 16 or 32 seven-segment LED Digits.

Not Used 1 2 Not UsedCathodes, Digit 0 DIG0 3 4 DIG1 Cathodes, Digit 1Cathodes, Digit 2 DIG2 5 6 DIG3 Cathodes, Digit 3Cathodes, Digit 4 DIG4 7 8 DIG5 Cathodes, Digit 5Cathodes, Digit 6 DIG6 9 10 DIG7 Cathodes, Digit 7Cathodes, Digit 8 DIG8 11 12 DIG9 Cathodes, Digit 9Cathodes, Digit 10 DIG10 13 14 DIG11 Cathodes, Digit 11Cathodes, Digit 12 DIG12 15 16 DIG13 Cathodes, Digit 13Cathodes, Digit 14 DIG14 17 18 DIG15 Cathodes, Digit 15Anodes, Segment 0 SEG0 19 20 SEG1 Anodes, Segment 1Anodes, Segment 2 SEG2 21 22 SEG3 Anodes, Segment 3Anodes, Segment 4 SEG4 23 24 SEG5 Anodes, Segment 5Anodes, Segment 6 SEG6 25 26 SEG7 Anodes, Segment 7Anodes, Segment 8 SEG8* 27 28 SEG9* Anodes, Segment 9Anodes, Segment 10 SEG10* 29 30 SEG11* Anodes, Segment 11Anodes, Segment 12 SEG12* 31 32 SEG13* Anodes, Segment 13Anodes, Segment 14 SEG14* 33 34 SEG15* Anodes, Segment 15

* Common Cathode Drives DIG8-15 are omitted on Pluto 5 128/16

8.8 P6 – Multiplexed Lamps Sources

Reference: P6Type: Header 16W AMP MTA-100Description: Lamp Rows/Sources

1 LR0 Lamp Row/Source 02 LR1 Lamp Row/Source 13 LR2 Lamp Row/Source 24 LR3 Lamp Row/Source 35 LR4 Lamp Row/Source 46 LR5 Lamp Row/Source 57 LR6 Lamp Row/Source 68 LR7 Lamp Row/Source 79 LR8 Lamp Row/Source 810 LR9 Lamp Row/Source 911 LR10 Lamp Row/Source 1012 LR11 Lamp Row/Source 1113 LR12 Lamp Row/Source 1214 LR13 Lamp Row/Source 1315 LR14 Lamp Row/Source 1416 LR15 Lamp Row/Source 15

Page 35: Pluto 5 Controller Manual - Heber

Page 30

Document No. 80-15151 Issue 6 HEBER LTD

8.9 P7 Ultrex – Reels

Reference: P7Type: Header 50W AMP UltrexDescription: Reels - Connector for 6 Stepper Motor Reel Mechanisms

Lamp Column 0 LC0 A1 B1 LC1 Lamp Column 1Lamp Column 2 LC2 A2 B2 LC3 Lamp Column 3Lamp Column 4 LC4 A3 B3 LC5 Lamp Column 5

Lamp Row 0 LR0 A4 B4 LR1 Lamp Row 1Lamp Row 2 LR2 A5 B5 LR3 Lamp Row 3Lamp Row 4 LR4 A6 B6 LR5 Lamp Row 5

GND A7 B7 VCCOpen Drain Output 0 OP0 A8 B8 OP1 Open Drain Output 1Open Drain Output 2 OP2 A9 B9 OP3 Open Drain Output 3Open Drain Output 4 OP4 A10 B10 OP5 Open Drain Output 5Open Drain Output 6 OP6 A11 B11 OP7 Open Drain Output 7Open Drain Output 8 OP8 A12 B12 OP9 Open Drain Output 9Open Drain Output 10 OP10 A13 B13 OP11 Open Drain Output 11Open Drain Output 12 OP12 A14 B14 OP13 Open Drain Output 13Open Drain Output 14 OP14 A15 B15 OP15 Open Drain Output 15Open Drain Output 16 OP16 A16 B16 OP17 Open Drain Output 17Open Drain Output 18 OP18 A17 B17 OP19 Open Drain Output 19Open Drain Output 20 OP20 A18 B18 OP21 Open Drain Output 21Open Drain Output 22 OP22 A19 B19 OP23 Open Drain Output 23

Input 0 IP0 A20 B20 IP1 Input 1Input 2 IP2 A21 B21 IP3 Input 3Input 4 IP4 A22 B22 IP5 Input 5

+12V A23 B23 +12V+12V A24 B24 +12V+12V A25 B25 +12V

Page 36: Pluto 5 Controller Manual - Heber

Page 31

Document No. 80-15151 Issue 6 HEBER LTD

8.10 P7 Box Header – Reels

Reference: P7Type: Header 50W Box HeaderDescription: Reels - Connector for 6 Stepper Motor Reel Mechanisms

Lamp Column 0 LC0 1 2 LC1 Lamp Column 1Lamp Column 2 LC2 3 4 LC3 Lamp Column 3Lamp Column 4 LC4 5 6 LC5 Lamp Column 5

Lamp Row 0 LR0 7 8 LR1 Lamp Row 1Lamp Row 2 LR2 9 10 LR3 Lamp Row 3Lamp Row 4 LR4 11 12 LR5 Lamp Row 5

GND 13 14 VCCOpen Drain Output 0 OP0 15 16 OP1 Open Drain Output 1Open Drain Output 2 OP2 17 18 OP3 Open Drain Output 3Open Drain Output 4 OP4 19 20 OP5 Open Drain Output 5Open Drain Output 6 OP6 21 22 OP7 Open Drain Output 7Open Drain Output 8 OP8 23 24 OP9 Open Drain Output 9Open Drain Output 10 OP10 25 26 OP11 Open Drain Output 11Open Drain Output 12 OP12 27 28 OP13 Open Drain Output 13Open Drain Output 14 OP14 29 30 OP15 Open Drain Output 15Open Drain Output 16 OP16 31 32 OP17 Open Drain Output 17Open Drain Output 18 OP18 33 34 OP19 Open Drain Output 19Open Drain Output 20 OP20 35 36 OP21 Open Drain Output 21Open Drain Output 22 OP22 37 38 OP23 Open Drain Output 23

Input 0 IP0 39 40 IP1 Input 1Input 2 IP2 41 42 IP3 Input 3Input 4 IP4 43 44 IP5 Input 5

+12V 45 46 +12V+12V 47 48 +12V+12V 49 50 +12V

Page 37: Pluto 5 Controller Manual - Heber

Page 32

Document No. 80-15151 Issue 6 HEBER LTD

8.11 P8 Ultrex – General I/O #1

Reference: P8Type: Header 40W AMP UltrexDescription: General Purpose I/O #1

Open Drain Output 24 OP24 A1 B1 OP25 Open Drain Output 25Open Drain Output 26 OP26 A2 B2 OP27 Open Drain Output 27Open Drain Output 28 OP28 A3 B3 OP29 Open Drain Output 29Open Drain Output 30 OP30 A4 B4 OP31 Open Drain Output 31Open Drain Output 32 OP32 A5 B5 OP33 Open Drain Output 33Open Drain Output 34 OP34 A6 B6 OP35 Open Drain Output 35Open Drain Output 36 OP36 A7 B7 OP37 Open Drain Output 37Open Drain Output 38 OP38 A8 B8 OP39 Open Drain Output 39Open Drain Output 40 OP40 A9 B9 OP41 Open Drain Output 41Open Drain Output 42 OP42 A10 B10 OP43 Open Drain Output 43Open Drain Output 44 OP44 A11 B11 OP45 Open Drain Output 45Open Drain Output 46 OP46 A12 B12 OP47 Open Drain Output 47

GND A13 B13 GNDInput 20 IP20 A14 B14 IP21 Input 21Input 22 IP22 A15 B15 IP23 Input 23Input 24 IP24 A16 B16 IP25 Input 25Input 26 IP26 A17 B17 IP27 Input 27Input 28 IP28 A18 B18 IP29 Input 29Input 30 IP30 A19 B19 IP31 Input 31

