post-translational modifications · 2009. 5. 20. · post-translational modifications pc235 katalin...

91
Post-translational modifications PC235 Katalin F. Medzihradszky [email protected] Post-translational Modification of Proteins Expanding Nature’s Inventory (2006) by C.T. Walsh ISBN 0-9747077-3-2

Upload: others

Post on 05-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Post-translational modifications

    PC235Katalin F. Medzihradszky

    [email protected]

    Post-translational Modification of ProteinsExpanding Nature’s Inventory (2006)by C.T. Walsh

    ISBN 0-9747077-3-2

  • Genome↓

    Transcription – mRNA↓

    Translation – proteins + co-translational modifications

    ↓Post-translational modifications

    Just for introduction

  • Post-translational modifications I• Enzymatic processing• N-, O-, C-linked glycosylation – Asn, Ser/Thr/Hyl/Hyp,

    Trp• Phosphorylation – Tyr, Ser, Thr, His, Asp• Acylation

    acetylation of the N-terminusfatty acid anchors on Cys

    • Cross-linkage – Lys, Trp, Tyr, Met• Oxydation – Cys, Met, Trp, Tyr, His• Methylation – N-terminus, Arg, Lys• Ubiquitination - Lys

  • Post-translational modifications II

    • Cannot be predicted – though consensus sequences have been reported for some of them

    • Organism-dependent• Can be tissue- or location-specific• Stable or dynamic – high and low level• Alters biological activity, and physical

    properties• May alter the immune response

  • Sample preparation

    • Will the modification survive?

    • Can I get it down to a mass spectrometry friendly size?

    • Isolation/enrichment?

    • Losses – too hydrophilic/hydrophobic

  • Mass spectrometry

    • Will the modification survive the ionization? the MS/MS activation?

    • How unambiguous is the assignment? modification assignment?

    Ac vs. Me3; phosphate vs. sulfate etc. site assignment?

  • Finding the N-termini

    • 80-90% of the eukaryotic proteins is acetylated

    If 2nd aa: G, A, S, C, T, P, V - Met-1 is clipped off; Ac- is added to G,

    A, S, TIf 2nd aa: E, D, Q, M, I, L, W, F –persisting Met gets acetylated

  • Finding the N-termini

    • McDonald L, et al., Positional proteomics: selective recovery and analysis of N-terminal proteolyticpeptides.Nat Methods. 2005 Dec;2(12):955-7. Epub 2005 Nov 18.

  • Modified N-terminus

    Modified side-chain

    I don’t think any search engine will tell the difference !

  • Methylation (mono, di, tri - +14, +28, +42 Da)

    • N-terminus, Lys, Arg, His• Trimethyl – acetyl = 36 mmuAccurate mass measurement helps;Fragmentation is different too

    • Glu (Asp) may form Me-ester – upon CBB staining (MeOH + acid) + 14 Da

  • 7000

    6000

    5000

    4000

    3000

    2000

    1000

    0

    644.0643.8643.6643.4643.2643.0642.8642.6m/z

    14

    12

    10

    8

    6

    4

    2

    0

    x103

    795.0794.8794.6794.4794.2794.0793.8793.6m/z

    642.77672 (10+)

    b57 + 42 Da

    Calculated masses 6418.6718 - with Ac 6418.7082 - with Me3

    Experimental value 6418.6973 Me3b57 (-1.6 ppm)

    Mass calculated: 7134.8569 Experimental: 7134.8463 (-1.4 ppm)

    y64

    793.65655 (9+)

    FT ICR MS

  • 700

    600

    500

    400

    300

    200

    100

    0

    Ion

    Cou

    nts

    400350300250200150100

    m/z100

    80

    60

    40

    20

    0

    Ion

    Cou

    nts

    800700600500400

    m/z

    72.08

    87.05147.11 169.10

    186.13

    214.13

    260.20

    280.20(2+)

    294.85(3+)308.86(3+)

    329.74(2+)

    373.26(2+)

    745.50

    623.36599.39

    462.79(2+)

    479.83(2+)

    571.28

    486.31

    422.77(2+)

    427.77(2+)

    441.

    54(2

    +)

    458.

    29

    471.29(2+)

    314.5(3+)

    320.2(3+)

    354.73(2+)

    141.1

    V

    N y1

    SV-28-H2O

    a2-NH3

    a2

    b2

    y2

    y42+

    [MH3-NH3-NMe3]3+

    [MH3-2NH3]3+

    [MH3-NH3]3+

    y52+

    [a7-NH3-NMe3]2+ y6

    2+

    y72+

    [MH2-CO2H-NMe3]2+

    [MH2-NH3]2+

    MH22+

    SVK*ESVK*EI

    SVK

    *E-2

    8

    [MH2-2xNH3]2+

    y6b6-NH3-NMe3

    512.36

    SVK*EI-28

    SVK*EI-28-NMe3

    Asn-Val-Ser-Val-Lys(Me3)-Glu-Ile-Lys

    - 59 Da

  • Disulfide-bridges

    • in membrane and secreted proteinsimportant 3D structure feature

    • prone to shuffling @ basic pH

  • Digestion

    @ low pH

    Reduction/alkylation

    Reduction/alkylation

    I

    m/zI

    m/z

    I

    m/z

    I

    m/z

    I

    m/z

    MS/MS

    Reduction/alkylation

    Digestion

    @ low pH

    Reduction/alkylation

    Assigning disulfide-bridges

  • Synthetic Ac-TIMP-1(Ser175)126-184

    ECTVFPCLSI PCKLQSGTHC LWTDQLLQGSEKGFQSRHLA CLPREPGLCS WQSLRSQIA

    Where are the disulfide bridges?

