pmo 15 national written

Upload: antonire-n-dosmiado

Post on 01-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 PMO 15 National Written

    1/6

    15th Philippine Mathematical Olympiad

    National Stage, Written Phase

    26 January 2013

    Time Allotment: 4 hours Each item is worth 8 points.

    1.  Determine, with proof, the least positive integer  n  for which there existn distinct positive integers  x1, x2, x3, . . . , xn  such that

    1 −   1x1

    1 −   1

    x2

    1 −   1

    x3

    · · ·

    1 −   1xn

    =

      15

    2013.

    2.   Let  P  be a point in the interior of  ABC . Extend  AP ,  BP , and  CP   tomeet  B C , AC , and AB  at D, E , and F , respectively. If  AP F , BP D,and CP E  have equal areas, prove that  P  is the centroid of  ABC .

    3.   Let   n   be a positive integer. The numbers 1, 2, 3, . . . , 2n   are randomlyassigned to 2n   distinct points on a circle. To each chord joining twoof these points, a value is assigned equal to the absolute value of the

    difference between the assigned numbers at its endpoints.Show that one can choose   n   pairwise non-intersecting chords such thatthe sum of the values assigned to them is  n2.

    4.   Let  a,  p, and  q  be positive integers with  p ≤  q . Prove that if one of thenumbers  a p and aq  is divisible by  p, then the other number must also bedivisible by  p.

    5.   Let  r  and s  be positive real numbers that satisfy the equation

    (r + s − rs)(r + s + rs) = rs.Find the minimum values of  r + s − rs  and r + s + rs.

  • 8/9/2019 PMO 15 National Written

    2/6

    Problem 1.   Determine, with proof, the least positive integer   n  for whichthere exist  n  distinct positive integers  x1, x2, x3, . . . , xn  such that

    1 −  1

    x11 −

      1

    x21 −

      1

    x3 · · ·

    1

    −  1

    xn =

      15

    2013

    .

    Solution.  Suppose x1, x2, x3, . . . , xn are distinct positive integers that satisfythe given equation. Without loss of generality, we assume that   x1   < x2   <x3  

  • 8/9/2019 PMO 15 National Written

    3/6

    Problem 2.   Let  P  be a point in the interior of  ABC . Extend AP ,  BP ,and CP  to meet  BC ,  AC , and  AB  at  D,  E , and  F , respectively. If  AP F ,BP D, and CP E  have equal areas, prove that P  is the centroid of ABC .Solution.   Denote by (XY Z ) the area of 

     XY Z . Let   w   = (AP F ) =

    (BP D) = (CP E ),  x = (BP F ),  y = (CP D), and  z  = (AP E ).Having the same altitude, we get

    BD

    DC   =

     (BAD)

    (CAD) =

      2w + x

    w + y + z 

    andBD

    DC   =

     (BP D)

    (CP D) =

     w

    y,

    which implies

     

    wy + xy = w2 + wz.   (1)

    Similarly, we also get

    wz  + yz  = w2 + wx   and   wx + xz  = w2 + wy.   (2)

    Combining equations (1) and (2) gives

    xy + yz  + xz  = 3w2

    .   (3)

    On the other hand, by Ceva’s Theorem, we have

    AF 

    F B ·  BD

    DC  ·  CE 

    EA =

     (AP F )

    (BP F ) · (BP D)

    (CP D) · (CP E )

    (AP E ) =

     w

    x ·  w

    y · w

    z   = 1,   (4)

    orw3 = xyz.   (5)

    Applying equation (5) to equation (3) gives

    w

    z   +

     w

    x +

     w

    y  = 3.   (6)

    Equations (4) and (6) assert that the geometric mean and the arithmeticmean of the positive numbers  w

    x,   w

    y, and  w

    z are equal. By the equality condition

    of the AM-GM Inequality, it follows that

    w

    x  =

     w

    y  =

     w

    z   = 1 or   w = x  =  y = z.

    Therefore, we conclude that  AF   =  F B,  BD  =  DC , and  CE   =  EA, whichmeans that  P  is the centroid of  ABC .   q.e.d.