+12V A20 B20 +12V

Page 38: Pluto 5 Controller Manual - Heber

Page 33

Document No. 80-15151 Issue 6 HEBER LTD

8.12 P8 Box Header – General I/O #1

Reference: P8Type: Header 40W Box HeaderDescription: General Purpose I/O #1

Open Drain Output 24 OP24 1 2 OP25 Open Drain Output 25Open Drain Output 26 OP26 3 4 OP27 Open Drain Output 27Open Drain Output 28 OP28 5 6 OP29 Open Drain Output 29Open Drain Output 30 OP30 7 8 OP31 Open Drain Output 31Open Drain Output 32 OP32 9 10 OP33 Open Drain Output 33Open Drain Output 34 OP34 11 12 OP35 Open Drain Output 35Open Drain Output 36 OP36 13 14 OP37 Open Drain Output 37Open Drain Output 38 OP38 15 16 OP39 Open Drain Output 39Open Drain Output 40 OP40 17 18 OP41 Open Drain Output 41Open Drain Output 42 OP42 19 20 OP43 Open Drain Output 43Open Drain Output 44 OP44 21 22 OP45 Open Drain Output 45Open Drain Output 46 OP46 23 24 OP47 Open Drain Output 47

GND 25 26 GNDInput 20 IP20 27 28 IP21 Input 21Input 22 IP22 29 30 IP23 Input 23Input 24 IP24 31 32 IP25 Input 25Input 26 IP26 33 34 IP27 Input 27Input 28 IP28 35 36 IP29 Input 29Input 30 IP30 37 38 IP31 Input 31

+12V 39 40 +12V

Page 39: Pluto 5 Controller Manual - Heber

Page 34

Document No. 80-15151 Issue 6 HEBER LTD

8.13 P9 Ultrex – General I/O #2

Reference: P9Type: Header 34W AMP UltrexDescription: General Purpose I/O #2

Open drain Output 48 OP48 A1 B1 OP49 Open drain Output 49Open drain Output 50 OP50 A2 B2 OP51 Open drain Output 51Open drain Output 52 OP52 A3 B3 OP53 Open drain Output 53Open drain Output 54 OP54 A4 B4 OP55 Open drain Output 55Open drain Output 56 OP56 A5 B5 OP57 Open drain Output 57Open drain Output 58 OP58 A6 B6 OP59 Open drain Output 59Open drain Output 60 OP60 A7 B7 OP61 Open drain Output 61Open drain Output 62 OP62 A8 B8 OP63 Open drain Output 63

GND A9 B9 GNDInput 6 IP6 A10 B10 IP7 Input 7Input 8 IP8 A11 B11 IP9 Input 9Input 10 IP10 A12 B12 IP11 Input 11Input 12 IP12 A13 B13 IP13 Input 13Input 14 IP14 A14 B14 IP15 Input 15Input 16 IP16 A15 B15 IP17 Input 17Input 18 IP18 A16 B16 IP19 Input 19

+12V A17 B17 Vmeter Current Sensing +12V

8.14 P9 Box Header – General I/O #2

Reference: P9Type: Header 34W Box HeaderDescription: General Purpose I/O #2

Open drain Output 48 OP48 1 2 OP49 Open drain Output 49Open drain Output 50 OP50 3 4 OP51 Open drain Output 51Open drain Output 52 OP52 5 6 OP53 Open drain Output 53Open drain Output 54 OP54 7 8 OP55 Open drain Output 55Open drain Output 56 OP56 9 10 OP57 Open drain Output 57Open drain Output 58 OP58 11 12 OP59 Open drain Output 59Open drain Output 60 OP60 13 14 OP61 Open drain Output 61Open drain Output 62 OP62 15 16 OP63 Open drain Output 63

GND 17 18 GNDInput 6 IP6 19 20 IP7 Input 7Input 8 IP8 21 22 IP9 Input 9Input 10 IP10 23 24 IP11 Input 11Input 12 IP12 25 26 IP13 Input 13Input 14 IP14 27 28 IP15 Input 15Input 16 IP16 29 30 IP17 Input 17Input 18 IP18 31 32 IP19 Input 19

+12V 33 34 Vmeter Current Sensing +12V

Page 40: Pluto 5 Controller Manual - Heber

Page 35

Document No. 80-15151 Issue 6 HEBER LTD

8.15 P10 – Loudspeakers

Reference: P10Type: Header 5W AMP MTA-100Description: Loudspeakers

1 LS1+ Loudspeaker, Channel 12 LS1- Loudspeaker, Channel 13 MIX Channel 2 mixer input4 LS2+ Loudspeaker, Channel 25 LS2- Loudspeaker, Channel 2

WARNING: Loudspeaker outputs are bridge driven and must NOT be connected ground.

8.16 P11 – Multiplex Expansion

Reference: P11Type: Header 7W AMP MTA-100Description: Multiplex Expansion

1 MPX1_DATA_A 12V CMOS Output2 MPX2_DATA_A 12V CMOS Output3 MPX_STR_A 12V CMOS Output4 MPX_STR_B 12V CMOS Output5 MPX_CLK 12V CMOS Output6 MPX_STR 12V CMOS Output7 MPX_OE 12V CMOS Output

8.17 P12 – Aux Outputs

Reference: P12Type: Header 8W AMP MTA-100Description: Aux. Outputs

1 GND2 AUX0 Open drain output, 150mA, 1K pull-up to +5V3 AUX1 Open drain output, 150mA, 1K pull-up to +5V4 AUX2 Open drain output, 150mA, 1K pull-up to +5V5 AUX3 Open drain output, 150mA, 1K pull-up to +5V6 AUX4 Open drain output, 150mA, 1K pull-up to +5V7 AUX5 Open drain output, 150mA, 1K pull-up to +5V8 +12V

Page 41: Pluto 5 Controller Manual - Heber

Page 36

Document No. 80-15151 Issue 6 HEBER LTD

8.18 P13 – External I2C Bus

Reference: P13Type: Header 4W AMP MTA-100Description: External I2C Bus

1 GND2 AUX7/SDA I2C SDA line, TTL Open Collector I/O, 1K Pull-up3 AUX6/SCL I2C SCL line, TTL Open Collector I/O, 1K Pull-up4 +5V

8.19 P14 – IO Expansion Card Connector

Reference: P14Type: DIN41612, C/2 Vertical PlugDescription: Connector for IO Expansion Boards

c b a1 D8 PORTA0 HALT-2 D9 PORTA1 CLKOUT3 D10 PORTA2 CS3-4 D11 PORTA3 RESET-5 D12 PORTA4 BERR-6 D13 PORTA5 A207 D14 A22 A238 D15 AS- A49 RXDA- (TTL) DS- A510 TXDA- (TTL) R/W- A611 CTSA- (TTL) DSACK0- A712 RTSA- (TTL) DSACK1- +12V13 A0 SIZ0 VCC14 A1 SIZ1 VCC15 A2 PB5 GND16 A3 PB6 GND

Page 42: Pluto 5 Controller Manual - Heber

Page 37

Document No. 80-15151 Issue 6 HEBER LTD

8.20 P15 – Memory Expansion Card Connector

Reference: P15Type: DIN41612, C/2 Socket VerticalDescription: Connector for Memory Expansion Boards

a b c1 A4 A5 A62 VCC A7 A83 VCC A9 A104 A3 A11 A125 A2 A13 A146 A1 A15 A167 GND A17 A188 GND A19 A20*9 FPGA0 A21 D1510 FPGA1 D14 D1311 FPGA2 D12 D1112 FPGA3 D10 D913 FPGA4 D8 D714 FPGA5 D6 D515 FPGA6 D1 D316 D0 D2 D4

* NB. - Pin c8, “A20” is in fact the connection to Pin 1 (ROM_P1) of the 2 on-board EPROMs, U1 &U2, and is driven by the FPGA.For all memory accesses, excluding those to the ROM/EPROM area mapped by CS0-, the FPGAroutes A20 to this pin.For all memory accesses to the ROM/EPROM area mapped by CS0-, the FPGA routes either Vcc,A19 or A20 to this pin, depending on the memory mode set in the FPGA.