    * digestion with trypsin @ pH 6;

    * with pepsin in acid

    Bodi, N. et al., J. Pept. Sci. 9, 430-441 (2003).

  • 300028002600240022002000m/z

    inte

    nsity

    12001000800600m/z

    inte

    nsity

    1600140012001000800600m/z

    [38-

    44]

    free

    SH

    [33-

    37]

    [45-

    55]

    Free

    SH

    [38-

    55]

    41-4

    9

    [38-

    44]-[

    45-5

    5]41

    -49

    Ac[

    1-13

    ]-[45

    -55]

    2-7,

    12-

    49

    [14-

    32]-[

    38-4

    4]20

    -41

    [33-

    37]

    [38-

    44]

    S*

    [45-

    55]

    S*

    Ac[

    1-13

    ]1

    S-S,

    1 S

    *

    Ac[

    1-13

    ]3

    S*[4

    5-59

    ]1

    S*

    30002800260024002200200018001600m/z

    Ac[

    1-13

    ]1f

    ree

    SH

    , 2 S

    *

    [38-

    55]

    2 S*

    [14-

    32]

    1 S*

    [38-

    59]

    2 S*

    [14-

    37]

    1 S*

    MALDI-TOF analysis of the tryptic digest

    PSD

    In-source reduction

  • Results from the MALDI-TOF MS

    594.30 [33-37] 809.5 [38-44] szabad SH1275.7 [45-55] szabad SH2064.0 [38-55] 41-49 2082.1 [38-44]-[45-55] 41-49 2752.4 Ac[1-13]-[45-55] 2-49, 7-12 2950.6 [14-32]-[38-44] 20-41 3602.6 Ac[1-32] 2-7, 12-20 3620.6 Ac[1-13]-[14-32] 2-7, 12-20 4177.3 Ac[1-37] 2-7, 12-20 5665.1 Ac[1-32]-[37-

    55]+H2O 2-49, 7-12, 20-41

    5683.2 Ac[1-32]-[37-55]+2 H2O

    2-49, 7-12, 20-41

    594.30 [33-37] 866.5 [38-44] 1 CM Cys 1332.7 [45-55] 1 CM Cys 1536.8 Ac[1-13] 1 S-S, 1 CM Cys 1595.8 Ac[1-13] 1 SH, 2 CM Cys 1652.7 Ac[1-13] 3 CM Cys 1674.8 [45-59] SH 1731.9 [45-59] 1 CM Cys 2144.2 [14-32] SH 2180.1 [38-55] 2 CM Cys 2201.1 [14-32] 1 CM Cys 2579.3 [38-59] 2 CM Cys 2776.3 [14-37] 1 CM Cys 3834.7 Ac[1-32] 4 CM Cys 4409.7 Ac[1-37] 4 CM Cys

    Tryptic digest After reduction/alkylation

  • Disulfide bridges in TIMP-1 C-terminal domain: [38-44]-S-S-[45-55], PSD of MH+ at m/z 2082.1

    1000

    800

    600

    400

    200

    0

    Inte

    nsity

    200015001000500m/z

    2X17

    5.6,

    y1,

    y 1*

    251.

    6, b

    2

    255.

    2, y

    2*-N

    H3

    322.

    6, b

    3

    776.

    3 810

    .084

    1.7 1

    242.

    1*12

    76.4*

    1308

    .9*

    110.

    1, H

    1928

    , b6+

    H2O

    4, b

    10*+

    H2O

    His-Leu-Ala-NH-CH-CO-Leu-Pro-Arg

    CH2

    CH2

    Glu-Pro-Gly-Leu-NH-CH-CO-Ser-Trp-Gln-Ser-Leu-Arg*

    S

    S810

    776

    842.11242.4

    1276.51308.5

    38

    45

    MALDI-PSD/CID yields characteristic triplets

  • 4000

    3000

    2000

    1000

    0

    Ion

    Cou

    nts

    600500400300200100

    m/z1200

    800

    400

    0

    Ion

    Cou

    nts

    1000900800700600

    m/z

    400

    300

    200

    100

    0

    Ion

    Cou

    nts

    1600150014001300120011001000

    m/z

    Figure 9. Low energy CID of m/z 871.79 (most abundant ion in 9+ cluster), MW (monoisotopic) 7835.03 Da. This molecule was identifiedas disulfide linked peptides [443-496] and [519-531] of myosin heavy chain. Sequence and fragmentation are shown on the next page.

