powder metallurgy of titanium · powder metallurgy of titanium vlad a. duz1, v. s. moxson1 orest m....

38
Powder Metallurgy of Titanium Vlad A. Duz 1 , V. S. Moxson 1 Orest M. Ivasishin 2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA 2 National Academy of Science of Ukraine, 36 Vernadsky Str. Kiev 03142, Ukraine TITANIUM 2009 September 13-16, 2009 Waikoloa, Hawaii

Upload: others

Post on 13-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1

Orest M. Ivasishin2

1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA2 National Academy of Science of Ukraine, 36 Vernadsky Str. Kiev 03142, Ukraine

TITANIUM 2009September 13-16, 2009

Waikoloa, Hawaii

Page 2: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Motivation for Powder Metallurgy Approach to Produce Titanium and Titanium Alloy

Components

Titanium alloys are  attractive materials for many structural applications due to:

‐ high strength

‐ low density

‐ good corrosion resistance 

BUT: high cost restricts their applicationBUT: high cost restricts their application

The  main  trend  in  titanium  material  science  is  to  expand application  of  titanium  alloys  by  development  of  new technologies that provide significant cost reduction

Page 3: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Why Does Titanium Presently Cost So Much?

FINISHED SHEET

CASTING

ANNEAL

ROLL

ANNEAL

RE-ROLL

ANNEAL

SPONGE

ETC.

TiCl4 reduction

EB or VA melting

High extracting costsHigh extracting costs• strong bonding between titanium

and oxygen;

• requirements to get relatively low levels of other elements;

High processing costsHigh processing costs• high temperature processing

requires conditioning prior to further fabrication (surface regions contaminated at the processing temperatures, and surface cracks, both of which must be removed);

FORGINGMACHINING

EXTRUSION etc.

INGOT

Page 4: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

•• Reducing High Extracting CostsReducing High Extracting CostsInnovative Ti powder production technologiesInnovative Ti powder production technologies

Achieving Much Lower Cost

•• Reducing High Processing CostReducing High Processing CostBlended Elemental Powder Metallurgy ApproachBlended Elemental Powder Metallurgy Approach

Cost-Effective

Ti PowderSimple

Consolidation SinterFinished Products

with Good Mechanical

Properties

Page 5: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Block crushing Sponge hydrogenation

Hydrogenated sponge crushing

Powder dehydrogenation

H D H  P r o c e s s

Titanium Powder Production

Page 6: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Ti sponge block

(Kroll process)

Hydrogenated Ti sponge block

(Modified Kroll process)

Hydrogenated Ti sponge block crushing

Titanium Powder ProductionADMA Process

HydrogenVacuum

Argon

MgCl2TiCl4

(U.S. Patent No. 6,638,336 B1)(U.S. Patent No. 6,638,336 B1)

Reduction

Vacuum distillation

Hydrogenation

Page 7: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Ti sponge block

(Kroll process)

Hydrogenated Ti sponge block

(Modified Kroll process)

vs

ADMA Process vs Kroll Process

Page 8: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

High-Dense (98-99%) Blended Elemental P/M Titanium Alloy Parts

Blends based on Ti powder: post-sintering working operations (HIP or hot deformation) are necessary

Employment of TiH2 instead of Ti powder allows attainment of 99% density and mechanical properties equivalent to those of ingot materials with most cost-effective press-and-sinter approach (without HIP)

Ti, Alloying ElementsPowders

Powder Blend

BE Compact(NNS)

ComponentComponent

HIPHIP

Low Porous Component

BlendingBlending

CompactionCompaction

SinteringSintering

IncreaseIncreasein costin cost

• Specific mechanism of compaction → optimized green porosity

• Shear type phase transformation TiH2→Ti (β or α) → high density of crystal lattice defects

• Surface self reducing by atomic hydrogen

Faster sintering, higher sintered density, lower impurity content

TiH2

Page 9: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Influence of Compaction Pressure

Density: To attain sufficient sintered density compaction pressure value is not critical parameter for titanium hydride powder contrary to titanium powder.

