power electronics for renewable energy systems ...9.1 distributed powergenerationsystems 231 9.1.1...

12
POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS, TRANSPORTATION AND INDUSTRIAL APPLICATIONS Edited by Haitham Abu-Rub Texas A&M University at Qatar, Doha, Qatar Mariusz Malinowski Warsaw University of Technology, Warsaw, Poland Kamal Al-Haddad Ecole de Technologie Superieure, Montreal, Canada IEEE PRESS Wiley

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • POWER ELECTRONICS

    FOR RENEWABLE

    ENERGY SYSTEMS,TRANSPORTATION AND

    INDUSTRIAL

    APPLICATIONS

    Edited by

    Haitham Abu-Rub

    Texas A&M University at Qatar, Doha, Qatar

    Mariusz Malinowski

    Warsaw University of Technology, Warsaw, Poland

    Kamal Al-Haddad

    Ecole de Technologie Superieure, Montreal, Canada

    IEEE PRESS

    Wiley

  • Contents

    Foreword xix

    Preface xxi

    Acknowledgements xxv

    List of Contributors xxvii

    1 Energy, Global Warming and Impact of Power Electronicsin the Present Century 1

    1.1 Introduction 1

    1.2 Energy 21.3 Environmental Pollution: Global Warming Problem 3

    1.3.1 Global Wanning Effects 6

    1.3.2 Mitigation of Global Warming Problems 81.4 Impact of Power Electronics on Energy Systems 8

    1.4.1 Energy Conservation 8

    1.4.2 Renewable Energy Systems 9

    1.4.3 Bulk Energy Storage 161.5 Smart Grid 20

    1.6 Electric/Hybrid Electric Vehicles 21

    1.6.1 Comparison ofBattery EV with Fuel Cell EV 221.7 Conclusion and Future Prognosis 23

    References 25

    2 Challenges of the Current Energy Scenario:

    The Power Electronics Contribution 27

    2.1 Introduction 27

    2.2 Energy Transmission and Distribution Systems 282.2.1 FACTS 28

    2.2.2 HVDC 32

    2.3 Renewable Energy Systems 34

    2.3.1 Wind Energy 35

    2.3.2 Photovoltaic Energy 372.3.3 Ocean Energy 40

    2.4 Transportation Systems 41

  • viii Contents

    2.5 Energy Storage Systems 42

    2.5.1 Technologies 42

    2.5.2 Application to Transmission and Distribution Systems 46

    2.5.3 Application to Renewable Energy Systems 46

    2.5.4 Application to Transportation Systems 47

    2.6 Conclusions 47

    References 47

    3 An Overview on Distributed Generation and Smart Grid

    Concepts and Technologies 50

    3.1 Introduction 50

    3.2 Requirements of Distributed Generation Systems and Smart Grids 51

    3.3 Photovoltaic Generators 52

    3.4 Wind and Mini-hydro Generators 55

    3.5 Energy Storage Systems 56

    3.6 Electric Vehicles 57

    3.7 Microgrids 57

    3.8 Smart Grid Issues 59

    3.9 Active Management of Distribution Networks 60

    3.10 Communication Systems in Smart Grids 61

    3.11 Advanced Metering Infrastructure and Real-Time Pricing 62

    3.12 Standards for Smart Grids 63

    References 65

    4 Recent Advances in Power Semiconductor Technology 69

    4.1 Introduction 69

    4.2 Silicon Power Transistors 70

    4.2.1 Power MOSFETs 71

    4.2.2 IGBTs 72

    4.2.3 High-Power Devices 754.3 Overview of SiC Transistor Designs 75

    4.3.1 SiCJFET 76

    4.3.2 Bipolar Transistor in SiC 11

    4.3.3 SiC MOSFET 78

    4.3.4 SiC IGBT 79

    4.3.5 SiC Power Modules 79

    4.4 Gate and Base Drivers for SiC Devices 80

    4.4.1 Gate Driversfor Normally-on JFETs 80

    4.4.2 Base Driversfor SiC BJTs 84

    4.4.3 Gate Driversfor Normally-qffJFETs 87

