polyhedral optimization lecture 3 – part 2 m. pawan kumar [email protected] slides available...

122
Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar [email protected] Slides available online http://cvn.ecp.fr/personnel/pawan/

Upload: damon-parsons

Post on 25-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Polyhedral OptimizationLecture 3 – Part 2

M. Pawan Kumar

[email protected]

Slides available online http://cvn.ecp.fr/personnel/pawan/

Page 2: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids– Truncation– Deletion– Contraction– Duality of Deletion and Contraction

• Maximum Weight Independent Set

• Polytopes

Outline

Page 3: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

t-Truncation of Matroid

M = (S, I) M’ = (S, I’)

X ∈I’ if two conditions are satisfied

(i) X ∈I

(ii) |X| ≤ t

M’ is a matroid Proof?

Page 4: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

t = 2

Is {1, 2, 3} independent in M’ ?

NO

t-Truncation denoted by M’

Page 5: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4} k = 3

t = 2

Is {1, 2} independent in M’ ?

YES

t-Truncation denoted by M’

Page 6: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4} k = 3

t = 2

Is {1} independent in M’ ?

YES

t-Truncation denoted by M’

Page 7: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

t = 3 t-Truncation denoted by M’

Independent in M’ ? NO

Page 8: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

t = 3 t-Truncation denoted by M’

Independent in M’ ? NO

Page 9: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

t = 3 t-Truncation denoted by M’

Independent in M’ ? YES

Page 10: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

t = 3 t-Truncation denoted by M’

Page 11: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

t = 3 t-Truncation denoted by M’

Independent in M’ ? NO

Page 12: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

t = 3 t-Truncation denoted by M’

Independent in M’ ? NO

Page 13: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

t = 3 t-Truncation denoted by M’

Independent in M’ ? YES

Page 14: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids– Truncation– Deletion– Contraction– Duality of Deletion and Contraction

• Maximum Weight Independent Set

• Polytopes

Outline

Page 15: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Deletion

M = (S, I) M\s = (S-s, I’)

X ∈I’ if two conditions are satisfied

(i) X S-s⊆

(ii) X ∈I

M\s is a matroid Proof?

Page 16: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 2, 3} independent in M’ ?

NO

Matroid after deletion of s denoted by M’

Page 17: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 3, 4, 5} independent in M’ ?

NO

Matroid after deletion of s denoted by M’

Page 18: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 3, 4} independent in M’ ?

YES

Matroid after deletion of s denoted by M’

Page 19: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after deletion of s denoted by M’

Independent in M’ ? NO

Page 20: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after deletion of s denoted by M’

Independent in M’ ? NO

Page 21: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after deletion of s denoted by M’

Independent in M’ ? YES

Page 22: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

Page 23: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after deletion of s denoted by M’

Page 24: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after deletion of s denoted by M’

Independent in M’ ? NO

Page 25: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after deletion of s denoted by M’

Independent in M’ ? NO

Page 26: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after deletion of s denoted by M’

Independent in M’ ? YES

Page 27: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Effect on Rank Function

M = (S, I) M\s = (S-s, I’)

rM\s(X) = rM(X), for all X S-s⊆

Proof?

Page 28: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids– Truncation– Deletion– Contraction– Duality of Deletion and Contraction

• Maximum Weight Independent Set

• Polytopes

Outline

Page 29: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Contraction

M = (S, I) M/s = (S-s, I’)

X ∈I’ if two conditions are satisfied

(i) X S-s⊆

(ii) X + s ∈I

M/s is a matroid Proof?

Assume {s} ∈I

Page 30: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Contraction

M = (S, I) M/s = (S-s, I’)

X ∈I’ if two conditions are satisfied

(i) X S-s⊆

(ii) X ∈I

M/s is the same as M\s when {s} ∉ I

Assume {s} ∉ I

Page 31: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 2, 3} independent in M’ ?

NO

Matroid after contraction of s is M’

Page 32: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 3, 4} independent in M’ ?

NO

Matroid after contraction of s is M’

Page 33: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Uniform Matroid

S = {1, 2, 3, 4, 5, 6} k = 3

s = 2

Is {1, 4} independent in M’ ?

