point to point radio link engineering.pdf

Upload: i070120

Post on 04-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    1/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    POINTTOPOINTRADIOLINK ENGINEERING

    ASELFLEARNINGEBOOK BASEDCOURSE,BYRADIOENGINEERINGSERVICES

    AUTHOR: LUIGIMORENO

    Availablefromwww.heraldpro.com

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    2/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Copyright Notice

    Theuse

    of

    this

    EBook

    is

    regulated

    by

    the

    following

    terms.

    1.DOCUMENT. ThisDocumentismadeofthisEBookpageandofanyotherpage(inEBookformat

    oranyotherformat)whichisdirectlyorindirectlylinkedtothisone,includinggraphicfilesandany

    otherfileembeddedinanypage,unlessotherwisespecified,andexcludingwebpagesoutsidethe

    domain"radioengineering.it".

    2.COPYRIGHTS. ThisDocumentiscopyrightedbyLuigiMoreno,aProfessionalEngineerbasedin

    Torino,

    Italy,

    and

    is

    protected

    by

    copyright

    laws

    and

    international

    copyright

    treaties,

    as

    well

    as

    other

    intellectualpropertylawsandtreaties.Youarenotallowedtocopy,modify,deleteormanipulate,in

    anyway,partorthewholeofthisDocument,includinganychangeintheembeddedhyperlinks.

    3.PUBLICPRESENTATION. ThisDocumentisforpersonaluseonly.TheuseofthisDocumentfor

    ClassroomPresentationsorforanypublicpresentationispermittedonlyafterwrittenagreements

    withtheAuthor.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    3/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Acknowledgments

    Editorial setup and E-Book layout

    TheAuthorishighlyindebtedtoStevenIrwin,aTelecommunicationsConsultantspecialisingin

    MicrowaveRadiobasedinSouthEastQueenslandinAustralia,forsupportandappreciated

    suggestionsintheeditorialsetupofthisdocumentandforthefinallayoutinEBookformat.

    WithoutSteve'shelpthisEBookwouldhaveneverbeenpublished.

    Reproduction of Figures

    TheAuthorthankstheInternationalTelecommunicationUnion(ITU)forpermissionofreproducing

    somefiguresfromITUtexts.ThecompleteandexactsourceofITUmaterialisindicatedattheplace

    wheresuchreproductionismade.Pleasenotethat:

    1. thismaterialisreproducedwiththepriorauthorizationofITU,ascopyrightholder;

    2. thesoleresponsibilityforselectingextractsforreproductionlieswiththeAuthorandcanin

    nowaybeattributedtoITU;

    3. thecompletevolumesoftheITUextractscanbeobtainedfrom:

    InternationalTelecommunicationUnion

    SalesandMarketingDivisionPlacedesNations CH1211GENEVA20(Switzerland)

    Phone:+41227306141(English)/+41227306142(French)/+41227306143(Spanish)

    Telex:421000uitch/Fax:+41227305194

    email:mailto:[email protected] / http://www.itu.int/publications

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    4/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    About the Author

    LuigiMORENOisaRadioCommunicationsConsultantwithmorethan25years'experience.A

    graduateofthe"PolitecnicodiTorino"(Italy),hewasatCSELT(TelecomItaliaResearchLabs)(1973

    82),thenatGTETelecomunicazioni(198285).HehasbeenadelegateatmanyITURmeetingsanda

    teacherat

    SSGRR

    (Telecom

    Italia

    Training

    School).

    His

    activity

    as

    aconsultant

    includes

    many

    assignmentswithmanufacturingandoperatingcompanies(softwaredevelopmentsforradiosystem

    simulation,analysis,andtesting;designofradiolinksandnetworks;trainingcourses). HeisanIEEE

    SeniorMemberandservesasanIEEETransactionsTechnicalReviewer.Heistheauthorofsome30

    journalandconferencepapersandoftwopatentsformobileradioreceivers. Hecanbecontacted

    byemailatmailto:[email protected].

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    5/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    POINT-TO-POINT RADIO LINK ENGINEERING.........................................................................1

    .....................................................................................................................1

    ASELF-LEARNING E-BOOK BASED COURSE,BY RADIO ENGINEERING SERVICES............1

    Copyright Notice.....................................................................................................................................2

    Acknowledgments...................................................................................................................................3

    Editorial setup and E-Book layout..........................................................................................................3

    Reproduction of Figures.........................................................................................................................3

    About the Author....................................................................................................................................4

    STUDENT GUIDE...............................................................................................................................11

    Introduction.......................................................................................................................................11

    Course Notes.....................................................................................................................................12

    Herald Lab........................................................................................................................................13

    SECTION 1 RADIO HOP CONFIGURATION...............................................................................14

    Summary...........................................................................................................................................14

    Point-to-Point radio-relay links.........................................................................................................

    14

    Site and Hop parameters...................................................................................................................16

    Radio Equipment..............................................................................................................................17

    Advanced - Digital Equipment Signature.................................................................................20

    Antennas...........................................................................................................................................25

    Antenna Parameters for hop design..............................................................................................27

    Advanced - More on the Antenna radiation diagram................................................................29

    Ancillary equipment..........................................................................................................................

    31

    Branching system..........................................................................................................................31

    Tx / Rx Attenuators.......................................................................................................................31

    Feeder Line...................................................................................................................................31

    Advanced - Hops with a Passive Repeater................................................................................32

    SECTION 2 BASICS IN LINK ENGINEERING.............................................................................35

    Summary...........................................................................................................................................35

    Free Space propagation.....................................................................................................................35

    Comments on Free Space Loss.....................................................................................................37

    Terrestrial radio links........................................................................................................................38

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    6/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Link Budget..................................................................................................................................40

    Fade Margin and Outage prediction..............................................................................................41

    ADVANCED - Link Equation with Passive Repeater..............................................................43

    SECTION 3 PATH CLEARANCE...................................................................................................45

    Summary...........................................................................................................................................45

    Refractivity in the Atmosphere.........................................................................................................45

    Propagation in Standard Atmosphere...............................................................................................46

    The k-factor.......................................................................................................................................47

    k-Factor variability............................................................................................................................49

    Fresnel Ellipsoid...............................................................................................................................50

    A note on radio propagation and visual analogies........................................................................52

    Obstruction Loss...............................................................................................................................

    53

    Single obstacle loss.......................................................................................................................53

    Advanced - More on obstruction loss computation..................................................................54

    Knife-edge obstacle......................................................................................................................54

    Single rounded obstacle................................................................................................................54

    Spherical earth..............................................................................................................................55

    Multiple obstacles.........................................................................................................................55

    Clearance Criteria.............................................................................................................................

    56

    SECTION 4 GROUND REFLECTIONS..........................................................................................59

    Summary...........................................................................................................................................59

    Paths with ground reflection.............................................................................................................59

    Reflection coefficient........................................................................................................................60

    Summary of results...........................................................................................................................60

    Advanced - Reflection coefficient computation.......................................................................61

    Received signal level........................................................................................................................65

    Vectorial addition of two signals..................................................................................................65

    Reflected signal amplitude............................................................................................................66

    Reflected signal phase...................................................................................................................67

    Rate of change in the Rx signal amplitude........................................................................................67

    Antenna height and k-factor effect....................................................................................................67

    Diversity reception............................................................................................................................69

    Advanced -Average degradation estimate................................................................................71

    Advanced - Effect of time delay on digital signals...................................................................72

    SECTION 5 MULTIPATH FADING................................................................................................72

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    7/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Summary...........................................................................................................................................73

    Refractivity in the atmosphere (II)....................................................................................................73

    Observed impairments in Rx signal..................................................................................................74

    Signal attenuation..........................................................................................................................74

    Signal distortion............................................................................................................................75

    Advanced - Degradation of Cross-pol discrimination..............................................................76

    Modeling multipath activity..............................................................................................................77

    Radio and environmental parameters............................................................................................77

    Statistical observation of multipath events...................................................................................78

    Multipath Occurrence Factor........................................................................................................79

    Advanced - ITU-R Multipath occurrence model......................................................................82

    Performance prediction.....................................................................................................................

    83

    Outage prediction in Narrowband systems...................................................................................83

    Advanced - Outage prediction in Wideband systems...............................................................84

    Advanced - Outage contribution from X-pol interference........................................................85

    Countermeasures...............................................................................................................................85

    Space Diversity.............................................................................................................................86

    Advanced - ITU-R model for Space Diversity improvement...................................................86

    1+1 Frequency Diversity...............................................................................................................