This unique feature of the titanium hydride approach is attributed to compaction mechanism of low strength and brittle hydride particles.

300 400 500 600 700 800 900 100090

92

94

96

98

100

TiH2

Rel

ativ

e de

nsity

,%

Compaction pressure, MPa

99%

Ti

TiH2 – based compacts:-Fine crushed hydride fragments;-Fine pores independently on pressure applied

Pores are easy to heal upon sintering → high sintered density

Ti – based compacts:-Deformed ductile particles;-Relatively coarse pores (size depends on pressure applied);

Pores partially survived upon sintering

Page 10: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Residual Hydrogen

Hydrogen content is reduced to safe level 20-60 ppm even at production of components with large cross-sections

Ti-6Al-4V billet 8.50” x 12.0” x 52.0”725 lbs

Page 11: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Chemistry of Commercially Available Hydrogenated Titanium Powder

3.900.09-0.10

0.011-0.013

0.005-0.008

0.0410.054-0.073

0.054Powder-150 µm

3.850.06-0.08

0.0130.0080.0520.0620.05Hydrogenated Sponge

HONCNiFeCl

TiH2 spongeTiH2 powder (-100 mesh)

grinded at ADMA Products, Inc.

Page 12: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Powder metallurgy, especially blended elemental powder metallurgy (BEPM) approach at which alloying elements are added to titanium powder as elemental or master alloy powders enables significant reduction in the cost

Page 13: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Benefits of P/M Processing

• Fewer steps• No extensive secondary machining• Low buy-to-use ratio: scrap rate ≤ 2%• Direct alloying• Rapid manufacturing cycle• Uniform properties in longitudinal and transverse

directions• No texture developed• Integral processing of composites, laminates or

functionally gradient plate• More energy efficient

Page 14: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Processing Steps for the B/E Ti Alloy Parts Production

Powder Raw Material

RollingFlat (foil, sheet, plate)

Round (bar, rod)

Post-ProcessingOutside vendors

Titanium Powder Metallurgy ProcessesADMA’s captive

Die Press

Direct Powder Rolling

Cold IsostaticPressing

Vacuum Sintering

Finished product

Forging

Extrusion

Flowform

HIP

Page 15: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Die-Press + Sinter

Low-Cost Room Temperature Consolidation

Page 16: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

P/M Titanium Alloy Components

Die Pressing

Sintering

Near Net ShapeNear Net Shape

Die Pressing + SinteringDie Pressing + Sintering

Bal3.50 –4.50

5.50 –6.75

0.300.40 max

0.0150.100.04ASTM B 817-98, Type I

Bal4.236.320.13-0.260.050.00140.0140.019P/M Ti-6Al-4V

TiVAlOFeHCN

Composition, %Material

Page 17: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Direct Powder Rolling + Sinter

Low-Cost Room Temperature Consolidation

Page 18: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Relative Cost Factors for Conventional and PM Processing of 1” Ti Alloy Plate

PM Ti Alloy PlateWrought Ti Alloy Plate

Raw materialcostManufacturingcost

67%33%

Delivery:Delivery: -- 5050--80 weeks80 weeks Delivery:Delivery: -- 4 weeks4 weeks

Production of Solid State Titanium Plate:Direct Powder Rolling

Page 19: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Comparison of the conventional sheet process with the direct powder rolling process for Ti-6Al-4V alloy

Conventional

INGOT

FINISHED SHEET

FORGING

ANNEAL

ROLL

ANNEAL

RE-ROLL

ANNEALETC.

ETC.