See Section 5.6, “EPROM Sockets / EPROM Autoselect Feature” for details of operation.

8.21 P16 – Background Debug Mode Connector

Reference: P16Type: 10W Low Profile HeaderDescription: Background Debug Mode Connector

Only fitted to Software Development Boards

DS- 1 2 BERR-GND 3 4 BKPTGND 5 6 FREEZE

RESET- 7 8 IFETCHVCC 9 10 IPIPE

Page 43: Pluto 5 Controller Manual - Heber

Page 38

Document No. 80-15151 Issue 6 HEBER LTD

Figure 1 - Schematic Sheet 1 - Root Sheet

LR[0..15]

PORTA[0..7]

TXDB

© HEBER LTD, 1996-2002

CS3-

SHT 3 - FPGA

15084_3

CS_OP-CS_IP-

R/W-SIZ0DSACK0-EXTAL3.68MHZCS0-CS1-CS2-CS3-CLKOUTDREQ1-DREQ2-

RAM_WL-RAM_WU-RAM_OE-

ROM_OE-ROM_P1

MPX_CLKMPX_STRMPX_OE

MPX1_DATA_AMPX2_DATA_A

MPX_STR_DATA_A

SFX1_VCKSFX_CLK

D[0 ..15]

A[0..23]

RESET

SFX1_D[0..3]SFX2_D[0..3]

SFX2_VCK

ROM_P12

CS_TTL-

FPGA[0..6]

OP[0..63]

RAM_CS-

DSACK1-MPX_REF1

VREF

A[0..23]

PORTA[0..7]

RXDA

SHT 6 - OPEN DRAIN OUTPUTS

15084_6

RESET-CS_OP-

D[0..15]OP[0..63]

A[0..23]SEL[0..2]

RESET-

NMI-

PB5

SHT 12 - LAMP ROW SOURCES

15084_C

CLK_12VSTR_12VOE_12V

MPX1_A_12V

MPX1_B_12VMPX1_C_12VMPX1_D_12V

LR[0..15]

BERR-

SFX1_D[0..3]

SHT 7 - INPUTS/DIL SW

15084_7

D[0..15]

CS_IP-

IP[0..31]

SEL[0..2]

CLKOUT

DS-

EXTAL

MPX_REF1

SFX_CLK

CS_IP-

RESET

TXDA

SFX_CLK

MPX2_DATA_A

PB6

RTSB-

DREQ1-

SHT 13 - LED SEG DRIVES

15084_D

MPX_CLKMPX_STRMPX_OEMPX1_DATA_A

CLK_12VSTR_12VOE_12VMPX1_A_12V

STR_A_12V SEG[0..15]

MPX1_B_12V

MPX1_C_12V

MPX1_D_12V

MPX_STR_DATA_AMPX2_DATA_A

SHT 11 - COL/DIG SINKS

15084_B

CLK_12VSTR_12VOE_12V

STR_A_12V

SEG[0..15]

LC[0..15]MPX_REF1MPX_REF2

CS_OP-

AS-VREF

FC3

TGATE2-

D[0..15]

RTSA- MPX_REF2

SFX2_VCK

MPX_CLK

CS3-

MPX_STR

RTSA-

SIZ1

RXDB

DREQ2-

RESET

SIZ0

TGATE2-PORTA[0..7]

AS-

D[0 ..15]

PB5

A[0..23]

TOUT2

3.68MHZ

MPX_OE

TGATE1-

CS_TTL-

PB0

POP4

MPX_STR_DATA_A

TXDA

PORTA[0..7]

CTSA-

DSACK0-

SHT 2 - MC68340 CPU

15084_2

R/W-SIZ0

DSACK0-EXTAL

3.68MHZCS0-CS1-CS2-CS3-

CLKOUTDREQ1-DREQ2-

D[0..15]

A[0..23]

METER_SENSENMI-

CTSA-RTSA-CTSB-RTSB-

PORTA[0..7]

SEL[0..2]

AS-DS-

DSACK1-SIZ1

FC3

PB5PB6

RXDA

RXDBTXDA

TXDB

TGATE1-TGATE2-

TOUT1TOUT2

POP4POP6

HALT-BERR-

RESET-PB0

PB6

METER_SENSE

CS0-

MPX1_DATA_A

D[0..15]

SIZ1

SHT 4 - EPROM/RAM

15084_4

D[0 ..15]

A[0..23]RAM_WL-RAM_WU-RAM_OE-

ROM_OE-ROM_P1

RAM_CS-

ROM_P12FPGA[0..6]

SHT 10 - RESET/BATT/RS232/I2C

15084_A

VREF

RAM_CS-

RESET

CTSA-RTSA-CTSB-RTSB-RXDATXDARXDBTXDBRESET-PB0

PORTA[0..7]

SEL[0..2]

SHT 5 - SOUND

15084_5

SFX_CLKSFX1_VCK

SFX1_D[0..3]

TOUT1POP6POP4

TOUT2SFX2_D[0..3]

SFX2_VCK

PORTA[0..7]

R/W-

D[0..15]

CS_OP-

CTSA-

CS1-

DSACK1-

A[0..23]

CS_IP-

RESET-

RESET-

R/W-

METER_SENSE

A[0..23]

CTSB-

MPX_REF2

IP[0..31]

FPGA[0..6]

RAM_CS-

POP6

TGATE1-

PORTA[0..7]

HALT-

LC[0..15]

DSACK0-

SHT 9 - CONNECTORS

15084_9

OP[0..63]

RESET-

TXDACTSA-RTSA-

IP[0..31]

AS-DS-R/W-DSACK0-DSACK1-SIZ0SIZ1

CS3-CLKOUT

RXDA

TGATE1-TGATE2-

PB5PB6

LC[0..15]

MPX1_B_12V

MPX1_D_12VMPX1_C_12V

LR[0..15]

BERR-HALT-

A[0..23]D[0..15]

PORTA[0..7]

CS_TTL-

RXDA

NMI-

SEG[0..15]

SHT 8 - +5V/CURRENT SENSE

15084_8

METER_SENSE

NMI-VREF

SFX_CLK

MPX_REF2MPX_REF1

PORTA[0..7]

HALT-

SIZ0

CS2-

56-15084 11r2

PLUTO 5 - ROOT SHEET

HEBER LTD.

Belvedere MillChalford, StroudGloucestershire GL6 8NTTel: 0453 886000 Fax: 0453 885013

A3

1 13Monday, August 11, 2003

Title

Size Document Number Rev

Date: Sheet of

CS_TTL-

DS-

CLKOUT

D[0 ..15]

SFX1_VCK

BERR-

TOUT1 SFX2_D[0..3]

Page 44: Pluto 5 Controller Manual - Heber

Page 39

Document No. 80-15151 Issue 6 HEBER LTD

Figure 2 - Schematic Sheet 2 - CPU

D13

A8

U7F

74HC14

13 12

32.768KHz

16.77MHz

R103680R

RXDB

PORTA[0..7]