    327.21y3**

    456.25y4**

    490.24y4 569.34

    y5**

    120.08F

    201.12b2

    637.32y5 682.44

    y6**763.10 (3+)

    b19

    811.49y7**

    796.13(3+)b20

    872.18 (3+)b22

    706.41 (3+)b17

    924.5y8**

    1144.16 (2+)

    1307.77 (2+)

    1068.62b9 b19

    b22

    No characteristic triplets in ESI-CID

  • Fragment ions used for the identification of disulfide linked myosin peptides. (see low energy CID spectrum in Figure 9.)

    b-ions myosin heavy chain peptide [443-496] 763.10 (3+) 1144.16 (2+) 796.13 (3+) 872.18 (3+) 201.12 1068.62 706.41 (3+) 1307.77 (2+) 2 9 17 19 20 22 VTRINQQLDTKQPRQYFGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHhS 5 4 637.32 490.24 y-ions myosin heavy chain peptide [519-531] DLAACIELIEKPhS 8 7 6 5 4 3 924.5 811.49 327.21 682.44 456.25 569.34 **y-ions

  • Disulfide BridgesThe ProteinProspector mass modification search can be used in conjunction with MS-Bridge to find peptides with disulfide bridges. For this example, mass shifts between 0-2000 Da were considered. (1023.3276+4).

    KLSWADLIVFAGNCALESMGFK+4

    VSFADLVVLGGCAAIEK

  • Glycosylationhttp://glycores.ncifcrf.gov/

    Reference: Essentials of Glycobiology by Varki et al.

  • N-linked

    AsnXxxSer/Thr/Cys

  • Further processing

  • N-linked glycosylation• consensus sequence• GlcNAc2Man3 – coreoligomannose structure – just Man unitscomplex sugars– GlcNAc-Gal–SA antennaehybrid structurescore fucosylationsulfate, phosphate modifications

    • PNGase F removes all N-linked structures; Asn Asp

  • N-linked glycosylation• Incredible heterogeneity: a site may be

    only partially occupied and may display numerous different carbohydrates

    • species-, tissue-, cell-type-specificmodification, physiological changes, diseases may alter the sugars

  • certain structures are immunogenicGal 1-3 capping, Fuc 1-3 on inner GlcNAc;blood group determinants

  • N-linked glycosylation• Identification from diagnostic fragments:* HexNAc m/z 204* HexHexNAc m/z 366 Precursor scan, or „ping-pong” acquisition• Identification from oligosaccharide

    heterogeneity• enrichment by HILIC or lectin-

    chromatography

  • human lecithin:cholesterol acyltranferase and apolipoprotein D, tryptic digest, LC/MS analysis

  • MHTVNGYVN*R

    Recombinant Factor VIII, 50 kDa subunit

  • AG(Man8GlcNAc2)NVSNIIPASATLNADVR peptide+GlcNAc

  • About the structures of N-linked glycopeptides

    • from the measured mass, and the CID spectrum the modified peptide can be identified + the size and class of the sugar

    • the identity of the sugar units and their linkage positions CANNOT be determined

    • NMR, exo- and endoglycosidases are needed to complete the job

  • [MHNa2]3+ of QV(Man10GlcNAc2)NIT and [MH2Na] 3+ of QV(Man9GlcNAc2)NITGK

  • Scheme 1. Fragments observed in the low energy CID spectrum of [MH2Na]3+ of glycopeptide QV(Man9GlcNAc2)NITGK (Figure 6)

    +Na 2159.81 1080.41(2+) +Na 671.18 +Na Gln Man1-2Man1 1997.77 999.39(2+)

    36

    Man1 Val Man1

    Man1 36

    Man1-4GlcNAc-GlcNAc-Asn 6 Man1-2Man1- 2Man1 Ile +Na +Na Thr 163.05 2483.87 1242.44(2+) 1684.46 2321.851161.43(2+) 962.49 Gly +Na 347.08 Lys +Na 1360.41 +Na Man1-2Man1 1036.30

    36

    Man1 Man1

    Man1 36

    Man1-4GlcNAc 6 Man1-2Man1 - 2Man1 204.08 +Na 1522.41 +Na 1198.36

    One component from the previous slide

    K.F. Medzihradszky Meth. Enzymol. 405, 116-138 (2005).

  • O-linked sugars• No consensus sequence• No common core structure• No universal enzyme-elimination works (NaOH)sugars have to be reduced upon release

    Detection is problematic – because of heterogeneity; variable site occupancy

    Site assignment is even harder

  • O-linked sugars

  • Other O-linked core structures

    • FucHarris, R.J. & Spelmann, M.W. (1993) Glycobiology, 3, 219-224.• GlcNishimura, H et al., (1989) J. Biol. Chem. 264, 20320-20325.• Man – in yeast____________________________________

    • GlcNAc – single unit; INSIDE the cell

  • CID fragmentation

    of O-linked glycopeptides

    J. Am. Soc. Mass Spectrom. 7, 1996, 319-328.

  • O-linked GlcNAc

    •Regulatory modification of nuclear and cytoplasmic proteins•Poorly understood due to lack of effective methods for enrichment and detection.