AlloyingPowders

Direct Powder RollingElementalTi Powder BLEND

FINISHED SHEET

POWDER ROLLING

RE-ROLL

SINTER

ANNEAL

Page 20: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Direct Powder Rolling of Ti Alloy Foil, Sheet, and Plate at ADMA

0.25” thick plate

0.010” thick Ti foil

Page 21: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Porous Titanium, Zirconium, Niobium, and Stainless Steel Plates

Life support systems for various applications

Page 22: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Cold Isostatic Pressing + Sinter

Low-Cost Room Temperature Consolidation

Page 23: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Titanium or Titanium AlloyCold Cold IsostaticIsostatic Pressing + SinteringPressing + Sintering

Cold Isostatic Pressing

Sintering

Post-processing

Forging

Extrusion

Flowform

HIPRollingFlat (foil, sheet, plate)

Round (bar, rod)

Page 24: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

P/M Ti-6Al-4V billets produced by low cost CIP/Sinter/Forging approach

Cold Isostatic Pressing

Sintering

Forging

Page 25: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

P/M Ti-6Al-4V Armor Plates from Hydrogenated Ti powder

0.75” thick 0.50” thick

Cold Isostatic Pressing

Sintering

Rolling

L – LongitudinalLT – Long transverseST – Short transverse

L

LT

ST

Page 26: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

ASTM E8 ROOM TEMPERATURE TENSILE TEST

P/M Ti-6Al-4V Armor Plate from Hydrogenated Ti powder

Bal.0.010.295<0.0050.0300.00170.070<0.0010.0104.286.04

TiSiONaNHFeClCVAl

Elements, %

P/M Ti-6Al-4V

-

10

110,000

120,000

MIL-DTL-46077F

253634R. A., %

101515ELONGATION, %

120,000138,000138,0000.2% YS (PSI)

130,000154,500154,000UTS (PSI)

ASTM B265

Sample 2Sample 1

Page 27: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

P/M Ti and Ti alloy Hollow Pre-forms for Tubes and Pipes

CIP

VacuumSintering

ADMA Hydrogenated Ti Powder

Flowform

Page 28: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Ti Grade 2 –ADMA’s Preforms Flowformed into 4” schedule 10 Pipe - 86% wall reduction during flowforming

1694,000110,000ADMA P/M Grade 2

Elongation,%

Yield Strength, psi

Ultimate Strength,psi

Material

Flowformed titanium pipe Preforms

• Titanium pipe system saves 178,000 lbs. per LPD compared to Cu-Ni pipe system Ship improving fuel efficiency and reducing life cycle maintenance cost of the pipe system

• It is estimated that a titanium piping system could save $17M per ship (LPD) considering life cycle savings, NAVSEA Carderock1

Courtesy Dynamic Flowform Inc.

Page 29: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Blended Elemental P/M Ti-6Al-4V Billets for Extrusion

CIP

VacuumSintering

Extrusion

Page 30: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Canless Extrusion Process Development for Blended-Elemental Powder-Based Titanium

Ti-6AL-4V Alloy

The Boeing Company (Phantom Works)ADMA Products, Inc.

Plymouth Engineered Shapes, Inc.RTI International Metals, Inc.

Page 31: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

ADMA-fabricated Ti-6AL-4V blended elemental powder-based billets were extruded successfully by Plymouth Engineered Shapes, Inc. and RTI International Metals, Inc.

Extrusions up to 27-foot long were fabricated and analyzed at front, mid-length, and back and found to be uniform with respect to oxygen content & microstructure. Longer and larger cross-section fabrication is a non-issue in this process.

36’-Long Extrusions Cut-up for Shipping and Laboratory Characterization

17.414..5141.5129.0Ingot Based

16.915.8149.6136.5ADMA P/M

Elastic Modulus, MSiElongation, %Yield Strength, (ksi)Ultimate Strength, (ksi)Ti-6Al-4V

Canless Extrusion Process Development for Blended-Elemental Powder-Based Titanium Ti-6AL-4V Alloy

(Boeing/ADMA)

RTI, International Metals, Inc.RTI, International Metals, Inc.

Plymouth Engineered Shapes, Inc.Plymouth Engineered Shapes, Inc.