C23100n

VCC

TCK

BERR-

A14

A13

DREQ1-

D11

SW3

SW PUSHBUTTON

N10

3K3*8 SIL

123456789

D1

POP45

GND

D8

A16

RTSB-

D5

C28100n

A7TXDB10

3.68MHZ 3

TCK

A19

LD2

GREEN

RESET-10

TOUT25

R/W-3,9

PB5

D12

BGACK-

NMI-8

A6

A20

RXDA9,10

TOUT15

GND

POP4

PORTA1PORTA7

D15

VCC

TDI

SIZ0

PORTA0

N15

3K3*8 SIL

123456789

PUSHBUTTON

PB0

CS0-

3.68MHZ

VCC

A17

A19

TXDA

DS-9

PORTA4

DREQ2- 3

METER_SENSE8

SIZ19

A5

DONE2-

R45

3K3

A3

A11

A5

DSACK1-

A21

D[0..15] 3,4,6,7,9D5

D14 A22

PORTA3N16

3K3*8 SIL

123456789

D0

A8

VCC

BERR-PP2 PP

GND

GND

A12

PORTA[0..7] 5,8,9,10RTSA-

PORTA5

D7

PP25 PP

LD1

RED

VCC

BKPT

RESET-

A2PORTA2

A20

D3

GND

METER_SENSE

CS1-LED

A11

D11

PB7A10

N17

3K3*8 SIL

123456789

AS-

PP3 PP

DONE1-

CS3-

D6

A23

CTSA-9,10

RESET-

PORTA3

A[0..23] 3,4,6,9

C24

100n

AS-9

PORTA2

A13

R44

3K3

A2

HALT-9

IFETCH

VCC

HALT-

A4

VCC

BR-

TGATE1-9

AS-

RESET-

D4

C32100n

VCC

GND

DSACK0-

PB6

A0

CS3-3,9

D4

TXDB

D8

PP4 PP

R/W-

BGACK-

C26100n

RXDB10

EXTAL3

PB7

A7

VCC

A9

LC3EMC FILTER

1 3

2

DSACK1-9

BACKGROUND DEBUG

TP9PAD

N7

3K3*8 SIL

123456789

CONTROLLED

PB6

BR-

PP1 PP

PORTA4

P16

LOW PROFILE HDR 10WFITTED FOR DEV. ONLY

12345678910

D7

DREQ1-3

PP24 PP

GND

VCC

A12

PB69

GND

VCC

D10

CLKOUT

C29100n

VCC

BG-

A9

A15

POP6

PORTA3

D3

D2

PP5

PP

VCC

D12

TP10PAD

TXDA9,10

GND

RTSB-10

VCC

A0

R/W-

PORTA6

VCC

A1

A22

PORTA5

C30100n

A21

PORTA6

D10

D9

PB5

RXDA

D13

TP13PAD

CS0-3

© HEBER LTD, 1996-2002

D2

A17

A10

C27100n

GND

DS-

PORTA7

TP11PAD

A18

A15

CTSB-10PORTA0

D1

VCC

METER_SENSE

DONE1-

GND

D[0..15]

BKPT

D14

D6

A4

C31100n

D15

TOUT1

VCC

TDO

DONE2-

A16

FREEZE

HALT-

A3

GND

IPIPE

TP12PAD

PB010

IEEE 1149.1 ACCESS

CTSA-

TOUT2

A18

N11

3K3*8 SIL

123456789

CS2-3

CONNECTOR

ON-BOARD

PP23 PP

TGATE2-9

BERR-9

CTSB-

CS1-3

PB5

VCC

PORTA2

SIZ03,9

VCC

A6

PORTA1

N9

3K3*8 SIL

123456789

BERR-

DREQ2-

VCC

GND

DS-

EXTAL

A[0..23]

D9

DSACK0-3,9

A14

RESET LED

SOFTWARE

56-15084 11r2

PLUTO 5 - CPU

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

2 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

VCC

U5

MC68340PV

144143142141

125124

1133738

48

63646566

123122121120117116115114

69707172

103104107105106

112111

999897

100101102108

87234589

10

1

33322829

2726

25242223

138137136135134133132131128126

39424344454647

515253555657606162

7 19 31 41 50 59 68 74 86 92 94 110

119

130

140

78 77 76 75 83 82 85 84

353436

808179

161514

131211

95

91

89

17

20

2190

93 6 18 30 40 49 54 58 67 73 88 96 109

118

127

129

139

D0D1D2D3

D14D15

A0A1A2

A10

A20A21A22A23

A24/PA0A25/PA1/IACK1A26/PA2/IACK2A27/PA3/IACK3A28/PA4/IACK4A29/PA5/IACK5A30/PA6/IACK6A31/PA7/IACK7

FC0FC1FC2FC3

ASDSR/WSIZ0SIZ1

DSACK0DSACK1

BERRHALTRESET

BRBGBGACKRMC

MODCK/PB0CS1/IRQ1/PB1CS2/IRQ2/PB2IRQ3/PB3CS3/IRQ4/PB4IRQ5/PB5IRQ6/PB6IRQ7/PB7

CS0/AVEC

RXDATXDACTSARTSA/OP0

RXRDYA/OP4TXRDYA/OP6

RXDBTXDBCTSBRTSB/OP1

D4D5D6D7D8D9

D10D11D12D13

A3A4A5A6A7A8A9

A11A12A13A14A15A16A17A18A19

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

TC

KTM

STD

ITD

O

BKPT

FR

EEZE

IPIP

EIF

ETC

H

TOUT2TIN2TGATE2

TOUT1TIN1TGATE1

DREQ1DACK1DONE1

DREQ2DACK2DONE2

CLKOUT

EXTAL

XTAL

X1

X2

SCLKVCCSYN

XFC

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

POP65

VCC

A1

D0

N8

3K3*8 SIL

123456789

CLKOUT3,9

GND

SIZ1

A23

R102680R

RESET-

C25100n

VCC

VCC

CS2-

RTSA-9,10

VCC

TMS

PB0

Page 45: Pluto 5 Controller Manual - Heber

Page 40

Document No. 80-15151 Issue 6 HEBER LTD

Figure 3 - Schematic Sheet 3 - FPGA

ROM_P12

D[0..15]2,4,6,7,9

FPGA[0..6] 4

FPGA5FPGA4

GND

FPGA2

A21

SFX1_D0

ROM_OE- 4

MPX_OE 13

SFX2_VCK 5

X1

14.7456MHz

SFX1_D3

GND

SFX1_D[0..3]

N14

3K3*8 SIL

123456789

SFX1_D1

D11

VCC

D9

MPX_STR 13

SFX_CLK5,8

ROM_P12 4

CS_TTL- 9

A6

U6

FPGA

121314151617181920212223242526272829303132

747372717069686766656463626160595857565554

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75

NCI/OI/OI/OI/OI/OGNDGNDI/OI/OI/OI/OI/OVCCVCCI/OI/OI/OI/OI/OI/O

I/OI/OI/OI/OI/OI/O

VCCVCC

MODEI/O

I/O(CLK)I/OI/O

GNDGND

I/OI/OI/OI/OI/OI/O

VCC

I/O I/O I/O I/O I/O I/O GN

DI/O I/O I/O I/O I/O VC

CI/O I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/OVC

C I/O I/O I/O I/O I/OG

ND I/O I/O I/O I/O I/O I/O I/O

FPGA2

R105

680R

CS_OP- 6

A[0..23]

RAM_OE- 4

SIZ02

FPGA6

GND

VCC

MPX2_DATA_A 13

FPGA0

A5

SFX2_D[0..3]

RAM_WL- 4

VCC

FPGA4

RAM_WU- 4

DREQ2-2

R/W-2

A0

C35100n

A1

SFX2_D3

R104

10M

CS2-2

DREQ1-2

GND

GND

A3

56-15084 11r2

PLUTO 5 - FPGA

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

3 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

VCC

FPGA0

A23

CS0-2

MPX_CLK 13

GND

SFX2_D0

SFX1_VCK5

RESET10

SFX1_D[0..3]

SFX2_D1

GND

VCC

FPGA3

VCC

GND

FPGA1

VCC

SFX2_D2

FPGA[0..6]

A7

GND

MPX1_DATA_A 133.68MHZ2

C3733p

A2

SFX1_D2

C33100n

A4

D8

D[0..15]

FPGA5

FPGA1D15

A20

CS_IP- 7

FPGA3

CS1-2

GND

CLKOUT2

EXTAL2

© HEBER LTD, 1996-2002

A19

D13

C36100n

CS3-2

GND

FPGA6

A22

GND

SFX2_VCK

D14

C34100n

MPX_STR_DATA_A 13

GND

D12

ROM_P1 4

D10

A[0..23]2

VCC

C3833p

VCCVCC

CS_TTL-

DSACK0-2,9

SFX2_D[0..3]