    87

    Advanced - N + 1 Frequency Diversity....................................................................................87

    Advanced - Outage in Wideband systems with Diversity........................................................88

    Advanced - Adaptive equalizers...............................................................................................89

    SECTION 6 RAIN ATTENUATION................................................................................................91

    Summary...........................................................................................................................................91

    EM wave interaction with atmosphere..............................................................................................91

    Water vapour and Oxygen attenuation in clear air............................................................................91

    Rain attenuation................................................................................................................................92

    Worldwide rain intensity statistics....................................................................................................94

    ITU-R rain attenuation model...........................................................................................................97

    Rain intensity model.....................................................................................................................97

    Advanced - Frequency / polarization scaling model.................................................................99

    Rain unavailability prediction.........................................................................................................100

    Advanced - Effect of cross-polarized interference..................................................................101

    SECTION 7 FREQUENCY PLANNING AND INTERFERENCE...............................................103

    Summary.........................................................................................................................................103

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    8/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Use of frequencies in P-P links.......................................................................................................103

    Frequency Bands.............................................................................................................................104

    Channel arrangements, ITU-R Recs...............................................................................................104

    Go - Return Frequency plans......................................................................................................104

    Interleaved and co-channel frequency arrangements..................................................................106

    Comment.....................................................................................................................................107

    Interference classification...............................................................................................................107

    Source of Interference.................................................................................................................108

    Propagation conditions....................................................................................................................109

    Internal Interference sources...........................................................................................................110

    Co-site Interference.....................................................................................................................110

    Degradation due to Interference......................................................................................................

    114

    Interference power estimate............................................................................................................115

    Effect of Interference......................................................................................................................116

    SECTION 8 ITU OBJECTIVES......................................................................................................118

    Summary.........................................................................................................................................118

    Overview.........................................................................................................................................118

    ITU-T and ITU-R Recommendations.............................................................................................118

    Unavailability and Error Performance Objectives......................................................................

    119

    A brief history and overview of ITU Recs..................................................................................119

    Definitions...................................................................................................................................120

    Advanced - ITU-T Error Performance Recs...........................................................................121

    Advanced - Error performance in a radio link........................................................................124

    Error objectives for real links using equipment designed prior to approval of [revised] ITU-T

    Recommendation G.826 in December 2002...............................................................................124

    Practical rules in applying ITU-R Recs......................................................................................134

    How to identify SDH and PDH sections.....................................................................................134

    How to apportion Section objectives to each hop.......................................................................134

    How to apportion Short-haul or Access section objectives on a distance basis ..........................134

    Advanced - Unavailability Objectives....................................................................................135

    ITU-T Recs. G.826 and G.827....................................................................................................135

    Radio Link Availability Objectives............................................................................................136

    Advanced - BER vs. Errored Blocks Performance Parameters..............................................137

    Objectives vs. Propagation impairments.........................................................................................

    139

    HERALD LAB...................................................................................................................................141

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    9/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Working with HERALD Lab..........................................................................................................141

    Using the HERALD program.........................................................................................................141

    Instructions to HERALD Demo Users............................................................................................142

    HERALD Lab #1 - Hop Configuration...............................................................................................143

    HERALD Functions........................................................................................................................143

    Exercise 1.1 : Radio Equipment data.............................................................................................143

    Exercise 1.2 : Antenna data.............................................................................................................145

    Exercise 1.3 : Feeder data...............................................................................................................146

    Exercise 1.4 : Site & Hop definition...............................................................................................147

    Exercise 1.5 : Hop configuration....................................................................................................149

    Exercise 1.6 : Passive repeater........................................................................................................150

    Exercise 1.7 : Export Network Topology to Google Earth.............................................................

    151

    Exercise 1.8 : Import Radio Sites....................................................................................................151

    HERALD Lab #2 - Link Budget and Fade Margin............................................................................152

    HERALD Functions........................................................................................................................152

    Exercise 2.1 : Compute Link Budget.............................................................................................152

    Exercise 2.2 : Adjust Fade Margin................................................................................................153

    Exercise 2.3 : Print Hop Report.....................................................................................................154

    Exercise 2.4 : Include a Passive Repeater......................................................................................

    155

    HERALD Lab #3 Path Clearance....................................................................................................156

    HERALD Functions........................................................................................................................156

    Exercise 3.1 : Define path profile..................................................................................................157

    Exercise 3.2 : Check clearance.......................................................................................................159

    Exercise 3.3 : Modify antenna height.............................................................................................160

    Exercise 3.4 : Estimate obstruction loss..........................................................................................161

    Exercise 3.5 : Display Profile Report..............................................................................................162

    HERALD Lab #4 Ground Reflections.............................................................................................163

    HERALD Functions........................................................................................................................163

    Exercise 4.1 : Estimate reflection parameters.................................................................................164

    Exercise 4.2 : Analyze Rx power level...........................................................................................165

    Exercise 4.3 : Design diversity Rx..................................................................................................166

    Exercise 4.4 : Change reflection parameters...................................................................................167

    Exercise 4.5 : Move radio site position...........................................................................................168

    HERALD Lab #5 Multipath Fading................................................................................................169

    HERALD Functions........................................................................................................................169

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    10/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Exercise 5.1: Estimate multipath occurrence..................................................................................171

    Exercise 5.2: Estimate multipath outage.........................................................................................172

    Exercise 5.3: Frequency selective multipath...................................................................................173

    Exercise 5.4: Design space diversity...............................................................................................174

    Exercise 5.5: Use frequency diversity.............................................................................................175

    HERALD Lab #6 Rain Attenuation.................................................................................................176

    HERALD Functions........................................................................................................................176

    Exercise 6.1 : Predict rain unavailability........................................................................................177

    Exercise 6.2 : Optimize hop design................................................................................................178

    Exercise 6.3 : Include atmospheric absorption...............................................................................179

    Exercise 6.4 : Revise design for tropical regions............................................................................180

    Exercise 6.5 : Use Freq./Pol. scaling..............................................................................................

    181

    HERALD Lab #7 Interference Analysis..........................................................................................182

    HERALD Functions........................................................................................................................182

    Exercise 7.1 : Search interference...................................................................................................183

    Exercise 7.2 : Modify antennas.......................................................................................................184

    Exercise 7.3 : Modify power levels................................................................................................185

    Exercise 7.4 : Modify frequency/pol...............................................................................................186

    Exercise 7.5 : Test rain correlation model......................................................................................

    187

    HERALD Lab #8 ITU Objectives...................................................................................................188

    HERALD Functions........................................................................................................................188

    Exercise 8.1 : Set basic parameters................................................................................................189

    Exercise 8.2 : International section.................................................................................................190

    Exercise 8.3 : Long-haul section.....................................................................................................191

    Exercise 8.4 : Access section..........................................................................................................192

    Exercise 8.5 : North America Standard Objectives........................................................................193

    Further Readings.............................................................................................................................194

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    11/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    STUDENT GUIDE

    Introduction

    WelcometotheCourseon"PointtoPointRadioLinkEngineering".

    TheaimofthisCourseistogiveyouapracticalguide,movingfrombasicnotionsinRadio

    PropagationatmicrowavefrequenciesandcomingtoapplicationsinRadioLinkDesign.

    TheCourseNotescoverthemaintopicsinRadioPropagationandPointtoPointradiolink

    engineering.TheyapplytothedesignofMicrowaveLinksinthefrequencyrangefromabout450

    MHzupto60GHz.

    Withthe"HERALDLab",youcanusetheHERALDprogram(asoftwaretoolforradiolinkdesign)to

    performanumberofguidedexercisesandtesttheHERALDapproachinimplementingthedesign

    process.

    Asawhole,theCoursehasbeendesignedwiththeobjectiveofactivelyinvolvingthereaderin

    navigatingthroughthetextandinpracticingwithexercises. Themostrelevantaspectisthatthe

    HERALDLabexercises,inadditiontotheCoursenotes,provideguidancetopracticalapplicationsin

    thefieldofmicrowavelinkdesign.

    WedonotexpecttoofferacompleteRadioEngineeringmanual,noratutorialoneveryaspectsof

    RadioPropagation. Allthetopicsarepresentedinanintuitive,practicalstyle,notwithatheoretical

    /academicapproach.

    Itisassumedthatthereaderissomewhatfamiliarwithbasicnotionsinmodulationtechniques,

    radioequipment

    and

    systems,

    as

    well

    as

    in

    elementary

    electromagnetic

    physics.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    12/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Course Notes

    TheCourseNotesareorganizedineightsections. Werecommendyouproceedthroughthesections

    inpublishedordertoensurecompleteunderstandingofthematerial. Thefirsttwosectionsare

    introductory:

    Section1introducestheradiosystemanditsstructure

    Section2introducesthebasicsofmicrowavelinkengineering

    Thenextfoursectionsarealmostselfcontainedandthefinaltwocoverpropagationprinciples.