    The Enrichment Problem•WGA lectin has affinity for GlcNAc, but affinity to a single GlcNAc moiety is low: millimolar1.

    WGA

    Good recoveryof glycoprotein

    Complex glycosylation

    Ohlson S et al. Bioseparation (1998) 7 p.101

    GlcNAcGlcNAcGlcNAc

    protein

    No recovery

    WGAPSVPVSerGSAPGR

    O-GlcNAcO-GlcNAcylation

    Load Wash Elute

    Load Wash Elute

  • O-GlcNAc Enrichment

    WGA column fraction collection

    Isocratic ChromatographyPeptide Mixture

    Non-enriched

    O-GlcNAcmodifiedenriched

    UV

    abs

    orba

    nce

    214

    Time (minutes isocratic HPLC)

    Vosseller, K. et al. Mol Cell Proteomics (2006) 5 5: p.923-934

    •Selective Enrichment of O-GlcNAc modified peptides using lectin weak affinity chromatography1.

  • CID Analysis of O-GlcNAc-Modified Peptides

    Chalkley, R. J. and Burlingame, A. L. J. Am. Soc. Mass Spectrom. (2001) 12 p.1106-1113

    •O-glycosidic link is significantly more labile under CID conditions than peptide backbone.

    •Modification site identification using CID often not possible.

  • A bit about MS/MS alternatives

    • ECD (electron-capture dissociation) –multiply charged ions meet electron beam in FT-ICR – larger the charge state larger the capture’s efficiency

    • ETD (electron-transfer dissociation) –multiply charged ions meet stable anion (fluoranthene) in ion traps

    • radical ion is formed, different mechanism mostly backbone cleavages

  • Mechanism of ECD I

    NN

    H

    R1

    O

    H O

    N

    H

    NN

    H

    R1

    O

    H O

    NH

    + 2H

    3+

    + 2H

    2+

    NN

    H

    R1

    O

    H

    CH2CH2

    CH2NH2

    O

    NH

    + 2H

    2+

    NN

    H

    R1

    O

    H

    H

    + H

    +O

    N

    HCH2CH2

    H2CNH2

    + H

    +

    c` ion z ion

    +

    e

    electroncapture

    backbone cleavage/proton abstraction

    H2N H2N

    H

    H H

  • Mechanism of ECD II

    NN

    NN

    OH

    H O

    Ri + 1 H

    Ri

    H

    O

    Ri - 1

    H

    + 2H

    2+

    NN

    N

    OH

    HRi

    H

    O

    Ri - 1

    H

    N

    O

    Ri + 1 H

    + H

    + H

    +

    +

    c` ion

    z ion

    NN

    H

    O

    Ri - 1

    H

    NN

    OH

    H O

    Ri + 1 H

    Ri

    + H

    + H

    +

    +

    c ion

    z` ion

    Bakken, V.; Helgaker, T.; Uggerud, E., Eur. J. Mass Spectrom. 2004, 10, 625-638

  • ECD MS Spectrum of GlcNAc-modifiedPeptide from Spectrin

    Vosseller, K et al. Mol Cell Proteomics (2006) 5 5: p.923-924

  • One of the most important regulatory events:

    turns proteins on and off

    induces or prevents other post-translational modifications

    in the same protein

    signaling pathways : phosphorylation cascades

    PhosphorylationBiological significance

  • Difficulties

    a) Dynamic process : kinase vs. phosphatase

    – both must be blocked during isolationb) Phosphorylation often @ low level (

  • A whole cell lysate with 20,000 sites of phosphorylation

    at 1% stoichiometry

  • A whole cell lysate with 20,000 sites of phosphorylation

    at 1% stoichiometry

  • phosphopeptide relative distribution after a 10,000 fold enrichment

  • Confirming the presence of phosphorylation

    Western blot

    pTyr large enough for sequence independent

    recognition - works well

    pSer, pThr – not reliable

    Dyes – questionable reliability

    Phosphatase treatment + isoelectric focusing – pI shift

    In vitro/in vivo assay with radioactive phosphate

  • Determining site of phosphorylation

    Mikrosequencing

    Mutation studies

    Mass spectrometry

    MS spectrum : + 80 Da shift

    MS/MS fragmentation :

    pSer, pThr - H3PO4 loss : –98 Da

    pTyr – always retains the modification

    immonium ion at m/z 216 Da

  • Enrichment methods

    Ion exchange on SCX

    IMAC : Fe(3+), Ga(3+)…

    binding at low pH

    methyl-esterification prior to IMAC

    TiO2, ZrO2

    Immunoprecipitation (only for pTyr)

  • Large scale vs. 1 protein

    large scale phosphorylation studies: large amounts of a complex mixture is analyzed

    compensating for losses during sample preparation leads to more PTM identification but low end results are incidental

    single protein samples: sample amount is usually limitedmore challengingcombination of techniques may be necessary

  • Survey Scan:

    Precursor Ions that produce 79(-)

    Phosphorylation Discovery Workflow

    Acquire MSMS Spectra (+)