VCC

Page 46: Pluto 5 Controller Manual - Heber

Page 41

Document No. 80-15151 Issue 6 HEBER LTD

Figure 4 - Schematic Sheet 4 - Memory

ROM_P1

D9

U4

HM62256BLFP

109876543

25242123

226

1

272022

1112131516171819

1428

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14

WRCEOE

O0O1O2O3O4O5O6O7

GN

DVD

D

RAM_CS-10

OUT

A5

D12

D[0..15]

VCC

D5

A9

U2

EPROM

121110

98765

27262325

42829

32

3031

2422

32

1314151718192021

16

1

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18

OECE

VCC

D0D1D2D3D4D5D6D7

GND

VPP

A17

CS0-

56-15084 11r2

PLUTO 5 - MEMORY

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

4 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

VCC

A2

D4

D7

A9

MEM_CARD_PRESENT-

A1

0

D15

D13

FPGA0

A15

ROM_OE-

D9

P15B

DIN41612-48WTYPE "C/2" VERT SKT

B1

B3B4

B2

B5B6B7B8B9

B10B11B12B13B14B15B16

B1

B3B4

B2

B5B6B7B8B9B10B11B12B13B14B15B16

D8

P15C

DIN41612-48WTYPE "C/2" VERT SKT

C1

C3C4

C2

C5C6C7C8C9

C10C11C12C13C14C15C16

C1

C3C4

C2

C5C6C7C8C9C10C11C12C13C14C15C16

RAM_CS-10

VBATT

D0

OUT

U3

HM62256BLFP

109876543

25242123

226

1

272022

1112131516171819

1428

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14

WRCEOE

O0O1O2O3O4O5O6O7

GN

DVD

D

D1

A10

D2

U1

EPROM

121110

98765

27262325

42829

32

3031

2422

32

1314151718192021

16

1

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18

OECE

VCC

D0D1D2D3D4D5D6D7

GND

VPP

D6

A9

A14

FPGA1

GND

D14

----------------------------------- MEMORY EXPANSION CONNECTOR ----------------------------------------

A8

D[0 ..15]2,3,6,7,9

1

A3

A6

A13

RAM_WU-3

A7

A1

A10

1

ROM_OE-

A20

A13

D10

A11

A18

OUT

GND

FPGA4

READ 2*27C040

GND

A9

ROM_MAP_2

D12

A7

ROM_P13

ROM_MAP_1

A20

D8

D11

A14A14

A17

FPGA3

GND

A13

D7

A19

A4

NAME

A10

A4

A10

A14

0 A0

OUT

D4

A12

D15

OUT

A10

A19

C22100n

RAM_OE-3

FPGA[0..6]

P15A

DIN41612-48WTYPE "C/2" VERT SKT

A1

A3A4

A2

A5A6A7A8A9

A10A11A12A13A14A15A16

A1

A3A4

A2

A5A6A7A8A9A10A11A12A13A14A15A16

READ 1*27C801

D9

A4

D14

D5FPGA5

GND

A13

A18

ROM_OE-3

GND

FPGA1

A0

FPGA2

A4

A16

D3

GND

D15

A11

A5

D[0..15]

x

A2

A6

A1

OUT

A21

FPGA5

C21100n

A12

D14

VCC

D2

PINS 1,12 SET BY FPGA

A16

D11

A0/A19

A[0..23]

FUNCTION

READ 1*27C040

D10

LINES FPGA0-6 HAVE THE FOLLOWING DEFAULT FUNCTIONSA3

VBATT

GND

D11

1

GND

D5

A6

RAM_WL-3

A[0..23]2

D0

D2

A8

A11

A15

WU- (WRITE HIGH BYTE)

A3

A15

FPGA[0..6]3

GND

U3/U4 - 32K*8 STATIC RAMS, SOP

FPGA6

MODE

© HEBER LTD, 1996-2002

A15

VCC0

ROM_P1

A4

A11

A1

A15

EPROMS - 2*27C040 OR 2*27C801

NON-ROM CYCLE

D3

A1

A7

A8

A11

A7

D3

A7

A16

A5

FPGA2

A[0..23]2

A5

D7

A3

D13

A12

FPGA4

VBATT

A18

D10

ROM_P12

A12

A3

A17

D13

FPGA0

FPGA6

ROM_P12

A14

ROM_P1

D8

C19100n

(A20)

VCC

D0

0

D12

D6

RAM_CS- (CS- FOR EXPANSION RAM)A22

ROM_P13

A2

FPGA3WL- (WRITE LOW BYTE)

C20100n

GND

D1

A12

A5

ROM_P1

ROM_P123

I/O

VCC

A19

A6

A2

RAM_OE-3

RESET

A6

A9

D[0..15]2,3,6,7,9

VCC

A8

IN

VBATT

A2

A8

READ 2*27C801

D6

ROM_OE-3

A19

A13

D1D4

A[0..23]

Page 47: Pluto 5 Controller Manual - Heber

Page 42

Document No. 80-15151 Issue 6 HEBER LTD

Figure 5 - Schematic Sheet 5 - Sound

PORTA0

C39

100nSFX1_D[0..3]

+12V

SFX_CLK3

R1093K3

R11147K 2%

SFX_CLK

SFX1_S2

SFX2_D0GND

56-15084 11r2

PLUTO 5 - SOUND

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

5 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

C451/50

R11222K

PORTA[0..7]2,8,9,10

LS CONNECTOR

LS2-

GND

PORTA6

GND

C461/50

SFX2_S2

GND

POP4

U39

MSM6585

4567

12

15

121338

189

16

17 14

10

11

D0D1D2D3

S1S2

RESET

T1T2T3T4

VDD

GN

D

XT

XT VCK

AOUT

DAO

SAMPLED SOUND CHANNEL #1

POP42

SFX2_VCK

C4410n

LS2+

SFX1_D3

GND

SFX1_VCK

SFX2_D1

GND

R13122K

C50

220/16

TOUT1 2

PORTA[0..7]SFX1_S1

LS1+

SFX_CLK

GND

R108

3K3

PORTA7

R1133K3

POP62

C47

1/50

GND

R129

22K

PORTA[0..7]

SFX2_D[0..3]

GND

R110

3K3

SFX1_VCK3

SFX2_D[0..3]

PORTA1

POP6

C5110n

C48

1/50

PP6

PP

C43

100n

C49

1/50

© HEBER LTD, 1996-2002

SFX2_D2

LS1-

C40

100n

SFX2_S1

CH2_MIX

SFX1_D1

SFX_CLK3

GND

P10

HDR 5W AMP MTA-100

12345

R13047K 2%

GND

PP7

PP

SAMPLED SOUND CHANNEL #2

SFX2_VCK3

VCC

U8

MSM6585

4567

12

15

121338

189

16

17 14

10

11

D0D1D2D3

S1S2

RESET

T1T2T3T4

VDD

GN

D

XT

XT VCK

AOUT

DAO

SFX1_D[0..3]

SFX2_D3

TOUT2 2

+

-

+

-

+

U32

TDA7057AQ

4

13

11

8

10

3

1

5

7

129 6

VCC

SFX1_D0

SFX1_D2

Page 48: Pluto 5 Controller Manual - Heber

Page 43

Document No. 80-15151 Issue 6 HEBER LTD

Figure 6 - Schematic Sheet 6 - Outputs

GND

SEL2

U27

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

GND

GND

OP4

RESET-10

D7

© HEBER LTD, 1996-2002

SEL1

GND

OP52

SEL0

SEL[0..2] 7

GND

OP12

SEL1

OP61

OP25

D6

U25

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

OP[0..63] 9

GND

GND

SEL0

SEL1

OP42

OP59

OP11

VCC

OP19

56-15084 11r2

PLUTO 5 - OUTPUTS

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

6 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

OP43

U22

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

SEL1

A[0..23]