YES

Matroid after contraction of s is M’

Page 34: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after contraction of s denoted by M’

Independent in M’ ? NO

Page 35: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after contraction of s denoted by M’

Independent in M’ ? NO

Page 36: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Linear Matroid

1

2

3

4

2

4

6

8

1

1

1

1

2

2

2

2

3

3

3

3

1

2

1

2

2

4

2

4

1

2

1

2

2

4

2

4

s

Matroid after contraction of s denoted by M’

Independent in M’ ? YES

Page 37: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

Page 38: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after contraction of s denoted by M’

Page 39: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after contraction of s denoted by M’

Independent in M’ ? NO

Page 40: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after contraction of s denoted by M’

Independent in M’ ? NO

Page 41: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example – Graphic Matroid

v1

v0

v2

v6

v4

v5

v3

s

Matroid after contraction of s denoted by M’

Independent in M’ ? YES

Page 42: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Effect on Rank Function

M = (S, I) M/s = (S-s, I’)

rM/s(X) = rM(X+s) – rM({s}), for all X S-s⊆

Proof?

Page 43: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids– Truncation– Deletion– Contraction– Duality of Deletion and Contraction

• Maximum Weight Independent Set

• Polytopes

Outline

Page 44: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Duality

(M/s)* = M*\s Proof?

If {s} ∉ I, deletion doesn’t affect independence

If {s} ∉ I, contraction doesn’t affect independence

Proof is trivial

Page 45: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Duality

(M/s)* = M*\s Proof? Assume {s} ∈I

X is independent in (M/s)*

⟺ X B⊆ 1 for some base B1 of (M/s)*

⟺ X ∩ B2 = Null for some base B2 of M/s

s X∉

⟺ X ∩ B3 = Null for some base B3 = B2 + s of M

⟺ X B⊆ 4 for some base B4 of M*

Hence proved.

Page 46: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set

• Polytopes

Outline

Page 47: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set

Matroid M = (S, I)

X S is independent if X ⊆ I

X S is dependent if X ⊆ ∉ I

Page 48: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Weight of an Independent Set

Matroid M = (S, I)

Weight function w: S → Non-negative Real

Weight of an independent set X

The sum of weight of its elements

Page 49: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Weight of an Independent Set

Matroid M = (S, I)

w(X) = ∑s X∈ w(s)

Weight of an independent set X

Weight function w: S → Non-negative Real

Page 50: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

X = {1, 3, 5}

Page 51: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

X = {1, 3, 5}

w(X)?

15

Page 52: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Forest X

Page 53: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Forest X

w(X)?

10

Page 54: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

Matroid M = (S, I)

maxX∈I w(X)

Find an independent set with maximum weight

Weight function w: S → Non-negative Real

Page 55: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

Matroid M = (S, I)

maxX∈I ∑s X∈ w(s)

Find an independent set with maximum weight

Weight function w: S → Non-negative Real

Page 56: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

True or False

There exists an optimal solutionthat is a base of the matroid

TRUE

Page 57: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Feasible Solutions?

Page 58: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Optimal Solution?

Page 59: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 60: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Feasible Solutions?

Page 61: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Optimal Solution?

Page 62: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Efficient Algorithm?

Page 63: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set– Greedy Algorithm– Efficiency– Optimality: Necessity– Optimality: Sufficiency– Extensions

• Polytopes

Outline

Page 64: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

Start with an empty set

Repeat

Pick a new element with maximum weight

such that the new set is independent

Until no more elements can be added

Add the element to the set

Page 65: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

X ← ϕ

Repeat

Pick a new element with maximum weight

such that the new set is independent

Until no more elements can be added

Add the element to the set

Page 66: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

X ← ϕ

Repeat

s* = argmaxx S\X∈ w(s)

such that the new set is independent

Until no more elements can be added

Add the element to the set

Page 67: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

X ← ϕ

Repeat

s* = argmaxx S\X∈ w(s)

such that X {s} ∪ ∈ I

Until no more elements can be added

Add the element to the set

Page 68: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

X ← ϕ

Repeat

s* = argmaxx S\X∈ w(s)

such that X {s} ∪ ∈ I

Until no more elements can be added

X ← X {s}∪

Page 69: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 70: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 71: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 72: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 73: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

Page 74: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 75: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 76: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 77: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 78: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 79: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 80: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

2 6

2

5

31

3 2

4

S = E

Page 81: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set– Greedy Algorithm– Efficiency– Optimality: Necessity– Optimality: Sufficiency– Extensions

• Polytopes

Outline

Page 82: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Efficiency of Greedy Algorithm

X ← ϕ

Repeat

s* = argmaxx S\X∈ w(s)

such that X {s} ∪ ∈ I

Until no more elements can be added

X ← X {s}∪

O(|S|)

O(|S|)

Page 83: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independence Testing Oracle

Efficiency depends on independence testing

Uniform matroid?