    + / -polarity switch

    + / -polarity switch

    Dynamic Exclusion

  • N2 CAD Gas

    linear ion trap

    Detector

    Q0 Q1 Q2 Q3/LITQ0 Q1 Q2 Q3/LIT

    C2B C2B

    4000 Q TRAP

    Quadrupole Collision Cell

    Sample

  • LCMS 300fmole Fetuin: Discovery and Identification of CDSSPDpSAEDVR

    79- TIC

    79- Spectrum at 11.1 min

    Enhanced Resolution +ve ion Scan

    +ve ion MSMS Spectrum

  • CDSSPDpSAEDVR

    MH2+

    MH2+-H3PO4

  • MALDI-TOF MS without enrichment

    1200 1700 2200 m /z

    0

    5000

    10000

    15000

    20000

    25000

    a.i.

    /O =/bruker/2006/06novem ber/ke061110_02/2S R ef/pdata/1 A dm inistrator F ri N ov 10 11:56:05 2006

    P P

    PP

  • Enrichment with TiO2

    1400 1900 2400 m /z

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    a.i.

    /O =/bruker/2006/06novem ber/ke061109_01/2S R ef/pdata/1 A dm inistrator F ri N ov 10 10:15:26 2006

    P

    P

    P

    P

    P P

    P

    P

    P

  • CID of CDSSPDpSAEDVR140x103

    120

    100

    80

    60

    40

    20

    0

    Inte

    nsity

    800600400200m/z

    40x103

    30

    20

    10

    0

    Inte

    nsity

    140012001000800600400200m/z

    456.

    7 M

    -983

    +

    518.

    3 y

    4

    389.

    3 b

    3

    324.

    1 b

    2

    274.

    3 y

    2

    213.

    1 P

    D

    175.

    1 y

    1 435

    .9 y

    8-98

    2+

    597.

    2 P

    DpS

    AED

    -98

    695.

    2 P

    DpS

    AED

    498.

    2 b

    4

    871.

    4 y

    7

    477.

    3 M

    ## 3

    +

    1094

    .4 b

    10-9

    8

    870.

    5 y

    7

    968.

    4 y

    8

    1192

    .4 b

    10

    389.

    2 y

    3

    324.

    1 b

    2

    274.

    2 y

    2

    462.

    2 b

    42#

    715.

    4 M

    ## 2

    +

    1360

    .6 M

    -py

    684.

    4 M

    -982

    +

    1262

    .5 M

    -py-

    98

    756.

    3 y

    6

    658.

    4 y

    6-98

    m/z 733.7 (2+)

    m/z 489.6 (3+)

  • +80 Da: phosphate? sulfate?Phosphorylation• Tyr, Ser, Thr, (His)• Phosphopeptides are stable in MS (except His)• Tyr – no phosphate loss in CID• Ser, Thr – H3PO4 (98 Da) loss in CID

    Sulfation• Tyr only• Significant SO3 (80 Da) loss even in MS

  • FTMS accurate mass measurementwill tell the difference

    Ion detected MH+ determined sequence MH+ calculated [ppm] 501.27454(3+) 1501.808 GKFDYNTFVGI/LI/LK 1501.8055 +1.6 512.26184(4+) 2046.0239 AcAEEKQGRHTTNVI/LSMFR 2046.0191 +2.3 516.26027(4+) 2062.0176 AcAEEKQGRHTTNVI/LSM(O)FR 2062.0140 +1.7 603.31016(2+) 1205.6125 HTTNVI/LSMFR 1205.6101 +1.9 611.30791(2+) 1221.608 HTTNVI/LSM(O)FR 1221.6050 +2.4 643.28905(2+) 1285.5703 sulfo-HTTNVI/LSMFR 1285.5669 +2.6 phospho-HTTNVI/LSMFR 1285.5764 -4.7

    myosin regulatory light chain, Lymnaea stagnalis

  • Chromatographic and MS-behavior20x103

    15

    10

    5

    0

    Ion

    Cou

    nts

    30282624222018

    5000

    4000

    3000

    2000

    1000

    0

    Ion

    Cou

    nts

    30282624222018Time [min]

    250

    200

    150

    100

    50

    0

    Ion

    Cou

    nts

    580560540m/z

    400

    300

    200

    100

    0

    Ion

    Cou

    nts

    580560540m/z

    m/z 546.75-546.82

    m/z 586.75-586.82 546.79(2+) 586.77(2+)

    546.79(2+)

    586.77(2+)

    YASQLNQLRunmodified

    +80 Da +80 Da

  • CID comparison of phospho- and sulfo-LAGLQDEIGSLR

    100

    80

    60

    40

    20

    Ion

    Cou

    nts

    12001000800600400200

    2000

    1500

    1000

    500

    0

    Ion

    Cou

    nts

    12001000800600400200m/z

    627.39(2+)

    676.41(2+)

    185.13

    242.17

    288.21

    327.25

    355.24

    414.24b2

    b3

    y2

    a4

    b4*y4

    512.26

    y4

    771.43869.40

    980.38

    899.53

    1069.541167.55

    *y10 y10

    *y8

    y8-NH3y7*y7

    [MH2]2+

    precursor ion

    [MH2-H3PO4]2+

    185.13

    242.15

    327.25

    432.26

    545.35

    636.39(2+)

    674.42

    789.44917.50

    1087.61

    1158.66

    precursor ion - m/z 676.3(2+)

    b2

    b3

    a4

    **y4

    **y5**y8

    **y7

    **y6**y10

    **y11

    [MH2-SO3]2+

    1030.60

    **y9

    fragment mass = unmodified +80 Dafragment mass = unmodified -18 Da

    fragment mass = unmodified

    PHOSPHO

    SULFO

  • Sulfopeptides easily can be identified as phosphopeptides!