GND

OP35

GND

OP2

GND

SEL2

C4100n

D4

OP36

SEL2

GND

OP49

GND

GND

D3

OP39

C3100n

U7C

74HC14

5 6

GND

OP57

SEL1

OP50SEL0

VCC

SEL0

OP46

OP29

OP14

U7A

74HC14

1 2

GND

GND

OP10

OP60

OP16

OP26

GND

SEL2

OP6

GND

U24

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

SEL2

OP45

VCC

OP5

SEL0

VCC

OP20

SEL1

A3

GND

GND

GND

OP17

OP22

SEL0

OP44

OP7

OP28

OP41

GND

OP8

SEL2

GND

D1

SEL2

OP40

VCC

A[0..23]2

VCC

GND

OP21

OP[0..63]

VCC

D2

OP18

OP55

SEL1

U23

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

GND

U26

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCCGND

D[0..15]2,3,4,7,9

GND

OP58

SEL0

GND

OP62

OP31

OP9

OP30

OP51

OP32

OP27

U29

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

GND

OP0

GND

SEL1

OP38

D[0..15]

CS_OP-3

GND

GND

D5

OP1

D0

GND

A2

GND

GND

SEL2

A1

OP3

OP24

OP53

OP54

VCC

OP33

SEL2

GND

GND

GND

U7B

74HC14

3 4

VCC

SEL1

OP13

SEL[0..2]

VCC

GND

OP56

OP15OP23

U28

TPIC6259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

GND

OP63

GND

C1100n

GND

OP47

VCC

OP48

SEL0

VCC

GND

OP34

GND

SEL0 OP37

C2100n

Page 49: Pluto 5 Controller Manual - Heber

Page 44

Document No. 80-15151 Issue 6 HEBER LTD

Figure 7 - Schematic Sheet 7 - Inputs

R19

47K 2%

D0

SEL0

IP2

N33K3*8 SIL

123456789

U14

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

VCC

R30

47K 2%

IP10

IP31

R7

47K 2%

R21

47K 2%

R11

47K 2%

R20

47K 2%

SW1

8W DIL SW

12345678

161514131211109

N123K3*8 SIL

12 3 4 5 6 7 8 9

IP9

SEL1

IP30

D8

56-15084 11r2

PLUTO 5 - INPUTS

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

7 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

D3

IP8

SEL1

GND

SEL0

U12

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

GND

IP28

VCC

R12

47K 2%

R23

47K 2%

R1

47K 2%

IP29

R14

47K 2%

R27

47K 2%

D10

CS_IP-3

IP26

IP22

IP6

SEL1

R8

47K 2%

SEL1

R22

47K 2%

U13

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

IP20

VCC

GND

IP12

R25

47K 2%R28

47K 2%

IP21

IP[0..31] 9

VCC

D4

GND

R31

47K 2%

D2

R32

47K 2%

N43K3*8 SIL

123456789

D6

D[0 ..15]

R24

47K 2%

R2

47K 2%

SEL0

R26

47K 2%

VCC

IP27

IP4

D1

IP13

N23K3*8 SIL

123456789

IP7

R9

47K 2%

N13K3*8 SIL

123456789

R4

47K 2%

IP0

IP19

D11

IP15

N133K3*8 SIL

12 3 4 5 6 7 8 9

SW2

8W DIL SW

12345678

161514131211109

IP23D7

SEL0

IP11

D5

© HEBER LTD, 1996-2002

D9

VCC

IP18

D[0 ..15]2,3,4,6,9

R29

47K 2%

IP16

IP5

U11

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

SEL[0..2]

R6

47K 2%

R15

47K 2%

U9

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

VCC

IP[0..31]

IP25

IP14

R18

47K 2%

SEL1

U10

74HC253

67543

109111213

142115

1C01Y1C11C21C3

2C02Y2C12C22C3

AB

1G2G

VCC

C5100n

SEL0

R16

47K 2%

IP24

NOTE: SEL0-2 ARE INVERTED A1-3

SEL[0..2]6

IP17

IP1

IP3

R10

47K 2%

C6100n

SEL1

R5

47K 2%

R3

47K 2%

R13

47K 2%

R17

47K 2%

SEL0

Page 50: Pluto 5 Controller Manual - Heber

Page 45

Document No. 80-15151 Issue 6 HEBER LTD

Figure 8 - Schematic Sheet 8 - Power Supply

+12V_IN

F1

3.15A F 20*5MM

R3422K

GND

GND

VCC

METER_SENSE2

TP6PAD

PP12

PP SENSE

PP8

PP

R3547K 2%

-12V

© HEBER LTD, 1996-200256-15084 11r2

PLUTO 5 - POWER SUPPLY

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

8 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

R1251K

D3SA15

U15LM7805VI

GN

D

VO

TP7PAD

VMETER+

GND

PP9

PP

VCC

R36

47K 2%

GND

R126120R

TP8PAD

VMOT+

MPX_REF2

PP11

PP

Threshold 2 - Lamp short cct.

REGULATED +5V

GND

+12V

R3747K 2%

C947p

GND

+12V

R404K7

PP10

PP

+

-

U16D

LM339

11

1013

MPX_REF1

R40 revisions:3k3 -> 10k Feb 199810k -> 4k7 Jul 2003

PORTA[0..7]

MPX_REF1 11

VMPX+VCC

D20SA15

MPX_REF2 11

C1047p

VSS

LC1EMC FILTER

1 3

2

PP13

PP

METER DETECTION

R12447K 2%

R3847K 2%

R3347R

D21

1N4148

POWER FAIL DETECTION

P3

HDR 6W AMP MTA-156

123456

C71/50

SFX_CLK 3

+

-

U16C

LM339

9

814

VREF 10

GND

+12V_IN

MPX CURRENT

+12V

Threshold 1 - Lamp present

TP5PAD

METER_SENSE

GND

C81/50

VCC

GND

PORTA7

R3947K 2%

GND

PORTA6

MPX_GND

GND+

-

U16A

LM339

5

42

312

POWER IN

D2SA5

PORTA[0..7]2,5,9,10

+12V_IN

NMI-2

+12V

GND

SFX_CLK

+12V

LC2EMC FILTER

1 3

2

D1UF4002

R127

22K

+

-

U16B

LM339

7

61

MPX_GND

-12V

GND

Page 51: Pluto 5 Controller Manual - Heber

Page 46

Document No. 80-15151 Issue 6 HEBER LTD

Figure 9 - Schematic Sheet 9 – IO Connectors

GND OP0

A23

GND

VMOT+

OP11

IP1

PB5

A[0..23]

REELS

RTSA-

IP27

OP54

OP16

I

CS_TTL-

IP15

IP4

PORTA4

P14A

DIN41612-48WTYPE "R/2" VERT MALE

A1

A3A4

A2

A5A6A7A8A9

A10A11A12A13A14A15A16

A1

A3A4

A2

A5A6A7A8A9A10A11A12A13A14A15A16

R107

22K

D15

GND

LR[0..15]

I/O EXP.

LC0

IP7

A7

BERR-2

OP30

OP1

OP63

RXDAA6

+12V

DSACK1-2

OP58

IP14

AS-

OP25

IP26

LR2OP48

P12

HDR 8W AMP MTA-100

12345678

56-15084 11r2

PLUTO 5 - CONNECTORS

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

9 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

IP31

CLKOUT

U7E

74HC14

1110

OP40

LR5

+12V

LC1

VMOT+

IP21

TXDA

LC[0..15]

GND

OP56

P8

HDR 40W

A1A2A3A4A5A6A7A8A9

A10A11A12

B1B2B3B4B5B6B7B8B9B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17A18A19A20

B18B19B20

A1A2A3A4A5A6A7A8A9A10A11A12

B1B2B3B4B5B6B7B8B9

B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17A18A19A20

B18B19B20

IP16

CS3-

OP34

IP11

OP62

GND

A1

I/O 1

LC3

IP2

OP[0..63]