    4.4.4 Gate Driversfor SiC MOSFETs 88

    4.5 Parallel Connection of Transistors 89

    4.6 Overview of Applications 97

    4.6.1 Photovoltaics 98

    4.6.2 AC Drives 99

    4.6.3 Hybrid and Plug-in Electric Vehicles 994.6.4 High-Power Applications 99

    4.7 Gallium Nitride Transistors 100

    4.8 Summary 102References 102

  • Contents ix

    5 AC-Link Universal Power Converters: A New Class of Power Converters

    for Renewable Energy and Transportation 107

    5.1 Introduction 107

    5.2 Hard Switching ac-Link Universal Power Converter 108

    5.3 Soft Switching ac-Link Universal Power Converter 1125.4 Principle of Operation of the Soft Switching ac-Link Universal Power Converter 113

    5.5 Design Procedure 122

    5.6 Analysis 123

    5.7 Applications 126

    5.7.1 Ac-ac Conversion (Wind Power Generation, Variable frequency Drive) 126

    5.7.2 Dc-ac and ac-dc Power Conversion 128

    5.7.3 Multiport Conversion 130

    5.8 Summary 133

    Acknowledgment 133References 133

    6 High Power Electronics: Key Technology for Wind Turbines 136

    6.1 Introduction 136

    6.2 Development of Wind Power Generation 137

    6.3 Wind Power Conversion 138

    6.3.1 Basic Control Variablesfor Wind Turbines 139

    6.3.2 Wind Turbine Concepts 140

    6.4 Power Converters for Wind Turbines 143

    6.4.1 Two-Level Power Converter 144

    6.4.2 Multilevel Power Converter 145

    6.4.3 Multicell Converter 147

    6.5 Power Semiconductors for Wind Power Converter 149

    6.6 Controls and Grid Requirements for Modern Wind Turbines 1506.6.1 Active Power Control 151

    6.6.2 Reactive Power Control 152

    6.6.3 Total Harmonic Distortion 152

    6.6.4 Fault Ride-Through Capability 153

    6.7 Emerging Reliability Issues for Wind Power System 155

    6.8 Conclusion 156

    References 156

    7 Photovoltaic Energy Conversion Systems 160

    7.1 Introduction 160

    7.2 Power Curves and Maximum Power Point of PV Systems 162

    7.2.1 Electrical Model ofa PV Cell 162

    7.2.2 Photovoltaic Module I-V and P-V Curves 163

    7.2.3 MPP under Partial Shading 164

    7.3 Grid-Connected PV System Configurations 165

    7.3.1 Centralized Configuration 167

    7.3.2 String Configuration 171

    7.3.3 Multi-string Configuration 177

    7.3.4 AC-Module Configuration 178

    7.4 Control of Grid-Connected PV Systems 181

    7.4.1 Maximum Power Point Tracking Control Methods 181

    7.4.2 DC-DC Stage Converter Control 185

  • X Contents

    7.4.3 Grid-Tied Converter Control 186

    7.4.4 Anti-islanding Detection 189

    7.5 Recent Developments in Multilevel Inverter-Based PV Systems 1927.6 Summary 195

    References 195

    8 Controllability Analysis of Renewable Energy Systems 1998.1 Introduction 199

    8.2 Zero Dynamics of the Nonlinear System 201

    8.2.1 First Method 201

    8.2.2 Second Method 202

    8.3 Controllability of Wind Turbine Connected through L Filter to the Grid 202

    8.3.1 Steady State and Stable Operation Region 203

    8.3.2 Zero Dynamic Analysis 207

    8.4 Controllability of Wind Turbine Connected through LCL Filter to the Grid 2088.4.1 Steady State and Stable Operation Region 208

    8.4.2 Zero Dynamic Analysis 213

    8.5 Controllability and Stability Analysis of PV System Connected to Current Source Inverter 2198.5.1 Steady State and Stability Analysis ofthe System 220