    • + 80 Da, 9 mmu difference only

    • “identical” behavior by ESIMS, chromatography and under basic conditions.

    • different CID fragmentation K.F. Medzihradszky et al., Mol. Cell. Proteomics, May 2004; 3: 429 - 440.

  • An exciting new cofactor

    Reza GhiladiPaul Ortiz de Montellano

  • Catalase-peroxidase

    Removes harmful peroxide molecules2 H2O2→ H2O + O2

    CatalaseH2O2 alternately oxidizes/reduces the heme Fe

    Peroxidaseheme is oxidized by H2O2;reduction involves H-donor, such as NADH

  • Crystal structure of catalase-peroxidaseHaloarcula marismortui (Yamada et al. Nature structural biology)

  • Active site structure

  • Active site structure We studied the Mycobacterium tuberculosis

    enzyme1) Ghiladi RA,et al., J Biol Chem. 280, 22651-63 (2005). 2) Ghiladi RA, et al, Biochemistry, 44, 15093-105 (2005). 3) Ghiladi RA, et al., J Am Chem Soc. 127, 13428-42 (2005).

    CH2 OH

    - CH2 - S+ – CH3

    Met-255

    Tyr-229

    NH

    CH2 -

    Trp-107

  • What are we looking for?

    * Cross-linked “tri”-peptide calculated neutral (zwitter ionic) mass: 6880.31 Da

    “measured”mass: 6879.99 Da

  • MS TIC

    983.87(7+)

    9+ 8+7+

    6+

    ox. (+16)

  • CID spectrum of the “tri”-peptideprecursor: 984.4(7+); intensities magnified by ~7.5

    80

    60

    40

    20

    0

    Ion

    Cou

    nts

    140012001000800600400200

    m/z

    86.10

    201.12229.12

    288.20

    358.17

    472.24(2+)

    493.71(2+)

    550.25(2+)

    671.99(3+)

    449.18(2+)

    703.33802.40

    943.48

    986.02(2+)

    1217.77(4+)

    1466.67(3+)

    600

    500

    400

    300

    200

    100

    0

    Ion

    Cou

    nts

    674.0673.0672.0671.0

    m/z

    671.99(3+)

  • Fragmentation scheme of the cross-linked structure

    *4397 *4116 1537* 846 644* 502 288 *4511 *4187 1820* 1594* 1155* 943* 715 573 403 175 D L E N P L A A VQMGLI-NH-CH-CO-V N P E G P N G N P D P M A A A V D I R 358 569 753 923 3712 3925 229 472 682 824 (496) 175 (567) 338 M A-NH-CH-CO-H A A G T Y R CH2 CH2 4868.31 (+H) CH3 2014.07 (-H) S + OH CH2 CH2 1728* 915* 703 589 351 147 1028* 802 * 646 452 204 NH2-CH-CO-A M N D V E T A A L I V G G H T F G K 6 1 4 91 5 * 12 12 * - 1 8 1 0* 7 4 3 98 6 * 1 3 11 * 1 56 2* 8 4 4 * 10 9 9* 1 3 6 8 * 16 6 3 *

    *4511 – y-type ions, cleavage from 4868 – mostly triply charged ions detected 3712 – b-type ions, cleavage from 4868 614 – b-type ions, derived from 915* - doubly charged ion was detected 915* – singly charged ion was detected too

    NH

    Proven by MS/MS/MS

  • When we don’t have a clue…

    Prospector will search for non-specified modifications

    2 step search:a)what’s there?b)is it modified?

  • Characterization of protein populations

    • structural information obtained from peptides

    → conclusions about the proteins

    • Analysis of the intact proteins yielding extensive structural information

    “top-down” approach

  • Requirements for Top-Down Analysis

    • Reasonable amount of protein – pmoles.• Protein compatible with ESIMS.• Relatively simple protein mixture.• High resolution and mass accuracy instrument - FTMS• Efficient protein fragmentation: ECD > CID

    • Good ion statistics and deconvolution software (needs to be able to predict isotope pattern to determine monoisotopic mass).

  • Histones – Ideal samples?• Small proteins

    • Post-translationally extensively modified: phosphorylation, acetylation, methylation, ubiquitination

    • Histone code: PTM state regulates gene transcription ‘on’and ‘off’ state

    Tetrahymena histone H2B variants studied

  • Strahl and Allis, Nature (2000) 403, 41-45.