  • 8/9/2019 PMO 15 National Written

    4/6

    Problem 3.   Let   n   be a positive integer. The numbers 1, 2, 3, . . . , 2n   arerandomly assigned to 2n   distinct points on a circle. To each chord joiningtwo of these points, a value is assigned equal to the absolute value of thedifference between the assigned numbers at its endpoints.

    Show that one can choose n  pairwise non-intersecting chords such that thesum of the values assigned to them is  n2.

    Solution.  First, observe that

    ni=1

    i = n(n + 1)

    2  and

    2ni=n+1

    i =  n2 + n(n + 1)

    2  ,

    which means that2n

    i=n+1

    i −n

    i=1

    i =  n2.

    Let  A  = {1, 2, . . . , n}  and   B   = {n + 1, n + 2, . . . , 2n}. (Here, we do notdistinguish the point labeled x and the number x itself.) Because the numbersare arranged on a circle, one can find a pair {x1, y1}, where   x1 ∈   A   andy1 ∈ B, such that one arc joining  x1  and y1  contains no other labeled points.One can then remove the chord (including   x1   and   y1) joining these points.Among the remaining labeled points, one can find again a pair

    {x2, y2

    }, where

    x2 ∈  A \ {x1}  and   y2 ∈  B \ {y1}, such that one arc joining   x2   and   y2   doesnot contain a labeled point, and then remove again the chord (including theendpoints) joining   x2   and   y2. Continuing this process, one can find pairs{x3, y3}, {x4, y4}, and so on, and then remove the chords joining the pairs.

    We claim that the removed chords satisfy the required properties. Clearly,there are  n  such chords. Because no labeled point lies on one arc joining  x jand  y j  for any 1 ≤ j ≤  n, the removed chords are non-intersecting. Finally,the sum of the values assigned to the removed chords is

    n j=1

    (y j − x j) =n

     j=1

    y j −n

     j=1

    x j  =2n

    i=n+1

    i −n

    i=1

    i =  n2.

    This ends the proof of our claim.   q.e.d.

  • 8/9/2019 PMO 15 National Written

    5/6

    Problem 4.   Let  a,   p, and  q  be positive integers with  p ≤  q . Prove that if one of the numbers  a p and  aq  is divisible by  p, then the other number mustalso be divisible by  p.

    Solution.   Suppose that   p |

     a p. Since   p ≤

      q , it follows that   a p

    | aq , which

    implies that  p | aq .Now, suppose that   p | aq , and, on the contrary,   p      a p. Then there is a

    prime number  r  and a positive integer  n such that  rn | p (which implies thatrn ≤   p) and   rn     a p. Since   p | aq , it follows that   r | a, and so   rn | an. Thismeans that  p < n, which gives the following contradiction:

    2 p ≤ r p < rn ≤ p.

    Therefore, a p

    must also be divisible by p

    .  q.e.d.

  • 8/9/2019 PMO 15 National Written

    6/6

    Problem 5.   Let  r  and s  be positive real numbers that satisfy the equation

    (r + s − rs)(r + s + rs) = rs.Find the minimum values of  r + s

    −rs  and r + s + rs.

    Solution.  The given equation can be rewritten into

    (r + s)2 = rs(rs + 1).   (1)

    Since (r + s)2 ≥ 4rs  for any  r, s ∈ R, it follows that  rs ≥ 3 for any  r, s > 0.Using this inequality, equation (1), and the assumption that   r   and   s   arepositive, we have

    r + s − rs  =  rs(rs + 1) − rs  =  1 1 +   1

    rs + 1

    ≥   1 1 +   1

    3 + 1

    = −3 + 2√ 

    3.

    Similarly, we also have

    r + s + rs ≥ 3 + 2√ 

    3.

    We show that these lower bounds can actually be attained. Observe thatif  r =  s  =

    √ 3, then

    r + s − rs  = −3 + 2√ 

    3 and   r + s + rs  = 3 + 2√ 

    3.

    Therefore, the required minimum values of   r  + s − rs   and   r  + s +  rs   are−3 + 2√ 3 and 3 + 2√ 3, respectively.   q.e.d.