Graphic matroid?

Brute-force is not an option

Page 84: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set– Greedy Algorithm– Efficiency– Optimality: Necessity– Optimality: Sufficiency– Extensions

• Polytopes

Outline

Page 85: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Optimality: Necessity

(S, I) is a matroid

⟹(S, I) admits an optimal greedy algorithm

Proof?

Page 86: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

Matroid M = (S, I)

Proof by induction

Current solution X

X is part of optimal solution B (base of M)

Page 87: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

Next step chooses to add s If s B, trivial∈

Otherwise, consider base B’ such that

B’ = (B {s})\{t}∪

w(B’) ≥ w(B) by construction

X {s} B’ ∪ ⊆ ⊆ B {s}∪

Page 88: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set– Greedy Algorithm– Efficiency– Optimality: Necessity– Optimality: Sufficiency– Extensions

• Polytopes

Outline

Page 89: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Optimality: Sufficiency

(S, I) is a matroid

⟹(S, I) admits an optimal greedy algorithm

Proof?

Page 90: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

X ∈ I

Proof by contradiction

There should exist an s Y\X, X {s} ∈ ∪ ∈ I

Matroid M = (S, I)

Y ∈ I k = |X| < |Y|

Page 91: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

w(s) =

k+2, if s X ∈

k+1, if s Y\X ∈

0, otherwise

Greedy solution has weight k(k+2)

w(Y) ≥ (k+1)(k+1) > k(k+2)

Recall k = |X|

Page 92: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set– Greedy Algorithm– Efficiency– Optimality: Necessity– Optimality: Sufficiency– Extensions

• Polytopes

Outline

Page 93: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Base

Matroid M = (S, I)

maxX∈B w(X)

Find a base with maximum weight

Does greedy work? YES

Weight function w: S → Real

Page 94: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Minimum Weight Base

Matroid M = (S, I)

minX∈B w(X)

Find a base with minimum weight

Does greedy work? YES

Weight function w: S → Real

Page 95: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

Matroid M = (S, I)

maxX∈I w(X)

Find an independent set with maximum weight

Does greedy work? YES

Weight function w: S → Real

Page 96: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set

• Polytopes

Outline

Page 97: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Incidence Vector of Set

Matroid M = (S, I) Set X S⊆

Incidence vector vX {0,1}∈ |S|

vX(s) =

1, if s X ∈

0, if s X ∉

Page 98: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Uniform Matroid)

S = {1,2,…,9} s w(s)

1 10

2 5

3 2

4 1

5 3

6 6

7 12

8 2

9 1

k = 4

X = {1, 3, 5}

1

0

1

0

1

0

0

0

0

vX?

Page 99: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

e1 e2

e4

e6

e5e3

e7 e9

e8

S = E

X S⊆

Page 100: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Example (Graphic Matroid)

v1

v0

v2

v6

v4

v5

v3

S = E

X S ⊆

vX?

e1 e2

e4

e6

e5e3

e7 e9

e8

1

0

0

1

0

0

0

1

1

Page 101: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Incidence Vectors of Independent Sets

Convex HullAx ≤ b

Independent Set Polytope

A?

b?

Matroid M = (S, I)

First, a property !!

vX {0,1}∈ |S|, X ∈ I

Page 102: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

w* = maxX∈I w(X) Matroid M = (S, I)

S = {s1,s2,…,sm}, such that w(si) ≥ w(si+1) ≥ 0

Ui = {s1,…si}

X = {si | rM(Ui) > rM(Ui-1)}

Optimal solution Why?