    Amoderatenumberofadditionalhypertextlinkshavebeenincludedthroughoutthetext. We

    recommendyoureturntothelinkandcontinuethesectionafterfollowinghypertextlinkstoensure

    youdontloseyourplaceinthiscourse.

    TheCourse

    Notes

    are

    subdivided

    into

    a"Basic

    Techniques"

    (white

    background)

    and

    an

    "Advanced

    Techniques"(greenbackground)course. Initially,youmayskiptheadvancedtechniquesandreturn

    tothematalaterreading.

    Paragraphsgivingonlyadditionalcommentsaboutsometopicsareindicatedbyapinkbackground.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    13/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Herald Lab

    TheHERALDLabhasbeenincludedinthisCoursewithtwoobjectives:

    asacomplementoftheCourseNotespresentation,showinghowthepropagationconcepts

    andengineering

    rules

    are

    applied

    in

    practical

    cases;

    asanintroductiontoHERALDfunctionsandcommands.

    HERALDLabwillimprovebothyourunderstandingofradiolinkengineeringandyourskillsinusing

    theHERALDprogram.

    EachSessionintheHERALDLabstartswiththe"HERALDFunctions"chapter. Thischapterbriefly

    explainshowdesignrules,presentedintheCourseNotes,areimplementedintheHERALD

    program. ItdoesnotsubstitutetheHERALDHelp,whereyoufindamoredetailedguidetothe

    programuse.

    TheHERALDLabSessioncontinueswithexercises.Eachexerciseprovidesdetailedinstructionson

    programstepstoexecuteagiventask. Someexercises(inparticularinthefirstsessions)may

    appearrathereasyandeventedious. However,wesuggesttoskipthemonlyifyoualreadyhavea

    goodpracticeinHERALDuse.

    HeraldDemoversionmaybedownloadedbyregisteringatthefollowinglink:

    http://www.activeonline.com.au/products/hp_register.php

    HeraldDemoprovidesallthefeaturesrequiredtocompletetheHeraldLabexercise.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    14/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    SECTION 1 RADIO HOP CONFIGURATION

    Summary

    InthisSessionweintroducethebasicconfigurationofaPointtoPointRadioLink.Thefundamental

    parametersusefultodescriberadiositeinstallationsarepresented,includingantenna,radio

    equipmentandancillarysubsystems. Hopswithpassiverepeatersarefinallydiscussed.

    Point-to-Point radio-relay links

    APointtoPointradiorelaylinkenablescommunicationbetweentwofixedpoints,bymeansof

    radiowavetransmissionandreception. Thelinkbetweentwoterminalradiositesmayincludea

    numberofintermediateradiosites.

    Thedirectconnectionbetweentwo(terminalorintermediate)radiositesisusuallyreferredasa

    "RadioHop". Insomecases,aradiohopmayincludeapassiverepeater.

    A multi-hop radio-relay link, connecting A to B, divided in two Radio Sections

    Amultihopradiorelaylinkcanbedividedinanumberof"RadioSections",eachofthembeing

    madeofoneormoreradiohops. Transmissionperformanceisusuallysummarisedonaradio

    section

    basis.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    15/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Generalcriteriaforradionetworkplanninganddesignisnotdiscussedhere; justaverybrief

    summaryisgivenbelow. Theoverallprocesscanbeusuallydividedintwosteps:

    1) Preliminarynetworkorlinkplanning.Apartiallistofactivitiescarriedonatthisstageis:

    a) Consideration

    of

    Regulatory

    environment;

    b) IdentificationofTerminalradiosites;

    c) ServiceandCapacityrequirements;

    d) Performanceobjectives;

    e) Frequencybandselection;

    f) IdentificationofsuitableRadioequipmentandAntennas;

    g) Sampledesign

    of

    typical

    hops,

    estimate

    of

    maximum

    hop

    length.

    2) RouteandIntermediateSiteSelection. Anumberoffactorshaveinfluenceonthischoice;

    amongothers:

    a) Maximumhoplength;

    b) NatureofTerrainandEnvironment;

    c) SitetoSiteterrainprofile;visibilityandreflections

    d) Angularoffsetfromonehopandadjacenthops(toavoidcriticalinterference);

    e) Needforpassiverepeaters.

    f) Availabilityofexistingstructures(buildings,towers);

    g) Newstructuresrequirements;

    h) Accessroads(impactoninstallationandmaintenanceoperations);

    i) Availabilityof

    Electric

    Power

    sources;

    j) Weatherconditions(wind,temperaturerange,snow,ice,etc.);

    k) Localrestrictionsfromregulatorybodies(authorizationfornewbuildings,airtraffic,RF

    emissioninpopulatedareas,etc.);

    Whenatentativeselectionofintermediatesitesisavailable,thefinaldesigngoesthroughan

    iterativeprocess:

    Hopconfigurationanddetailedhopdesign;

    PredictionofHopandSectionperformance;

    Identificationofcriticalhops;

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    16/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    RevisionofRouteandSiteselection;

    RevisionofHopconfigurationandofdetailedhopdesign.

    Inthe

    following

    Sections

    we

    focus

    on

    this

    design

    process,

    going

    through

    site

    and

    hop

    configuration

    andleadingtoperformancepredictions. Asafirsttopic,wediscusstheparametersusefulto

    describethesiteandhopconfiguration.

    Site and Hop parameters

    Aradiohopisdescribedintermsof:

    1) Topographicaldataandterraindescription:

    a) Radiositeposition:geographicalcoordinatesorothermappinginformation;elevationabove

    sealevel(a.s.l.);

    b) Pathlengthandorientation(azimuth: notethatinplanegeometrytheazimuthscomputed

    atthetwoextremesofalinesegmentdifferby180deg,whilethisisnottrueinspherical

    geometry;

    so,

    two

    path

    azimuths,

    referred

    to

    each

    radio

    site,

    are

    usually

    indicated);

    c) Pathprofileasderivedfrompaperordigitalmaps:notethataccuracyrequirementsare

    widelydifferentthroughoutaradiopath,sincetheelevationofpossibleobstructionsshould

    beaccuratelyestimated,whilesignificantprofileportions(wherenoobstructionor

    reflectionisexpected)couldbealmostignored.

    2) Radioequipment,antennasandancillarysubsystemsinstalledateachradiosite;inthe

    followingsections,themainparametersusefultodescribetheradiositeinstallationwillbe

    discussed.

    3) Specificaspectsonequipmentinstallationandoperation:

    a) Antennapositioning:installationheightandpointing;spacediversityoption,antenna

    spacing;

    b) Frequencyused: (average)workingfrequency(usuallyreferredinhopcomputationsand

    linkbudget);detailedfrequencyplan(goandreturnRFchannelsateachradiosite,required

    forinterference

    analysis);

    c) RFprotectionsystems(useof1+1orn+1frequencydiversity,hotstandby,etc.)

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    17/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    d) Useofpassiverepeaters:flatreflectororbacktobackantennasystem,repeatersite

    parameters,reflectororantennapositioningandpointing.

    4)Climaticandenvironmentalparameters:theyareusuallyrequiredbypropagationmodels

    (atmosphericrefraction,rain,etc.),sotheywillbediscussedwhilepresentingsuchmodels.

    Finally,letusconsiderseveralattenuationordegradingfactors,suchas:

    Atmosphericabsorptionloss;

    Obstructionloss;

    Anyothersystematiclossthroughouttheradiopath(additionallosses);

    Rxthresholddegradationduetogroundreflections;

    Rxthresholddegradationduetointerference.

    Theaboveimpairmentswillbediscussedinthefollowingsessions,wheresuitablemodelsto

    estimatetheirimpactonhopperformanceareconsidered.

    However,itmayhappenthattheinputsrequiredtoapplysuchmodelsarenotfullyavailableorthat

    otherreasons

    suggest

    not

    to

    go

    through

    aspecific

    analysis.

    Inthatcase,wecanincludeamonghopparametersalsoaroughestimate(oraworstcase

    assumption)oflossesordegradationscausedbytheimpairmentslistedabove.

    Radio Equipment

    Asimplifiedblockdiagramofasampleradiositeinstallationisshownbelow.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    18/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Anexampleofradioequipmentblockdiagram,inthecaseofmultipleRFchanneloperation,usingasingle

    antennaforbothtransmissionandreception.