Page 32: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Boeing–Obtained Results of Chemical Analyses of Extruded Parts Showed Blended Elemental Powder-Based Parts Conforming to

Ti-6Al-4V Except for Oxygen Content

* All samples were analyzed at Durkee Testing Laboratories, Inc. Los Angeles, CA, using emission spectroscopy and inert gas fusion method. The Laboratory Purchase Order Number is 315427 to AMS 4934D and 4935G. and the Lab. Log Number 207616A.

Ti0.400.100.0050.101250.050.200.303.504.50

5.506.75

Min.Max.

AllExtrusionTi-6AL-4V AMS 4934

Ti<0.40<0.10<0.0050.02340.010.200.183.966.22R4B4Back (Rear End)

Ti<0.40<0.10<0.0050.02240.010.200.184.026.10R4M2Middle

Ti<0.40<0.10<0.0050.02250.010.200.173.945.88R4F2Front Ingot-Based Billet R4

Extruded at Same

Temperature as R2

Ti<0.40<0.10<0.0050.013320.020.290.154.206.22R2B4Back (Rear End)

Ti<0.40<0.10<0.0050.013070.020.290.154.126.52R2M2Middle

Ti<0.40<0.10<0.0050.012440.020.290.154.016.55R2F2Front R2 Extrusion Beta-Extruded

at Lower Temperature

Ti<0.40<0.10<0.0050.013790.020.330.194.036.30R1B4Back (Rear End)

Ti<0.40<0.10<0.0050.013940.020.350.144.136.32R1M2Middle

Ti<0.40<0.10<0.0050.012490.020.350.144.156.36R1F2Front R1 Extrusion Beta-Extruded

At High Temperature

Extrusions

Ti<0.40<0.10<0.0050.01690.010.370.154.336.13Billet # 5Billet End OD Sample

As-SinteredTi Billet CIP/Sintered

Bal.

[%]

OET

[%]

OEE

[%]

Y

[%]

C

[%]

H

ppm

N

[%]

O

[%]

Fe

[%]

V

[%]

AL

[%]

Chemical Element Weight PercentSample Identifi-cation

Sample Position Within

Extrusion Along 8’length

Extrusion Process

Tempera-ture/ Regime

Material Product

Form

Table - Results of chemical analyses* of blended-elemental powder-based titanium Ti-6AL-4V extrusions per 787 Part DWG # BAC 1670-157 extruded by RTI International Metals, Inc. per AMS 4934G and 4935G.

* All samples were analyzed at Durkee Testing Laboratories, Inc. Los Angeles, CA, using emission spectroscopy and inert gas fusion method. The Laboratory Purchase Order Number is 315427 to AMS 4934D and 4935G. and the Lab. Log Number 207616A.

Ti0.400.100.0050.101250.050.200.303.504.50

5.506.75

Min.Max.

AllExtrusionTi-6AL-4V AMS 4934

Ti<0.40<0.10<0.0050.02340.010.200.183.966.22R4B4Back (Rear End)

Ti<0.40<0.10<0.0050.02240.010.200.184.026.10R4M2Middle

Ti<0.40<0.10<0.0050.02250.010.200.173.945.88R4F2Front Ingot-Based Billet R4

Extruded at Same

Temperature as R2

Ti<0.40<0.10<0.0050.013320.020.290.154.206.22R2B4Back (Rear End)

Ti<0.40<0.10<0.0050.013070.020.290.154.126.52R2M2Middle

Ti<0.40<0.10<0.0050.012440.020.290.154.016.55R2F2Front R2 Extrusion Beta-Extruded

at Lower Temperature

Ti<0.40<0.10<0.0050.013790.020.330.194.036.30R1B4Back (Rear End)

Ti<0.40<0.10<0.0050.013940.020.350.144.136.32R1M2Middle

Ti<0.40<0.10<0.0050.012490.020.350.144.156.36R1F2Front R1 Extrusion Beta-Extruded

At High Temperature

Extrusions

Ti<0.40<0.10<0.0050.01690.010.370.154.336.13Billet # 5Billet End OD Sample

As-SinteredTi Billet CIP/Sintered

Bal.