Page 103: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

w* = maxX∈I w(X) Matroid M = (S, I)

w(X)

X = {si | rM(Ui) > rM(Ui-1)}

= ∑s X∈ w(s)

= ∑i w(si)(rM(Ui)-rM(Ui-1))

= ∑i λi rM(Ui)

w = ∑i λi vUiRelationship between w and λ?

Page 104: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Maximum Weight Independent Set

w* = maxX∈I w(X) Matroid M = (S, I)

w(X) = w* = ∑i λi rM(Ui)

such that w = ∑i λi vUi

We need to remember this for what follows

Page 105: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set

• Polytopes– Independent Set Polytope– Base Polytope– Spanning Set Polytope

Outline

Page 106: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

Convex HullAx ≤ b

Matroid M = (S, I)

vX {0,1}∈ |S|, X ∈ I

x Real∈ |S|

Page 107: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

vX {0,1}∈ |S|, X ∈ I

Matroid M = (S, I)

x Real∈ |S|

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

Necessary conditions

Why?

Why?

Sufficient for integral x Proof?

Page 108: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

vX {0,1}∈ |S|, X ∈ I

Matroid M = (S, I)

x Real∈ |S|

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

Necessary conditions

Why?

Why?

Sufficient for all x Proof?

Page 109: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

maxx wTx

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

Dual?

miny ∑U S⊆ yUrM(U)

yU ≥ 0, for all U S ⊆

∑U S⊆ yUvU ≥ w

Page 110: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

maxx wTx

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

miny ∑U S⊆ yUrM(U)

yU ≥ 0, for all U S ⊆

∑U S⊆ yUvU = w

Greedy algorithm integral solution

x’

Page 111: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

maxx wTx

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

miny ∑U S⊆ yUrM(U)

yU ≥ 0, for all U S ⊆

∑U S⊆ yUvU = w

Solution obtained using the property

x’

y’

Page 112: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

maxx wTx

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

miny ∑U S⊆ yUrM(U)

yU ≥ 0, for all U S ⊆

∑U S⊆ yUvU = w

Relationship between objectives for x’ and y’ ?

x’

y’

Page 113: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Independent Set Polytope

∑s w(s)x’s = ∑U S⊆ y’UrM(U)

Dual upper bounds primal

x’ and y’ must be optimal solutions

For all integer w, we have integer optimal value

Hence provedNegative values in w?

Page 114: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set

• Polytopes– Independent Set Polytope– Base Polytope– Spanning Set Polytope

Outline

Page 115: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Base Polytope

Convex HullAx ≤ b

Matroid M = (S, I)

vX {0,1}∈ |S|, X ∈ B

x Real∈ |S|

Page 116: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Base Polytope

vX {0,1}∈ |S|, X ∈ B

Matroid M = (S, I)

x Real∈ |S|

xs ≥ 0, for all s S ∈

∑s U∈ xs ≤ rM(U), for all U S ⊆

∑s S∈ xs = rM(S)

Page 117: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• Operations on Matroids

• Maximum Weight Independent Set

• Polytopes– Independent Set Polytope– Base Polytope– Spanning Set Polytope

Outline

Page 118: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Spanning Set Polytope

Convex HullAx ≤ b

Matroid M = (S, I)

vX {0,1}∈ |S|, X ∈ S

x Real∈ |S|

Independent set of M*

S\X?

Page 119: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Spanning Set Polytope

vX {0,1}∈ |S|, X ∈ B

Matroid M = (S, I)

x Real∈ |S|

1-xs ≥ 0, for all s S ∈

∑s U∈ (1-xs) ≤ rM*(U), for all U S ⊆

xs ≥ 0, for all s S ∈

Page 120: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Spanning Set Polytope

vX {0,1}∈ |S|, X ∈ B

Matroid M = (S, I)

x Real∈ |S|

xs ≤ 1, for all s S ∈

∑s U∈ (1-xs) ≤ rM*(U), for all U S ⊆

xs ≥ 0, for all s S ∈

Page 121: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Spanning Set Polytope

vX {0,1}∈ |S|, X ∈ B

Matroid M = (S, I)

x Real∈ |S|

xs ≤ 1, for all s S ∈

∑s U∈ xs ≥ rM(S) - rM(S\U), for all U S ⊆

xs ≥ 0, for all s S ∈

Page 122: Polyhedral Optimization Lecture 3 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Questions?