    Evenifthisexampleshowsaspecificconfiguration,itisusefulasareferenceinthefollowing

    presentation. Otherconfigurationsofparticularinterestare:

    SingleRFchannelinstallations,wherenobranchingsystemisneeded;

    Outdoor

    installations,

    where

    radio

    equipment

    is

    directly

    connected

    to

    the

    antenna,

    without

    feederline.

    Fromtheviewpointofasingleradiohopdesign,wecanlimitinformationaboutRadioEquipmentto

    theverybasicparameters:

    Rangeofoperatingfrequencies;

    TransmittedpowerPT;

    ReceiverthresholdPRTH(minimumreceivedpowerrequiredtoguaranteeagiven

    performancelevel);

    Notethat:

    1) Boththetransmittedpowerandthereceiverthresholdareusuallyreferredattheequipment

    input/outputflanges,notincludingbranchingfilterlosses.

    2) WhenthetransmitterisequippedwithanAutomaticTransmittedPowerControl(ATPC)device,

    theTxpowertobeconsideredinhopdesignisthemaximumpowerlevel(whichshouldbe

    applied

    every

    time

    the

    received

    signal

    quality

    is

    deeply

    affected

    by

    propagation

    impairments);

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    19/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    3) Thereceiverthresholdistheminimumreceivedpowerrequiredtoachieveagivenperformance

    level;indigitalsystems,thereferenceperformanceisusuallyset

    atBitErrorRate(BER)=103, whileotherreferencelevelsmaybeadoptedifneeded.

    Performance

    objectives

    in

    digital

    radio

    links

    will

    be

    discussed

    in

    thefinal

    Sessionof

    this

    course.

    Additionalparameterscanbeusefulforamorecompleteunderstatingoftheequipmentoperation,

    eveniftheyarenotdirectlyinvolvedinthehopdesign:

    Equipmentusercapacity;fordigitalsystems,bitpersecondornumberofstandardized

    signals,likeSTM1orDS1signals; foranalogsystems,numberoftelephoneortelevision

    channels;

    Bit

    rate

    (R)

    of

    the

    modulated

    (emitted)

    signal

    (this

    may

    differ

    from

    the

    user

    capacity,

    mentionedabove,sincethetransmissionequipmentmayincludeadditionalbitsforservice

    andmonitoringchannels,channelcoding,etc.);

    Modulationtechnique;

    Symbolrateofthemodulated(emitted)signal;inanalogsystems,anequivalentparameter

    isthebaseband(modulating)signalbandwidth;

    Emittedspectrumandmodulatedsignalbandwidth.

    TheSymbolrateSRdependsontheemittedsignalbitrateRandonthemodulationtechnique:

    whereListhenumberofbitscodedinasinglemodulatedwaveform(L=2inQPSK

    modulation, L=6in64QAMmodulation).

    ForadvancedtasksinRadioHopdesign,moredetaileddataonradioequipmentarerequired. This

    includes:RxnoisebandwidthBNandRxnoisefigureNF;

    SignaltoNoise(S/N)ratioattheRxthreshold;

    CochannelCarriertoInterferenceratioatreceiverinput,producingthethresholdBER,in

    theabsenceofthermalnoise(highRxlevel);

    TypicalspacingbetweenadjacentRFchannel;

    NetFilterDiscrimination(NFD)attheabovespacing;

    Resultsof

    signature

    measurement;

    PossibleuseofAutomaticTransmittedPowerControl(ATPC)andrelatedparameters;

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    20/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    PossibleuseofCrossPolarInterferenceCanceller(XPIC)andrelatedparameters.

    TheSignaltoNoise(S/N)ratiocanbeexpressedintermsofreceivedpowerPR,receivernoise

    bandwidth

    BN,

    and

    receiver

    noise

    figure

    NF

    :

    wherePRisexpressedindBmandBNinMHz;theexpressioninsquarebracketsgivesthe

    receiverthermalnoisepower.

    Advanced - Digital Equipment Signature

    Theequipmentsignaturegivesameasureofthesensitivityofradiosystemstochannel(amplitude

    andgroup

    delay)

    distortions

    as

    produced

    during

    multipath

    propagationevents.

    More

    specifically,

    it

    isusedfordigitalradiosystemswithsignalbandwidthlargerthanabout1012MHz(onthistypeof

    signals,significantfrequencyselectivedistortionisnotproducedifthebandwidthisnarrower;other

    signalsmaybesensitivetofrequencyselectivemultipathevenwithanarrowerbandwidth).

    MeasurementSetup - TheTxsignalismodulatedbyatestsequenceandistransmittedthrougha

    simulatedmultipathchannel,modeledasatwopathchannel(directplusechobranches).

    Signaturemeasurementsetup.

    Asshownintheabovefigure,thepowerlevelandthephaseofthedelayedsignalcanbeadjustedby

    meansofavariableattenuatorandavariablephaseshifter.

    Assuminganormalizedsignalamplitudeequalto1inthedirectbranchandb(

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    21/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    =Echodelay,assumedasconstant(=6.3nsintheoriginalBellLabs/Rummlermodel);

    fo=/2 =NotchFrequency(correspondingtotheminimumamplitudeofthetransfer

    function);

    B=Notch

    depth

    (in

    dB)

    =

    20Log10(1

    b).

    Twopathchanneltransferfunction,withdefinitionofNotchFrequencyandNotchDepth.

    TheabovedefinitionreferstoaMinimumPhaseTransferFunction. Otherwise,ifthesignal

    amplitudeisb(

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    22/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    EquipmentSignatureintheNotchDepth/NotchFrequencyplane.

    Inthatplaneeachpointcorrespondstoapairofnotchparameters,soitisrepresentativeofa

    particularchannelstate. ThepointsbelowthesignatureshowthechannelstatesforwhichBER>

    Threshold. Therefore,theareabelowthesignaturegivesameasureofthereceiversensitivityto

    multipathdistortions.Foranunequalizedsignal,typicalsignaturewidthmaybeoftheorderof1.5

    timesthesymbolrate,whileusingequalizationitishalvedatleast.

    Topredictmultipathoutage,itisoftenrequiredthattheequipmentsignaturebedefinedbyonly

    twoparameters(signaturewidthanddepth).Inmostcasestheshapeofactualequipment

    signaturesallowfora"squarebrick"approximation.

    EquipmentparametersusedinInterferenceanalysis

    NetFilterDiscrimination(NFD) - Itisusedtocharacterizetheradiosystemabilitytolimitthe

    interferencecomingfromanadjacentradiochannel.

    NFDgivestheimprovementintheSignaltoInterferenceratiopassingthroughtheRxselectivity

    chain(RF,Intermediate,basebandstages):

    where(C/I)RFisdefinedattheRFinputstageand(S/I)DECatthedecisioncircuitstage.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    23/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    SignalspectraatthereceiverinputantoutputandRxselectivity.

    Asshownbythefigureabove,theNFDdependson:

    Interferingsignalspectrum(Txfiltering);

    Channelspacing;

    OverallRxselectivityintheUsefulChannel.

    TheNFDcanbemeasuredorevaluatedforinterferencebetweenidenticalsignals(adjacentchannel

    interferenceinahomogeneouschannelarrangement)andalsowhentheinterferingsignalis

    different(incapacityand/ormodulationformat)fromtheusefulone(interferenceinamixedsignal

    network).

    So,foranypairofusefulandinterferingsignalsandforeachvalueofthechannelspacing,aNFD

    valuecanbeevaluated.

    ThresholdCarriertoInterferenceratio - Insomeapplicationsthereceivedsignalmaybe

    interferedbyacochannelsignal,withidenticalcapacityandmodulationformat(forexampleinco

    channelfrequencyarrangements,withuseofbothorthogonalpolarizations).

    ThereceiversensitivitytocochannelinterferenceisestimatedbyaBitErrorRate(BER)vs.C/I

    curve,asshowninthefigurebelow.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    24/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    BitError

    Rate

    (BER)

    vs.

    Carrier

    to

    Interference

    ratio

    (C/I),with

    indication

    of

    C/I

    threshold

    for

    BER

    =10

    3

    .

    Themeasurementismadeinabsenceofanysignificantthermalnoisecontribution(highRxpower

    level).

    Fromthismeasurement,itispossibletoknowtheCarriertoInterferenceratiocorrespondingtothe

    thresholderrorrate(forexampleBER=103).

    CrossPolarInterferenceCanceller(XPIC)Gain - TheInterferenceCancellerisusedtoreducethe

    interferencecomingfromasignaltransmittedonthesamefrequencywithorthogonalpolarizations

    (usuallytheusefulandinterferingsignalshaveidenticalcapacityandmodulationformat).