[%]

OET

[%]

OEE

[%]

Y

[%]

C

[%]

H

ppm

N

[%]

O

[%]

Fe

[%]

V

[%]

AL

[%]

Chemical Element Weight PercentSample Identifi-cation

Sample Position Within

Extrusion Along 8’length

Extrusion Process

Tempera-ture/ Regime

Material Product

Form

Table - Results of chemical analyses* of blended-elemental powder-based titanium Ti-6AL-4V extrusions per 787 Part DWG # BAC 1670-157 extruded by RTI International Metals, Inc. per AMS 4934G and 4935G.

Page 33: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Boeing–Obtained Results of Tensile Properties in Extruded Parts Showed B-E Powder-Based Properties Superior to Ingot-Based Same Alloy

17.414.5129141.5IngotB-E 6%

Stronger16.915.8136.5149.6PowderOverall Average Properties (36 Tests)

17.614126.4138.6BackIngot/ Beta

17.514.5125.6139Mid spanIngot/ Beta

Same Temp. as

for R2

17.414.5129.0141.51715134.9146.8FrontIngot/ BetaR416.915.5139.3152.4BackB-E / Beta

1716137.2150Mid spanB-E / Beta

Same Temp. as

for R4

16.915.5138.8151.316.815139.8151.4FrontB-E / BetaR217.215.5134.4147.2BackB-E / Beta

16.215.5140.7153.5Mid spanB-E / Beta

Highest Extrusion

Temp.

16.815.2139.2151.917.114.5142.6155FrontB-E / BetaR117.116137149.3BackB-E/ α−β

16.816135.9148.7Mid spanB-E/ α−β

Lowest Extrusion

Temp.

17.016.0136.9149.417.116137.8150.3FrontB-E/ α−βP-317.615.5138.3150.4BackB-E/@ β tr.

17.315.5136149.8Mid spanB-E/@ β tr.

Extruded at Beta Transus

17.115.8137.0150.116.416.5136.8150FrontB-E/@ β tr.P-21716.5129.7144.9BackB-E / Beta

16.216.5130.1144.6Mid spanB-E / Beta

Beta Extrusion

16.616.3130.4145.116.516131.3145.9FrontB-E / BetaP-1

Notes on

Extrusion Tempera-

tures

Elastic Modulus

[Msi]

E%[%]

0.2%

σY[ksi]

UTS[ksi]

Elastic Modulus

[Msi]

E%[%]

0.2%

σY[ksi]

UTS[ksi]

Test SpecimenLocation

within Extrusion

Material: Powder

or Ingot / Extrusion Process

Part ID

Table 1 – Comparison of room-temperature tensile properties of extruded product forms from Blended elemental ADMA-Consolidated hydride/dehydride powder subsequently extruded by RTI and Plymouth (with final product containing 3000 ppm oxygen) versus ingot-based extrusions (with 2000 ppm Oxygen maximum)

17.414.5129141.5IngotB-E 6%

Stronger16.915.8136.5149.6PowderOverall Average Properties (36 Tests)

17.614126.4138.6BackIngot/ Beta

17.514.5125.6139Mid spanIngot/ Beta

Same Temp. as

for R2

17.414.5129.0141.51715134.9146.8FrontIngot/ BetaR416.915.5139.3152.4BackB-E / Beta

1716137.2150Mid spanB-E / Beta

Same Temp. as

for R4

16.915.5138.8151.316.815139.8151.4FrontB-E / BetaR217.215.5134.4147.2BackB-E / Beta

16.215.5140.7153.5Mid spanB-E / Beta

Highest Extrusion

Temp.

16.815.2139.2151.917.114.5142.6155FrontB-E / BetaR117.116137149.3BackB-E/ α−β

16.816135.9148.7Mid spanB-E/ α−β

Lowest Extrusion

Temp.