LC4EMC FILTER

13

2

R106

22K

VCC

OP26OP28

OP43

OP9

PORTA1

R/W-

OP41

OP7

D9

IP22

OP57

VCC

VMOT+

IP23

P14B

DIN41612-48WTYPE "R/2" VERT MALE

B1

B3B4

B2

B5B6B7B8B9

B10B11B12B13B14B15B16

B1

B3B4

B2

B5B6B7B8B9B10B11B12B13B14B15B16

OP21

PP17

PP

OP35

IP8

IP0

PP16

PP

GND

IP20

IP10

VMOT+

P9

HDR 34W

A1A2A3A4A5A6A7A8A9

A10A11A12

B1B2B3B4B5B6B7B8B9B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17

A1A2A3A4A5A6A7A8A9A10A11A12

B1B2B3B4B5B6B7B8B9

B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17

OP23

PORTA5

D[0..15]

LC4

OP60

LR[0..15]12

OP24

OP45

OP13

OP42

OP4

PORTA0

R/W-2

CS3-2

GND

GND

A0

IP30

OP2

PP14

PP

OP51

IP13

A20

OP6

IP9

SIZ1

C

VMOT+

OP36

OP12

CTSA-2,10

PORTA3

AS-2

OP33

OP10

D[0 ..15]2,3,4,6,7

IP[0..31]7

TXDA2

D12

SIZ02

OP19

D8

LR4

OP3

GND

OP32

IP24

IP29

BERR-

A5

DSACK0-2,3

CS_TTL-3

IP12

PORTA2

U7D

74HC14

98

DS-2

GND

VCC

OP31

OP18

IP5

HALT-2

GND

OP29

A4

N201K0*8 SIL

12 3 4 5 6 7 8 9

HALT-

LC5EMC FILTER

1 3

2

RESET-10

LR1

DS-

A3

D8

IP25

IP28

P14C

DIN41612-48WTYPE "R/2" VERT MALE

C1

C3C4

C2

C5C6C7C8C9

C10C11C12C13C14C15C16

C1

C3C4

C2

C5C6C7C8C9C10C11C12C13C14C15C16

LC5

OP17

D10

GND

IP6

IP19

RTSA-2

GND

LC2

IP3

P13

HDR 4W AMP MTA-100

1234

RESET-

A[0..23]2

OP37

OP52

LC[0..15]11

+12V

OP46

OP8

A1

PP15

PP

TGATE1-2

OP22

CTSA-

VCC

OP44

D11

P7

HDR 50W

A1A2A3A4A5A6A7A8A9

A10A11A12

B1B2B3B4B5B6B7B8B9B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17A18A19A20

B18B19B20

A21A22A23A24A25

B21B22B23B24B25

A1A2A3A4A5A6A7A8A9A10A11A12

B1B2B3B4B5B6B7B8B9

B10B11B12B13A13

A14A15A16

B14B15B16

A17 B17A18A19A20

B18B19B20

A21A22A23A24A25

B21B22B23B24B25

+12V

VMOT+

OP50

SDA

OP14

PB6

2

OP27

SCL

OP15

OP59

A2

IP[0..31]

PB62

LR0

IP18

SIZ0

VMETER+

D13

I/O 2

GND

GND

PORTA[0..7]2,5,8,10

OP38

D14

OP47

OP53

Heber Ltd. 1999

OP[0..63]6

VCC

LR3

IP17

A0

U30

TPIC6B259

18 45

3 68 7

12 1415

13 1619 17

11011209

2

D Q0Q1

S0 Q2S1 Q3S2 Q4

Q5G Q6CLR Q7

PGNDPGNDPGNDPGNDGND

VCC

TGATE2-2

© HEBER LTD, 1996-2002

CLKOUT2

OP49

+12V

A2

RESET-

PB52,10

OP20

A22

DSACK0-RXDA2,10

TTL I/O

OP61

DSACK1-VCC

OP39

PORTA[0..7]

GND

OP55

OP5

SIZ12

Page 52: Pluto 5 Controller Manual - Heber

Page 47

Document No. 80-15151 Issue 6 HEBER LTD

Figure 10 - Schematic Sheet 10 - Reset/Battery/RS232

GND

PP19

PP

BATTERY BACK-UP

VCC

Q2FMMT717

SM

C12100n

BT12.4V NiMH

P1

HDR 6W AMP MTA-100

123456

DATAPORT

TP14PAD

RXDB2

POWER-ON RESET

GND

TXDA2,9

PORTA[0..7]

SCL

GND

PORTA5

Q12N7002

VCC

GND

RESET-

VREF8

VCC

R433K3

R114

3K3

R423K3

TP15PAD

VBATT

SDA

U17

TL7705

84

7

2

3

5

6

1

VCC

GN

D

SENSE

RESIN

CT

RESET

RESET

REF

GND

+12V

R413K3

P2

25W D SOCKET

1325122411231022

921

820

719

618

517

416

315

214

1

TXDB2

GND

TP16PAD

56-15084 11r2

PLUTO 5 - RESET/BATTERY/RS232

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

10 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

GND

EEPROM

C5222p

R115

3K3

-12V

VBATT

R132

3K3

RTSB-2

CTSA-2,9

(PORT A)

VCC

© HEBER LTD, 1996-2002

U40

PCF8583

1234

8765

OSCIOSCOA0GND

VDDINT

SCLSDA

RESET3 PB0 2

+12V

RESET

RTSA-2

INTERNAL I2C BUS

R160

120RR161

120R

VCC

U38

1489

147

1

4

10

13

3

6

8

11

VCC

GN

D

RXA

RXB

RXC

RXD

A

B

C

D

PORTA[0..7] 2,5,8,9

GND

PORTA4

X232Khz

RESIN-

PP18

PP

GND

U37

24C04/24C08

1234

8765

A0A1A2GND

VCCTSTSCLSDA

VCC

U33

1488

32

45

910

1213

6

8

11

7

14 1

TXAA1

B1B2

C1C2

D1D2

TXB

TXC

TXD

GN

D

V+ V-

RESET-

GND

VCC

VCC

C13100n

+12V

C53100n

RTC

-12V

GND

RXDA2,9

RS232C111/50

RAM_CS- 4

CTSB-2

VCC

GND

C14220/16

(PORT B)

GND

RESET-2,6,9

GND

Page 53: Pluto 5 Controller Manual - Heber

Page 48

Document No. 80-15151 Issue 6 HEBER LTD

Figure 11 - Schematic Sheet 11 - Lamp Column/LED Digit Drives

SEG10

DIG2

LC8

DIG11

SEG12

*

DIG3

R101

680R

Q47BUK552

Q48BUK552

LC0

LC8

LC15

D11UF4002

*

LC3

DIG9

*

LC12

SEG9

LC4

DIG5

MPX_GND

LC3

LC10

LC13

D14UF4002

LC15

P4

HDR 18W AMP MTA-100

123456789

101112131415161718

D10UF4002

*

MPX_REF1

D12UF4002

56-15084 11r2

PLUTO 5 - LAMP COLUMN/LED DIGIT DRIVES

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

11 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

*

LC1

LC14

Q35BUK552

THESE COMPONENTS OMITTED

LC5

OR 14 SEG LED DRIVE (16 DIGIT)

LC5*

SEG8

R100

680R

C17100n

Q50BUK552

LC9

LC6

DIG4

OE_12V13

or HDR 34W BOX HEADER(Pins 33/34 - no connection)

DIG12

CLK_12V13

Q49BUK552

*

N183K3*8 SIL

12 3 4 5 6 7 8 9

LC10

STR_A_12V13

LAMP COLUMNS(SINKS)

Q36BUK552

GND

LC5

DIG13

*

DIG15

LC[0..15] 9

*

LC6

D18UF4002

SEG7

*

R120

680R

*

LC9

R96

680R

U20

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

LC8

DIG6

© HEBER LTD, 1996-2002

DIG5

N193K3*8 SIL

12 3 4 5 6 7 8 9

*

LC1

LC12

D16UF4002

SEG[0..15]