    WeassumethatthesignaltointerferenceratioatthereceiverRFinputis(C/I)RF.

    Theinterferencecancellerworksinsuchawaythatthesignaltointerferenceratioappearstobe

    improvedtoahighervalue(C/I)APP definedas

    whereXPICGainisdefinedasthegainproducedbythecrosspolarcanceller. Theinterference

    impairmentiscomputedbyassuming(C/I)APP tobetheactualsignaltointerferenceratio.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    25/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Antennas

    Gaindefinitionandrelatedparameters

    LetusconsideraradiotransmitterwithpowerpTcoupledtoanIsotropicAntenna(anidealsource

    ofEMRadiation,thatradiatesuniformlyinalldirections). AtthedistanceLfromtheantenna,the

    emittedpower

    will

    be

    uniformly

    distributedon.

    the

    surface

    area

    of

    asphere

    of

    radius

    L,

    so

    that

    thePowerDensityIis:

    EMpoweremissionfromanIsotropicAntenna(left)andfromaDirectiveAntenna(right)

    ThenwesubstitutetheIsotropicAntennawithaDirectiveAntenna,whilethetransmittedpoweris

    againPT. Weimagine

    to

    measure

    the

    Power

    Density

    where

    the

    antenna

    axis

    intercepts

    the

    sphere

    surface,withresultD

    Theantennagaingivesameasureofhowmuchtheemittedpowerisfocusedinthemeasurement

    direction,comparedwiththeisotropiccase. Asaresultofthe"experiment"describedabove,the

    antennagainisdefinedas:

    Thisdefinitionleadstog=1fortheisotropic antenna.

    Generallyspeaking,theantennagainisrelatedtotheratiobetweenantennadimensionandthe

    wavelength Morespecifically,inthecaseofreflectorantennas,theantennagaingisgivenby:

    whereDisthereflectordiameter,iscalled"antennaefficiency"(typicallyintherange

    0.55 0.65),AisthereflectorareaandAE=A istheAntennaEffectiveArea.(or

    Aperture).

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    26/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Inlogarithmic(decibel)units:

    wherethe0.5dBtermdependsagainonantennaefficiency;itisassumedtoexpressthe

    diameterD

    in

    meters

    [m]

    and

    the

    frequency

    Fin

    GigaHertz

    [GHz].

    Notethat,forgivendimension,theantennagainincreaseswithfrequency(6dBhigherifthe

    frequencyisdoubled). Similarly,atagivenfrequency,thegainincreases6dBiftheantenna

    diameterisdoubled.

    Below,someexamplesofantennagainvs.diameterandfrequencyaregiven.

    Antennagainvs.diameterandfrequency;thedouble(red,black)linegivesarangeofpossiblegains,

    dependingonantennaefficiency.

    The3dBbeamwidthBW(seegraphicaldefinitionbelow)isrelatedtoantennagain;asthegain

    increases,theEMenergyisfocusedinanarrowerbeam.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    27/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Definitionoftheantenna3dBBeamwidthBW.

    Forreflectorantennas,somesimple"rulesofthumb"areusefulinrelatingantennadiameterD[m],

    workingfrequencyF[GHz],gainG[dB],andthe3dBbeamwidthBW[deg]:

    Notethattheseareapproximaterelations,fittingwith"real"valueswithinsomemargin;in

    particularcases

    this

    margin

    may

    be

    even

    large.

    AnadditionalconceptinantennaoperationistheFarFieldRegion. Itistheregionsufficiently

    distantfromtheantenna,wheretheelectromagnetic(EM)fieldcanbewellapproximatedasaplane

    waveandtheantennadiagramisstabilized.Closertotheantenna,theNearFieldRegionandthe

    Fresnel(transition)Regionaredefined,wheretheantennaradiationdiagramisnoteasilypredicted.

    TheboundarybetweentheFresnelandtheFarFieldRegionisapproximatelyatthedistance:

    Antenna Parameters for hop design

    Pointtopointradiohopsusuallymakeuseofhighgaindirectiveantennas,whichofferseveral

    advantages:

    bothTransmissionandReception: theantennagainismaximizedinthedesireddirection.

    Transmission: theemittedradioenergyisfocusedtowardthereceiver,thusreducingthe

    emissionof

    interfering

    radio

    energy

    in

    other

    directions;

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    28/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Reception: thereceiversensitivitytointerferingsignalscomingfromotherdirectionsis

    reduced.

    However,inspecialcases,alsoantennaswithsectorialorevenomnidirectionalcoveragemaybe

    used(thisistruemainlyforpointtomultipointapplications).

    Inmostcases,directiveantennasareparabolicantennasorotherreflectorantennas(likeHornor

    Cassegrainantennas). Thedirectivitypatternscanbemeasuredbothinthevertical(elevation)and

    inthehorizontal(azimuth)planes; however,wecanoftenadoptthesimplifyingassumptionthat

    onediagramisapplicablebothtotheverticalandtothehorizontalplanes.Inthatcase,alsothe3dB

    antennabeamwidthisassumedtobethesameinthetwoplanes.

    Asfarasinterferenceproblemsarenotconsideredinasingleradiohopdesign,wecanlimit

    informationabouttheantennastotheverybasicparameters:

    Rangeofoperatingfrequencies;

    SingleorDoublePolarizationoperation;

    Antennagain;

    3dBbeamwidthintheverticalplane(thismaybeusefultoanalyzereflectionpaths).

    AnexampleoftheantennaconnectiontoradioequipmentisgivenintheBlock diagramshown

    above. Notethattheantennagain(aswellasotherantennaparameters)isreferredtotheantenna

    I/Oflange.

    Additionalparameters

    can

    be

    useful

    for

    amore

    complete

    description

    of

    antenna

    operation:

    Antennatype(Parabolic,Horn,Cassegrain,etc.);

    Coveragetype(omnidirectional,sectorial,directive);

    3dBbeamwidthinthehorizontalplane(forsectorialantennas);

    Diameter(ormoregenerally,physicaldimensions);

    Voltagestandingwaveratio(VSWR);

    Weight.

    Moreover,theantennadiagram,asmentionedabove,illustratestheantennaoperationin

    directionsotherthanthepointing(maxgain)direction.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    29/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Antenna radiation diagram (mask) for Co-polar e X-polar operation (a different horizontal scale is

    used in the 0 - 20 deg range and in the 20 - 180 deg range).

    Advanced - More on the Antenna radiation diagram

    Someadditionalcommentsonantennadiagrams:

    Theresultoftheantennadirectivitymeasurementusuallyexhibitsmultiplelobesand

    nulls.

    Asidelobe

    envelope

    is

    estimated,

    giving

    a"mask

    diagram",

    useful

    to

    characterize

    the

    antennadirectivity. Ininterferenceanalysistheneedarisestoestimatetheantennagainin

    anydirectionandtheantennamaskgivesaconservativeresult.

    Thepatternofcopolandcrosspolantennadiagrams,closetothepointingdirection,are

    significantlydifferent,asshowninthefigurebelow. Whilethecopolpatternisratherflat,

    intherangeofsometensofdegreearoundpointingdirection(maximumgain),thecrosspol

    patternhasaverynarrowminimuminthesamedirection. Insomecasesitisconvenientto

    pointtheantennabysearchingfortheminimumcrosspolsignallevel,insteadofsearching

    forthemaximumcopolsignal.Bythisway,itisassuredthat,notonlythemaximumgain,

    butalsothemaximumcrosspoldiscriminationareobtained.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    30/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Exampleof

    Co

    pol.

    and

    Cross

    Pol.

    antenna

    diagrams,close

    to

    the

    antenna

    pointing

    direction

    Theantennadirectivitydiagramisusuallymeasuredinacontrolledenvironment,inorderto

    characterizethe"true"antennaresponse,withoutinfluenceorerrorsproducedbyanyexternal

    element.

    Inactualoperation,theantennaresponsemaybysignificantlyalteredbythesurrounding

    environment.Forexample,anobstacleclosetothemainantennalobemayproduceasignal

    reflection,about180fromtheantennapointingdirection.Thisapparentlyreducestheantenna

    fronttobackdecoupling,bothinthecopolandcrosspoldiagrams.

    Thecorrectantennapositioningisakeyfactorinordertogetantennaperformanceinreal

    operatingconditionsascloseaspossibletomeasuredparameters.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    31/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Ancillary equipment

    Anumberofadditionalequipmentandsubsystemsareworkinginaradiosite.Inthepresent

    context,weconsideronlywhatisstrictlyrelatedtothedesignofaradiohop(so,wedonotdiscuss

    powerlinesandbackups,airconditioning,grounding,andothersubsystems,eveniftheyareof

    significantimportanceintheoverallsiteoperation).