    `Histone Code' Hypothesis

  • Tetrahymena histone H2B 12+ envelope

    H2B.1

    H2B.1+Me

    H2B.1+2Me

    H2B.1+42

    H2B.1+42+O

    H2B.1+70

    H2B.1+84H2B.2+42

    H2B.2+56

    H2B.2+70H2B.1+3x42H2B.2+2x42

  • Electron-capture dissociation spectrum of the H2B mixture

  • Same ECD spectrum – “zoom-in”

  • Massobserved Assignment (Ac/Me3; 2Ac/AcMe3/2 Me3) Δ[ppm]with Mass Calculated

    356.2667 c3+ 42 356.2298 /356.2661 +104/ +1.6526.3735 c4+ 2x42 526.3354/526.3718/526.4082 +72/ +3.2/ -66 723.4889 c7+ 42 723.4518/723.4882 +51/ + 0.9754.3535 z7 54.3497 -5 • • • • •

    1065.6380 c11+ 42 1065.6066/1065.642 +29.5/ -3.71107.6556 c11+ 2x42 1107.6171/1107.6525/1107.6889 +34.8/ +2.7/ -30.11167.6792 *c11+ 2x42 1167.6372/1167.6736/1167.71 +36/ +4.7/ -26.41193.7422 c12+ 42 1193.7006/1193.737 +34.8/ +4.31235.7426 c12+ 2x42 1235.7111/1235.7475/1235.7839 +25.5/ -3.9/ -33.41253.7572 *c12+ 42 1253.7217/1253.7581 + 28.3/ -0.7• • • • •

    9383.2622 c82+ 42 9383.2877/9383.3241 -2.7/ -6.610563.767 z94 10563.7159 +4.811548.262 z102 11548.324 -5.3

    Mass Accuracy is Used to Distinguish between Isobaric Trimethylation and Acetylation

    A single tri-methylation was on the N-terminus or on Lys-3. Lys-4 in both H2B.1 and H2B.2 can also be modified and the modification is acetylation. No C-terminal modification was observed.

  • ECD sequence coverage of the two isoforms

    1APKKAPAAAA EKKVKKAPTT EKKNKKKRSE TFAIYIFKVL KQVHPDVGIS

    51KKAMNIMNSF INDSFERIAL ESSKLVRFNK RRTLSSREVQ TAVKLLLPGE

    101LARHAISEGT KAVTKFSSST N

    1APKKAPAATT EKKVKKAPTT EKKNKKKRSE TFAIYIFKVL KQVHPDVGIS

    51KKAMNIMNSF INDSFERIAL ESSKLVRFNK RRTLSSREVQ TAVKLLLPGE

    101LARHAISEGT KAVTKFSSSS N

    H2B.1

    H2B.2

    N-terminus or Lys-3 is trimethylated, Lys-4 is acetylated in both

  • CID Spectrum of an +84 Da modified H2B.1 Peptide

    890.5119819.5279791.4913749.4550

    722.4397720.4327677.3859

    651.4087623.4134

    606.3904

    580.3822552.3975

    509.3554

    0

    10

    20

    30

    40

    50

    60

    70

    80

    500 550 600 650 700 750 800 850 900 950

    m /z

    Ion

    Cou

    nts

    m/z 490.31 (2+)b5

    b8a8b7a7b6

    a5

    b9b4

    481.2993387.7560

    325.2264312.2248290.7023276.7004

    232.1331186.1182

    141.1077490.3065

    431.7818

    445.7797

    410.2583

    396.2588374.7353

    360.7314339.2257

    303.7079

    240.1382

    169.1013

    161.0948

    143.0843

    126.0925

    70.0676

    115.0867

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    50 100 150 200 250 300 350 400 450 500

    Ion

    Cou

    nts

    P

    y2326.2185

    PAA

    y3

    b92+

    b82+

    a82+b72+

    a72+MH2+

    b62+a62+

    a92+b52+

    a2/AP-28

    (a8-NH3)2+

    AA-28

    b2/PA

    K (Ac)

    K (Ac)

    AAA-28

    a52+ (MH-H2O)2+

    APK*K* (Me3, Ac) APAAAA

    Characteristic K(Ac) immonium ion 126.09 indicates the presence of Lys-acetylation

    PK*K*AP

    K*K*APAA-28

    K*K*APAA

    K*K*APAAA

    PK*K*AP2+

    [K*K*APAA-28]2+

    K*K*APAA2+

    Internal fragments show the modifications are on the two lysines, instead of the N-terminus.