17.016.0136.9149.417.116137.8150.3FrontB-E/ α−βP-317.615.5138.3150.4BackB-E/@ β tr.

17.315.5136149.8Mid spanB-E/@ β tr.

Extruded at Beta Transus

17.115.8137.0150.116.416.5136.8150FrontB-E/@ β tr.P-21716.5129.7144.9BackB-E / Beta

16.216.5130.1144.6Mid spanB-E / Beta

Beta Extrusion

16.616.3130.4145.116.516131.3145.9FrontB-E / BetaP-1

Notes on

Extrusion Tempera-

tures

Elastic Modulus

[Msi]

E%[%]

0.2%

σY[ksi]

UTS[ksi]

Elastic Modulus

[Msi]

E%[%]

0.2%

σY[ksi]

UTS[ksi]

Test SpecimenLocation

within Extrusion

Material: Powder

or Ingot / Extrusion Process

Part ID

Table 1 – Comparison of room-temperature tensile properties of extruded product forms from Blended elemental ADMA-Consolidated hydride/dehydride powder subsequently extruded by RTI and Plymouth (with final product containing 3000 ppm oxygen) versus ingot-based extrusions (with 2000 ppm Oxygen maximum)

Page 34: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Boeing-Obtained Summary on Canless Air-Extruded Product Form

• Canless full-scale extrusion of blended elemental hydride/dehydride ADMA powder-based product form has been successfully demonstrated.

• Any residual hydrogen content within the final extruded parts was thermally degassed in vacuum down to 23-33 ppm.

• Preliminary encouraging powder-based extruded product form shows static tensile and fatigue S/N durability properties superior to ingot-based identically extruded product form.

• Further optimization should focus on reducing oxygen content in the final blended elemental powder based product down to 2000 ppm maximum for aerospace quality material.

Page 35: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Low-oxygen P/M Ti-6Al-4V Billets from Hydrogenated Ti Powder

Ti-6Al-4V billet 8.50” x 12.0” x 52.0”725 lbs

Page 36: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Low-oxygen P/M Ti-6Al-4V CIP/Sinter Pre-forms

Cold Isostatic Pressing

Sintering

RollingForging

Low-oxygen P/M Ti-6Al-4V CIP/Sinter pre-forms produced from ADMA Hydrogenated Ti powder

Extrusion

Page 37: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Blended Elemental P/M Ti alloy Round Bars

P/M Ti-6Al-4V Extrusion billets

P/M Ti-6Al-4V Rotary forged bars

Cold Isostatic Pressing

Sintering

Extrusion Rolling

Rotary Forging

P/M Ti-6Al-4V Extruded bars

10 Min.125 Min.135 Min.AMS 4928R

Ti-6Al-4V Ultimate Strength, ksi

Yield Strength, ksi

Elongation, %

Reduction of Area, %

ADMA P/M 148 – 152 142 – 145 19.8 - 22.8 28.2 - 28.3

Ingot Based 140 - 143 125 – 127 19.4 - 21.1 26.9 - 27.6

P/M Ti-6Al-4V Hot rolled bars

Page 38: Powder Metallurgy of Titanium · Powder Metallurgy of Titanium Vlad A. Duz1, V. S. Moxson1 Orest M. Ivasishin2 1 ADMA Products, Inc, 1890 Georgetown Road, Hudson, Ohio 44236, USA

Conclusions

1. Cost-effective process has been developed for manufacturing the hydrogenated titanium powder.

2. Manufacturing of hydrogenated titanium powder possessing desirable hydrogen and impurity content has been developed in Ukraine in cooperation with ADMA Products, Inc.

3. Cost-effective processes have been developed for the production of titanium alloy components from hydrogenated titanium powder.

4. Mechanical properties of powder metallurgy titanium alloys produced from hydrogenated Ti powder meet or exceed the requirements of ASTM and AMS specifications.