    Branching system

    Asshownintheblock diagramabove,abranchingfilterisrequiredinradiotransceiversfor

    multipleRFchanneloperation.

    Intransmission,thefunctionofthebranchingsystemistomultiplexRFchannelsonasinglewide

    bandRFsignal,suitabletobetransmittedonasingleantenna. Similarly,inreception,thebranching

    systemsplitsthemultichannelsignalcomingfromtheantennaintomultipleRFchannels,each

    addressedtothecorrespondingreceiver.

    ThebranchinglossisdifferentforthevariousRFchannels(inTxandRx),dependingonthenumber

    offilterportsandcirculatorstobepassedthroughbythesignal. However,inhopdesign,itis

    advisabletotakeaccountofhighestloss,resultingfromTxandRxbranching.

    InabranchingconfigurationwithacommonTx/Rxantenna(seeblock diagram),thebranchingloss

    includethelossofthecirculatorusedtoseparatetheTxandtheRxbranches.

    Tx / Rx Attenuators

    Powerattenuatorsmaybeaddedinthetransmitterorinthereceiverchain,mainlytoavoidan

    excessivepowerlevelatthereceiverinput(whichmaysaturatetheRxfrontendstage)and/orto

    avoidunnecessarypoweremissioninshorthops(interferencereduction).

    NotethatmanyradioequipmentsnowincludepowersettingoptionsorATPC(Automatic

    TransmittedPowerControl)devices,sothatinmostcasestheuseofexternalattenuatorsisno

    longerrequired.

    Inthecontextofradiohopdesign,theonlyparametertobeassociatedwithTxandRxattenuators

    isthe

    attenuation

    level

    itself.

    Feeder Line

    AfeederlineisrequiredtoconnecttheantennaI/OflangetotheradioequipmentI/Oport(ortothe

    branchingsystemI/Oport). Theexceptionistheoutdoorconfiguration,withdirectequipmentto

    antennaconnection.

    Thebasicfeederparametersforradiolinkdesignare:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    32/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Rangeofoperatingfrequencies;

    Specificloss(expressedindBperunitlength).

    Additionalparameters,givingmoredetailsonfeederdescription:

    Feedertype(cable,rectangularwaveguide,etc.);

    Weight(expressedinkgperunitlength).

    Advanced - Hops with a Passive Repeater

    PassiveRepeatersareusedmainlyinhopsoverirregularterrain,tobypassanobstructionalongthe

    pathprofile.

    ThreePassiveRepeaterconfigurationsaredescribedbelow,whilethecorrespondingLinkBudget

    equationsarepresentedinthenextSession.

    Singleplanereflector - itisimplementedasametalsurface,whichisclosetoa100%reflection

    efficiency.Thesurfaceflatnessmustbemoreandmoreaccurateforincreasingfrequency(smaller

    signalwavelength).

    Thereflectorworkstodeviatetheincomingsignaldirectionbyanangle. Thegeometryisshown

    inthefigurebelow

    Passiverepeaterimplementedasasingleplanereflector

    Eachpathfromaradiositetotherepeateriscalleda"leg". Soaradiohopwithasinglereflectoris

    madeoftwolegs.

    Notethattheusefulor"effective"areaAEoftheplanereflectorisgivenby:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    33/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    whereAREAListherealreflectorareaandistheanglebetweenthetworays.

    Itisestimatedthatfor>120(correspondingto

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    34/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Passiverepeaterimplementedasatwoantennabacktobackarrangement

    Fromageometricalpointofview,thebacktobackantennasystemhasawiderandmoreflexible

    applicationfield,

    compared

    with

    asingle

    reflector

    system.

    From

    agiven

    repeater

    position,

    any

    changeinsignaldirection()canbeobtained.

    However,singleordoublereflectorsmaybeimplemented,ifneeded,withsurfacesmuchwider

    thantheusualantennasize. Moreover,thereflectorefficiencyiscloseto100%,comparedtosome

    55%antennaefficiency.

    So,whenthepowerbudgetislimited,thebacktobackantennasystemmaybeapoorsolution.

    This

    concludes

    Section

    1

    of

    the

    PPRLE.

    Please

    proceed

    to

    Herald

    Lab

    Exercise

    1.

    End of Section #1

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    35/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    SECTION 2 BASICS IN LINK ENGINEERING

    Summary

    InthisSessiontheFreeSpaceradiolinkequationispresented,togetherwiththeconceptofFree

    SpaceLoss.Then,terrestrialradiohopsareconsideredandabriefsummaryisgivenofthemost

    significantpropagationimpairments. WediscusstheLinkBudget,inordertoestimatetheFade

    Margin,andhowtousetheFadeMargininpredictingtheoutageprobability. Finally,theradiolink

    equationisrevisedtoincludetheuseofpassiverepeaters.

    Free Space propagation

    Weapproachradiolinkengineeringbyfirstconsideringanidealpropagationenvironment,where

    transmissionofradiowavesfromTxantennatoRxantennaisfreeofallobjectsthatmightinteract

    inanywaywithelectromagnetic(EM)energy. Thisassumptionisusuallyreferredas"FreeSpace"

    propagation.

    LetusconsideraradiotransmitterwithpowerpTcoupledtoadirective antennawithmaximum

    gainontheaxisgT.

    AtdistanceDfromthetransmittingantenna(sufficientlylarge,inorderthatFarFieldconditionsare

    satisfied),thePowerDensityontheantennaaxisis:

    Computation of Received Power in Free Space propagation

    Nowweimaginethat,atthedistanceD,areceivingantennaisinstalled.Theantenna "effective

    aperture"or"effectivearea"AEgivesameasureoftheantennaabilitytocaptureafractionofthe

    radioenergydistributedatthereceiverlocation.Assumingnoreceivermismatch,thepowerpR,at

    thereceiver

    antenna

    output

    flange,

    is

    :

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    36/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    TakingaccountthattherelationbetweentheRxantenna gainandtheantenna"effective

    aperture"is:

    thereceivedpowerequationbecomes:

    whereFisthefrequencyofthetransmittedsignal,isthewavelength,andc=Fisthe

    propagationspeed,

    which

    can

    be

    assumed

    to

    be

    about

    3108m/s,

    with

    good

    approximation,

    bothinthevacuumandintheatmosphere.

    Thisisusuallyknownasthe"FreeSpaceRadioLinkEquation." Usinglogarithmicunits,itcanbe

    writtenas:

    whereuppercaselettersareusedtoexpresspowerindBmandgainsindB,whilethesame

    lettersinlowercasehadbeenpreviouslyusedfornonlogarithmicunits.

    NotethatfrequencymustbeexpressedinGHzanddistanceinkm,otherwisethe92.44constantis

    tobemodifiedaccordingly(e.g.:withdistanceinmiles,theconstantis96.57;withfrequencyin

    MHz,theconstantis32.44).

    Theaboveequationcanbealsowrittenas:

    where

    FSL

    is

    called

    Free

    Space

    Loss,

    given

    by:

    IfweassumetouseIsotropic Antennas(G=0dB)bothatthetransmittingandatthereceiving

    site,then:

    soFSLisalsodefinedas"lossbetweenisotropicantennas".

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    37/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Free Space Loss vs. distance and frequency

    Comments on Free Space Loss

    TheconceptofFreeSpaceLoss,andtherelatedformulas,needsomecomments. First,theterm

    "loss"couldsuggestsomesimilaritywithlossesincoaxialcablesorotherguidedtransmissionof

    electromagnetic(EM)energy,whereweobserveaninteractionandpowertransferfromtheEM

    wavetothepropagationmedium. Here,wearetalkingabout"FreeSpacePropagation":the

    propagationmediumisthevacuumandnointeractionexists.TheFreeSpaceLossisjusttobe

    referredtothedensityofEMenergy,whichfollowstheinversesquarelawdependenceversus

    distancefromthesource.

    AsecondproblemistheroleoffrequencyintheFreeSpaceLossformula.IstheFreeSpacea

    transmissionmediummorelossyasfrequencyincreases? Letusconsiderthetwoequivalentforms

    oftheradiolinkequationgivenabove:

    Thefirstexpressionisprobablymoreintuitiveandshouldbepreferredwhenwetrytounderstand

    thephysicalconceptunderlyingfreespacepropagation. TheTxantennaisdescribedbyitsgain(the

    abilitytofocustheEMpowertowardagivendirection),whiletheRxantennaisdescribedbyits

    equivalentaperture(theabilitytocapturetheEMpowerdistributedatthereceiverlocation).