  • APxxAPAAAA APwwAPAAAA APwx (or xw) APAAAA Massobs

    (Da) Ions

    Masscal

    (Da) Error (ppm)

    Ions

    Masscal (Da)

    Error (ppm)

    Ions

    Masscal (Da)

    Error (ppm)

    70.0676 P 70.0657 27

    115.0867 AA-28 115.0871 -3

    126.0925 K(Ac) 126.0919 27

    141.1077 a2 141.1028 35

    143.0843 AA 143.0821 15

    161.0948 y2 161.0926 14

    169.1013 b2 or PA 169.0977 21

    232.1331 y3 232.1297 15

    240.1382 PAA 240.1348 14

    552.3975 a5 552.3510 84 a5 552.4237 -47 a5 552.3873 18 580.3822 b5 580.3459 63 b5 580.4186 -63 b5 580.3823 0 578.4262 PxxAP-28 578.3666 103 PwwAP-28 578.4394 -23 PwxAP-28 578.4030 40 580.3968 b5 580.3459 88 b5 580.4186 -38 b5 580.3823 25 606.4080 PxxAP 606.3615 77 PwwAP 606.4343 -43 PwxAP 606.3979 17 649.4450 a6 649.4037 64 a6 649.4765 -49 a6 649.4401 8 677.4436 b6 677.3986 66 b6 677.4714 -41 b6 677.4350 13 720.4550 a7 720.4408 20 a7 720.5136 -81 a7 720.4772 -31 748.4628 b7 748.4357 36 b7 748.5085 -61 b7 748.4721 -12 791.5098 a8 791.4779 40 a8 791.5507 -52 a8 791.5143 -6 819.5088 b8 819.4729 44 b8 819.5456 -45 b8 819.5092 0

    Error for Common Ions (AVG ± STD) 20±9

    Error for Modification Ions (AVG ± STD) 60±23 49±16 15±10

    x—K(Ac); w– K(Me3)

    Mass Accuracy of Fragment Ion Series Determines the +84 Da as a Tri-methylation and an Acetylation

  • Summary of H2B Posttranslational Characterization

    Intact Protein Analysis Proteolytic Digest Analysis

    Molecular Weight ECD- FT-ICR MS Trypsin Asp-N

    H2B.1- Me3 (N*-or K3)-Me3 [1-45]- Me3 H2B.2- Me3 (N* or K3)-Me3 [1-45]- Me3

    H2B.1- Me3 Ac (N* or K3)-Me3 K4-Ac

    N*-Me3 K4-Ac and (K3K4)- Me3 Ac

    (K3K4)-Me3 Ac Most

    Abundant

    H2B.2- Me3 Ac (N* or K3)-Me3 K4-Ac

    N*-Me3 K4-Ac and (K3K4)-Me3 Ac

    (K3K4)-Me3 Ac

    H2B.1 56 Da (K3K4)- Me Ac H2B.1 70 Da N*-Me2 K4-Ac (K3K4)- Me2 Ac H2B.2 56 Da (K3K4)- Me Ac H2B.2 70 Da (K3K4)- Me2 Ac H2B.1- Me [1-45] Me H2B.1- Me2 [1-45] Me2 H2B.2- Me [1-45] Me

    Less Abundant

    H2B.2- Me2 [1-45] Me2 H2B.1/H2B.2-K41-Ac H2B.1 K111-Me2-3

    Least Abundant

    H2B.2 K111-Me3/Ac N* indicate N-terminus of the protein

  • Modified peptides in the tryptic digestIon detected MH+ calculated Structure [ppm]

    418.608 (3+) 1253.758 4K(Ac)APAAAAEKKVK15 +40

    438.611 (3+) 1313.779 4K(Ac)APAATTEKKVK15 +29

    341.978 (4+) 1364.889 APKK (Ac,Me3)APAAAAEKK13 +44

    413.773 (4+) 1652.011 APKK(Ac,Me3)APAATTEKKVK15 +35

    Me3APKK(Ac)APAATTEKKVK15

    410.269 (4+) 1637.995 Me2APKK(Ac) APAATTEKKVK15 +35

    398.770 (4+) 1591.990 APKK(Ac,Me3)APAAAAEKKVK15

    Me3APKK (Ac) APAAAAEKKVK15 +42

    395.266 (4+) 1577.974 Me2APKK (Ac) APAAAAEKKVK15 +42

    487.961 (3+) 1461.843 39VLK(Ac)QVHPDVGISK51 +17

    631.668 (3+) 1892.972 HAISEGTK(Me2)AVTKFSSSTN121 +9

    104HAISEGTKAVTK(Me3)FSSSSN121

    1892.935 104HAISEGTKAVTK(Ac)FSSSSN121 +28

    636.323(3+) 1906.950 104HAISEGTK(Me3)AVTKFSSSTN121 +2

    Me3 @ N-terminus, Lys-3, Lys-111; Ac @ Lys-4; Lys-41[1-15] peptide always doubly modified!

  • Why to use both?

    “bottom-up” approach: • More sensitive ~300 fmoles injected• Reveals more modificationsBUT• Misses the major protein component!

    “top-down” reveals the relative distribution of differently modified populations

  • Conclusions

    •Mass spectrometry is a sensitive, non-biased approach to peptide/protein modification analysis.

    •Isolation, MS analysis has to be adjusted to the PTM of interest•Enrichment methods work much better on large amounts of protein than small.•For single protein/simple mixture PTM analysis, best approach is to use no enrichment, try to fragment as many components as possible then try to find spectra of modified peptides.

    • Peptide-level analysis may not reflect accurately the composition of protein populations