R121

680R

D5UF4002

SEG2

*

DIG7

LC7

SEG5

R117

680R*

GND

SEG6

R97

680R

*

*

DIG1

DIG0

SEG14

U21

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

DIG11

SEG0

D19UF4002

DIG8

Rsense24 milliohmsCopper Track

LC3

Q43BUK552

DIG12

D4-D19 Changed from 1N4005 to UF4002March, 2003

Q44BUK552

LC0

R118

680R

R119

680R

LC10

Q42BUK552

DIG7

DIG13

DIG14

DIG0

DIG4

*

*

LC6

DIG1

Q37BUK552

D4UF4002

R98

680R

MPX_REF1 8

D8UF4002

+12V

C18100n

D15UF4002

LC7

DIG10

D7UF4002

+12v

DIG3

LC7R122

680R

D6UF4002

LC4

MPX_REF2

R94

680R

*

*

*

LC2

DIG2

DIG[0..15]

DIG8

DIG10

MPX_REF2 8

LC9

R99

680R

7 SEG LED DRIVE (32 DIGIT)

LC4

LC14

D13UF4002

(DRIVE FOR LC8-15/DIG8-15)

GND

Q45BUK552

LC12

*

LC0

LC13

R123

680R

Q41BUK552

DIG6

R95

680R

*

GND

LC11

SEG3

SEG15

Q39BUK552

LC11

DIG14

LC13D17

UF4002

LC11

LC[0..15]

STR_12V13 LC1

+12v

P5

HDR 32W AMP ULTREX

A1A2A3A4A5A6A7A8A9

A10A11A12

B1B2B3B4B5B6B7B8B9B10B11B12B13A13

A14A15A16

B14B15B16

A1A2A3A4A5A6A7A8A9A10A11A12

B1B2B3B4B5B6B7B8B9

B10B11B12B13A13

A14A15A16

B14B15B16

Q46BUK552

LC2

ON PLUTO 5 128/16.

SEG13

*

LC14

LC15 DIG15

GND

Q40BUK552

*

SEG[0..15]13

*

LC2

DIG9

R116

680R

Q38BUK552

D9UF4002

SEG1

+12V

* -

GND

SEG4

SEG11

Page 54: Pluto 5 Controller Manual - Heber

Page 49

Document No. 80-15151 Issue 6 HEBER LTD

Figure 12 - Schematic Sheet 12 - Lamp Row Drives

GND

MPX1_A_12V13

R50

22K

R85

3K3

MPX1_C_12V13

VMPX+

VMPX+

Q4

BC846

LR9

Q30TIP126

R91

3K3

LR15

Q6

BC846

Q34TIP126

R88

3K3

R48

22K

C16100n

GND

MPX1_D_12V13

C15100n

LAMP ROWS(SOURCE)

R54

22K

R78

3K3

Q18

BC846

R93

3K3

GND

GND

R56

22K

LR8

LR14

R87

3K3

Q22TIP126

R59

22K

R83

3K3

LR3

PP22PP

GND

© HEBER LTD, 1996-2002

GND

LR11

Q10

BC846

LR[0..15] 9

VMPX+

Q13

BC846

LR1

R61

22K

VMPX+

LR7

N63K3*8 SIL

12 3 4 5 6 7 8 9

Q19TIP126

GND

LR4

Q11

BC846

U19

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

LR4

N53K3*8 SIL

12 3 4 5 6 7 8 9

LR12

GND

+12V

LR13

Q20TIP126

Q15

BC846

LR2

GND

LR10

Q23TIP126

GND

Q17

BC846

Q3

BC846

R79

3K3

Q27TIP126

STR_12V13

LR7

LR5

Q31TIP126

R90

3K3

VMPX+

GNDLR6

LR13

OE_12V13

R86

3K3

VMPX+

LR0

R49

22K

LR0

R80

3K3

CLK_12V13

Q5

BC846

Q32TIP126

GND

MPX1_B_12V13

GND

Q7

BC846

VMPX+

LR14

LR12

PP20PP

R53

22K

Q25TIP126

R55

22K

Q24TIP126

GND

Q26TIP126

VMPX+

R57

22K

Q33TIP126

VMPX+

U18

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

R60

22K

LR5

LR15

LR11

R52

22KQ9

BC846

R84

3K3

GND

VMPX+

Q12

BC846

R81

3K3LR1

+12V

GND

LR8

Q21TIP126

R89

3K3

R46

22K

VMPX+

LR6

PP21PP

VMPX+

GND

R58

22K

GND

Q28TIP126R92

3K3

VMPX+

+12V

VMPX+

Q14

BC846

LR3

LR9

Q16

BC846

VMPX+

GNDR51

22K

56-15084 11r2

PLUTO 5 - LAMP ROW DRIVES

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

12 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

VMPX+

LR10

P6

HDR 16W AMP MTA-100

123456789

10111213141516

+12V

LR[0..15]

Q29TIP126

GND

VMPX+

LR2

R47

22K

VMPX+

Q8

BC846

R82

3K3

Page 55: Pluto 5 Controller Manual - Heber

Page 50

Document No. 80-15151 Issue 6 HEBER LTD

Figure 13 - Schematic Sheet 13 - LED Segment Drives

R63

150R

Q51BC337

MPX_OE3

+12V

SEG3

MPX1_A_12V

U36

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

Q53BC337

R69

150R

CLK_12V

MPX_STR3

Q52BC337

MPX1_B_12V12

GND

OE_12V 11,12

R66

150R

SEG4

U34

4504

3 25 47 69 10

11 1214 15

13

1

16

8

AI AOBI BOCI CODI DOEI EOFI FO

MODE

VCC

VDD

GND

STR_12V 11,12 SEG0

OE_12V

MPX1_C_12V12

GND

OE_12V

U31F

4069

13 12

R65

150R

+12V

SEG11

GND

CLK_12V 11,12

Q54BC337

MPX_CLK3

Q63BC337

+12V

SEG5

LC8

1 3

2

LC9

1 3

2

Q61BC337

U35

4094

123

15

456714131211

9108

16

STRDCLKOE

Q1Q2Q3Q4Q5Q6Q7Q8

QSQSGND

VDD

STR_A_12V

STR_12V

56-15084 11r2

PLUTO 5 - LED SEGMENT DRIVES

HEBER LTD.

Belvedere MillChalford, Stroud, GL6 8NTTel: +44 (0) 1453 886000Fax: +44 (0) 1453 885013

A3

13 13Tuesday , August 12, 2003

Title

Size Document Number Rev

Date: Sheet of

SEG10

U31A

4069

1 2

GND

SEG9

MPX1_DATA_A3

R72

150R

MPX1_A_12V 12

VDD

SEG12

R73

150R

+12V

LC7

1 3

2

SEG15

R75

150R

Q57BC337

C42100n

CLK_12V

MPX2_A_12V

SEG8

SEG[0..15] 11

MPX_STR_DATA_A3

Q65BC337

U31D

4069

9 8

Q59BC337

R71

150R

Q55BC337

LC11

1 3

2

GND

+12V

GND

STR_A_12V

SEG7

R64

150R

R74

150R

STR_A_12V 11MPX2_DATA_A3

VCC

U31B

4069

3 4

U31C

4069

5 6

Q64BC337

SEG1

SEG6

SEG13

VCC

GND

R68

150R

Q58BC337

© HEBER LTD, 1996-2002

+12V

MPX1_A_12V

R76

150R

GND

MPX2_A_12V

Q56BC337

+12V

C41100n

GND

MULTIPLEX EXPANSION

SEG14

LC10

1 3

2

Q60BC337

R70

150R

MPX1_D_12V12

GND

GND

Q66BC337

U31E

4069

11 10

SEG2

R62

150R

LC6

1 3

2

+12V

STR_12V

GND

Q62BC337

R67

150R

SEG[0..15]

R77

150R

P11

HDR 7W 0.1 KK

1234567

Page 56: Pluto 5 Controller Manual - Heber

Page 51

Document No. 80-15151 Issue 6 HEBER LTD

Figure 14 - Pluto 5 Component Ident

Page 57: Pluto 5 Controller Manual - Heber

Page 52

Document No. 80-15151 Issue 6 HEBER LTD

Figure 15 - Photograph of Pluto 5 with Ultrex Connectors (Pluto 5U)