    Ontheotherhand,wepassedtothesecondexpression,whereboththeTxandRxantennagains

    appear,sinceitlooksattractiveforitssymmetricform. Thefrequencydependenceinthiscaseis

    duetothedecreasingeffectiveapertureofthereceivingantenna(foragivengain),asthefrequency

    increases.It

    is

    just

    aformal

    artifice

    to

    include

    frequency

    dependence

    in

    the

    so

    called

    Free

    Space

    Loss.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    38/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Asaconclusion,theFreeSpaceLossisaconvenientstepinevaluatingthereceivedpowerinaradio

    linkanditisusefulinordertoputformulasinamanageableform. However,careshouldbepaid

    aboutthephysicalconceptrelatedtoit,inordertoavoidmisleadinginterpretations.

    Terrestrial radio links

    WenowdepartfromtheFreeSpaceassumptionandweputagainourfeettotheearth. We

    considerradiowavepropagationbetweentwoterrestrialradiosites,inthecontextofradiohop

    design.

    Transmittingandreceivingantennasareassumedtobeinstalledontowers/buildings,atmoderate

    heightabovetheearthsurface(metersortensofmeters),sothatpropagationinthelower

    atmosphere,closetoground, hastobeconsidered.

    Moreover,weassumethattheradiowavefrequencyisintherangefromUHFband(lowerlimit300

    MHz)uptosometensofGHz(60GHzcanroughlybetheupperlimit,accordingtopresent

    applications).

    ComparedwithFreeSpacePropagation,thepresenceoftheatmosphereandthevicinityofthe

    groundproduceanumberofphenomenawhichmayseverelyimpactonradiowavepropagation.

    Themajorphenomenaaredueto:

    AtmosphericRefraction:

    RayCurvature;

    MultipathPropagation;

    Interactionwithparticles/moleculesintheAtmosphere:

    AtmosphericAbsorptionintheabsenceofrain;

    RaindropAbsorptionandScattering;

    EffectsoftheGround:

    DiffractionthroughObstacles;

    Reflectionsonflatterrain/watersurfaces.

    Whenoneormoreoftheabovephenomenaaffectradiopropagation,theresultingimpairmentis:

    usually,anadditionalloss(withrespecttofreespace)inthereceivedsignalpower;

    inparticularcases,alsoadistortionofthereceivedsignal.

    Propagationimpairments

    will

    be

    considered

    in

    the

    following

    sessions.

    In

    most

    cases

    they

    can

    be

    predictedonlyonastatisticalbasis. Theyaremainlyaffectedby:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    39/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Frequencyofoperation;

    HopLength;

    Climaticenvironmentandcurrentmeteorologicalconditions;

    Groundcharacteristics(terrainprofile,obstaclesaboveground,electricalparameters).

    Fromtheviewpointofthephenomenaduration,letusconsider:

    temporaryimpairments,whichaffectthereceivedsignalonlyforsmallpercentagesoftime

    (examplesarerain,multipathpropagation,...);

    longterm(orpermanent)propagationconditions,whichaffectthereceivedsignalformost

    ofthetime(examplesareatmosphericoxygenabsorption,terraindiffraction,...),evenif

    theirimpactmaybevariableinsomemeasure.

    Inmostcases,longtermpropagationimpairmentsdonotproduceasignificantpowerlossinthe

    receivedsignal,comparedwithFreeSpaceconditions. So,thereceivedpowerobservedforlong

    periodsoftimewillberatherclosetothatpredictedbytheFree Space Radio Link Equation.

    Themostsignificantexceptiontotheaboveconditionisexperiencedinradiopathswithnotperfect

    visibility. Inthatcase,attenuationcausedbyterraindiffractionresultsinasystematicloss,in

    comparisonwithFreeSpaceconditions.

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    40/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Link Budget

    EvenindesigningTerrestrialRadioLinks,theFree Space Radio Link Equationisthebasisfor

    receivedpowerprediction.

    Theequationin

    logarithmic

    units

    offers

    avery

    simple

    and

    convenient

    tool,

    sinceGains

    and

    Losses,

    throughoutthetransmissionchain,areaddedwithpositiveornegativesign,asinafinancialbudget.

    Theresultiswhatiscalledthe"LinkBudget".

    TheFreeSpaceequationcanberewrittenwithmoredetail,takingaccountofactualequipment

    structureandofsystematicimpairmentsthroughoutthepropagationpath.Anexampleisgivenin

    theTablebelow.

    PowerLevel

    [dBm]

    Gains

    [dB]

    Losses

    [dB]

    TxPoweratradioeqp.

    outputflange

    Txbranchingfilter

    Txfeeder

    OtherTxlosses

    Poweratant.input

    Txantenna

    gain

    Propagationlosses:

    FreeSpace

    Obstruction

    Atm.Absorption

    Other

    RxAntenna

    gain

    Poweratant.output

    Rxfeeder

    Rxbranchingfilter

    OtherRxlosses

    NominalRxPowerat

    radioeqp.inputflange

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    41/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Asshownintheaboveexample,thelinkbudgetincludesanestimateofthepowerlossdueto

    permanent(orlongterm)impairments(likeatmosphericabsorptionandobstructions). So,the

    NominalRxPower(ascomputedatthelastline)isexpectedtobeobservedforlongperiodsoftime.

    OncetheLinkBudgetiscomputed,otherimpairmentsatthereceiveraretakenintoaccountas:

    adegradingeffectinreceiveroperation(Rx thresholddegradation):thisusuallyappliesto

    theeffectofgroundreflectionsandinterference;

    ashorttermattenuation(orevendistortion)inthereceivedsignal,whoseeffectmaybeto

    fadethereceivedsignalbelowtheRxthreshold

    Power

    Threshold Margin

    Nominal

    Rx

    Power

    EquipmentThreshold

    ThresholdDegrad.

    Reflections

    Interference

    HopThreshold

    Fademargin

    WesummarizethefinalstepsinLinkBudgetanalysiswiththetwoequations:

    NotethatThresholdDegradationcausestheactualHopThresholdtobehigherthantheEquipment

    Threshold(onedBthresholdincreasemeansonedBreductionintheavailableFadeMargin).

    Fade Margin and Outage prediction

    Typically,pointtopointradiohopsaredesignedinawaythattheNominalRxPower(ascomputed

    intheLink Budget)isfargreaterthanthereceiverthreshold. So,ratherlargeFadeMargins(ofthe

    orderof3040dB,orevengreater)areusuallyavailable.

    TheFade

    Marginis

    required

    to

    cope

    with

    short

    term

    attenuation

    and

    distortion

    in

    the

    received

    signal(mainlycausedbyrainandmultipath).

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    42/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    Asummaryofvariousdefinitionsisgiveninthediagrambelow.

    AsummaryofdefinitionsinReceivedPowerlevels,thresholds,andmargins,withapplicationtoOutage

    estimation.

    Theabovefiguresuggeststhefollowingcomments:

    TheRxpowermayexceedtheFreeSpacelevel: thesocalled"upfading"isaratherunusual

    event(itmaybecausedbyparticularrefractionconditions,whichcreateasortofguided

    propagationthroughtheatmosphere).Caremustbetakenthatthereceivedpowerlevelbe

    in

    any

    case

    below

    the

    maximum

    level

    accepted

    by

    the

    Rx

    equipment

    (otherwise,

    receiver

    saturationandnonlineardistortionmaybeobserved).

    TheRxPowerwillbeattheNominallevel(Normalpropagation)formostofthetime.

    ModerateattenuationbelowtheNominalRxpowerdoesnotusuallyproduceanysignificant

    lossinsignalquality.

    TheEquipmentthresholdmaybedegradedinsomemeasurebyreflectionsand/or

    interference,sothatahigherHopthresholdmustbeconsidered.

    Startingfrom

    the

    very

    low

    Rx

    power,

    the

    Outage

    conditions

    are:

    o belowtheEquipmentthreshold,outageisproducedbythereceiverthermalnoise,

    evenintheabsenceofanyadditionalimpairmentinthereceivedsignal;

    o belowtheHopthreshold,outageiscausedbythecombinedeffectofreceivernoise

    andotherimpairments(likereflectionorinterference);

    o inthedeepfadingregion,abovetheHopthreshold,outagemaybeobservedwhen

    thereceivedsignalisnotonlyattenuated,butalsodistortedbypropagationevents

    (mainly,frequencyselectivemultipath).

    Fromtheabovediscussion,theOutagetime,duringtheobservationperiodTo(typically,one

    month)canbepredictedas:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    43/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    ifnocontributiontooutageisexpectedfromsignaldistortion.

    Ontheotherhand,ifsignificantdistortionintheRxsignalisexpectedtocontributetothetotal

    outage,thepredictionformulahastobecompletedas:

    wherethesecondtermgivesthecontributiontooutageprobabilitywhenthereceived

    signalisabovetheHopthreshold,butitisseverelydistorted(notethatProb{A/B}means

    probabilityofeventA,giventhateventBistrue).

    Theseformulas

    only

    help

    to

    clarify

    how

    the

    outage

    time

    is

    related

    to

    the

    Rx

    power

    level

    and

    to

    additionalimpairmentsinthereceivedsignal. Theydonotprovideapracticalmeanstopredict

    outagetime;thisrequiresthatsuitablestatisticalmodelsofpropagationimpairmentsbeavailable:

    SuchmodelswillbeconsideredinthefollowingSessions.

    ADVANCED - Link Equation with Passive Repeater

    WhenaPassiveRepeaterisusedinaradiohop,wehavetorevisethe"BasicRadioLinkEquation".

    TobeconsistentwiththesimpleFreeSpaceformula,wewritethenewequationas:

    where:

    FSL(DTOT)istheFreeSpaceLossofaradiolinkwithpathlength DTOT=Di;

    Di isthelengthofeachpath leg;

    LPRisthepowerlosscausedbythepassiverepeater,incomparisonwiththeFreeSpacecase.

    SingleReflector - Werefertothepathgeometry,asshowninaprevious figureandtothe

    definitionofthereflectoreffective areaAE. Then,LPRisgivenby:

    whereFistheworkingfrequencyinGHzandD1,D2aretheleglengthsinkm.

    DoubleReflector - Again,werefertothepathgeometry,asshowninaprevious figureandto

    thedefinitionofthereflectoreffective areaAE. Then,LPRisgivenby:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    44/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    whereFistheworkingfrequencyinGHzandD1,D2,D3aretheleglengthsinkm.

    BacktoBackantennasystem - Thepathgeometryisshowninaprevious figure. Then,LPRis

    givenby:

    whereFistheworkingfrequencyinGHz,D1,D2aretheleglengthsinkm,G1,G2arethe

    antennagainsattherepeatersite(usually G1=G2)andLFisthelossduetothefeeder

    connectingthetwoantennas.

    NearFieldcorrection - Theaboveformulasarecorrectlyusedwhenthereflectorsarepositioned

    outsidethe"nearfield"region. Ifthisconditionisnotsatisfied,thenacorrectionfactor(additional

    loss)must

    be

    applied.

    Thenearfieldregionisestimatedasafunctionoftheantennaandreflectordimensionsandofthe

    signalfrequency(wavelength). Twonormalizedparameters(,)arecomputed:

    whereDMinistheshortestlegfromoneantennatotheclosestreflector,distheantenna

    diameterandAEisthereflectoreffectivearea.

    Aruleofthumbisthefollowing:forintherange0.2 1.5(thiscoversmostpracticalconditions),

    thenearfieldcorrectionfactorisnotnegligibleif 10dB

    =0.40 1.7dB 3.9dB 7.1dB 9.8dB

    =0.60 0.7dB 1.8dB 3.8dB 6.7dB

    =1.00

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    45/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    End of Section #2

    SECTION 3 PATH CLEARANCE

    Summary

    InthisSessiontheeffectoftheatmosphereonradioraytrajectoriesisfirstconsidered,by

    introducingthekfactorconcept;possibledeviationsfromstandardconditionsareidentified,aswell

    astheminimumkfactorvalue.ThentheFresnelellipsoidisdefined;thepartialobstructionofthe

    ellipsoidleadstotheestimateoftheresultantloss.Finally,thepreviousconceptsareusedtoset

    clearancecriteriaandtodiscusstheirapplicationtopathprofileanalysis.

    Refractivity in the Atmosphere

    TheRefractive

    Index

    nin

    agiven

    medium

    is

    defined

    as

    the

    ratio

    of

    the

    speed

    of

    radio

    waves

    in

    vacuumtothespeedinthatmedium.Sincethespeedofradiowavesintheatmosphereisjust

    slightlylowerthaninvacuum,thentheRefractiveIndexintheatmosphereisgreaterthan,butvery

    closeto,1.

    However,alsosmallvariationsintheatmosphereRefractiveIndexhavesignificanteffectsonradio

    wavepropagation.Forthisreason,insteadofusingtheRefractiveIndexn(closeto1),itis

    convenienttodefinetheRefractivityNas:

    So,NisthenumberofpartspermillionthattheRefractiveIndexexceedsunity;itisadimensionless

    parameter,measuredinNunits.

    TheatmosphereRefractivityisafunctionofTemperature,Pressure,andHumidity.TheITURRec.

    453givestheformula:

    where:

    T=absolutetemperature(Kelvindeg);

    P=atmosphericpressure(hPa,numericallyequaltomillibar);

    e=watervapourpressure(hPa).

    Atsealevel,theaveragevalueofNisaboutNo=315Nunits.TheITURgivesworldmapswiththe

    meanvaluesofNointhemonthsofFebruaryandAugust.

    Temperature,atmosphericpressure,andwatervapourpressurearenotconstantwithheight.This

    producesaVertical

    Refractivity

    Gradient

    G

    (measured

    in

    N

    units

    per

    km,

    N/km),

    defined

    as:

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    46/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    whereN1andN2aretherefractivityvaluesatelevationsH1andH2,respectively.

    Undernormal

    (standard)

    atmospheric

    conditions,

    Refractivity

    decreases

    at

    aconstant

    rate,

    moving

    fromgroundleveluptoabout1kmheight. ThismeansthattheRefractivityGradientGisconstant,

    thetypicalvaluebeingabout 40N/km.

    DeviationfromtheStandardAtmosphereconditionisusuallyassociatedwithparticularweather

    events,liketemperatureinversion,veryhighevaporationandhumidity,passageofcoldairover

    warmsurfacesorviceversa.Intheseconditions,theVerticalRefractivityGradientisnolonger

    constant.Anumberofdifferentprofileshavebeenobservedandmeasured.Itisworthnotingthat,

    atgreateraltitude,theRefractiveIndexis,inanycase,closerandcloserto1;sotheRefractivityN

    decreasestozero.

    Propagation in Standard Atmosphere

    ARadioWavepropagatesinthedirectionnormaltotheisophaseplane(theplanewhereallthe

    pointsarephasesynchronous,withrespecttothesinusoidalpatternofelectricandmagneticfields).

    Inahomogeneousmedium,theisophaseplanesareparalleltoeachotherandthepropagation

    directionisastraightlinenormaltothem.

    As seen above,theAtmosphereisnotahomogeneousmediumandtheVerticalRefractivity

    Gradient

    gives

    a

    measure

    of

    that.

    Different

    Refractivity

    at

    different

    heights

    means

    different

    propagationspeeds.Thewavefrontmovesfasterorslower,dependingontheheight:thiscausesa

    rotationofthewavefrontitself.

    Wavefront

    and

    ray

    rotation

    caused

    by

    avertical

    refractivity

    gradient

    in

    the

    atmosphere

  • 8/14/2019 Point To Point Radio Link Engineering.pdf

    47/196

    DownloadaFREEtrialofHeraldProfessionalfromWWW.HERALDPRO.COM

    Copyright 2001-2013, Luigi Moreno, Torino, Italy - All rights reserved

    So,thepropagationtrajectory(normaltothewavefront)isnotastraightline,butitisrotated,as

    shownintheabovefigure.Takingintoaccountthatthepropagationspeedisinverselyproportional

    totherefractiveindex,itispossibletoderivethattheradiotrajectorycurvature1/risrelatedtothe

    VerticalRefractivityGradientG,as:

    InStandardAtmosphere,withatypicalvalueoftheRefractivityGradientG= 40N/km,the

    curvatureoftheradioraytrajectoryis:

    Thismeansthattheradiorayisbentdownward,withacurvature1/r,somewhatlower(lesscurved)

    thantheEarthcurvature1/R:

    Raybendinginstandardatmosphere(CL=clearance,verticaldistancefromgroundtoraytrajectory)

    The k-factor

    Aconvenientartificeisusedtoaccount,atthesametime,forboththerayandtheearthcurvatures.

    An"equivalent"representationofthe above figurecanbeplottedbyalteringbothcurvaturesby

    anamountequaltotheraycurvature1/r.

    Inthenewfigure(seebelow)theradioraytrajectorybecomesastraightline,whilethemodified

    ("equivalent")earthcurvature1/REis:

  • 8/14/2019 Point To P