    8.5.2 Zero Dynamics Analysis ofPV 221

    8.6 Conclusions 228

    References 229

    9 Universal Operation of Small/Medium-Sized Renewable Energy Systems 2319.1 Distributed Power Generation Systems 231

    9.1.1 Single-Stage Photovoltaic Systems 232

    9.1.2 Small/Medium-Sized Wind Turbine Systems 233

    9.1.3 Overview ofthe Control Structure 234

    9.2 Control of Power Converters for Grid-Interactive Distributed Power Generation Systems 243

    9.2.1 Droop Control 244

    9.2.2 Power Control in Microgrids 2479.2.3 Control Design Parameters 252

    9.2.4 Harmonic Compensation 256

    9.3 Ancillary Feature 259

    9.3.1 Voltage Support at Local Loads Level 2599.3.2 Reactive Power Capability 263

    9.3.3 Voltage Support at Electric Power System Area 265

    9.4 Summary 267References 268

    10 Properties and Control of a Doubly Fed Induction Machine 27010.1 Introduction. Basic principles of DFIM 270

    10.1.1 Structure of the Machine and Electric Configuration 27010.1.2 Steady-State Equivalent Circuit 27110.1.3 Dynamic Modeling 277

    10.2 Vector Control of DFIM Using an AC/DC/AC Converter 28010.2.1 Grid Connection Operation 280

    10.2.2 Rotor Position Observers 292

    10.2.3 Stand-alone Operation 296

  • Contents xi

    10.3 DFIM-Based Wind Energy Conversion Systems 30510.3.1 Wind Turbine Aerodynamic 305

    10.3.2 Turbine Control Zones 307

    10.3.3 Turbine Control 308

    10.3.4 Typical Dimensioning ofDFIM-Based Wind Turbines 31010.3.5 Steady-State Performance of the Wind Turbine Based on DFIM 31110.3.6 Analysis ofDFIM-Based Wind Turbines during Voltage Dips 313

    References 317

    11 AC-DC-AC Converters for Distributed Power Generation Systems 319

    11.1 Introduction 319

    11.1.1 Bidirectional AC-DC-AC Topologies 31911.1.2 Passive Components Designfor an AC-DC-AC Converter 322

    11.1.3 DC-Link Capacitor Rating 322

    11.1.4 Flying Capacitor Rating 325

    11.1.5 Land LCL Filter Rating 325

    11.1.6 Comparison 327

    11.2 Pulse-Width Modulation for AC-DC-AC Topologies 32811.2.1 Space Vector Modulation for Classical Three-Phase Two-Level Converter 32811.2.2 Space Vector Modulation for Classical Three-Phase Three-Level Converter 331

    11.3 DC-Link Capacitors Voltage Balancing in Diode-Clamped Converter 334

    11.3.2 Pulse-Width Modulationfor Simplified AC-DC-AC Topologies 33711.3.3 Compensation ofSemiconductor Voltage Drop and Dead-Time Effect 342

    11.4 Control Algorithms for AC-DC-AC Converters 345

    11.4.1 Field-Oriented Control ofan AC-DCMachine-Side Converter 34611.4.2 Stator Current Controller Design 348

    11.4.3 Direct Torque Control with Space Vector Modulation 349

    11.4.4 Machine Stator Flux Controller Design 350

    11.4.5 Machine Electromagnetic Torque Controller Design 351

    11.4.6 Machine Angular Speed Controller Design 351

    11.4.7 Voltage-Oriented Control ofan AC-DC Grid-Side Converter 35211.4.8 Line Current Controllers of an AC-DC Grid-Side Converter 35211.4.9 Direct Power Control with Space Vector Modulation ofan AC-DC

    Grid-Side Converter 354

    11.4.10 Line Power Controllers ofan AC-DC Grid-Side Converter 35511.4.11 DC-Link Voltage Controllerfor an AC-DC Converter 356

    11.5 AC-DC-AC Converter with Active Power FeedForward 356

    11.5.1 Analysis ofthe Power Response Time Constant ofan AC-DC-AC Converter 358

    11.5.2 Energy ofthe DC-Link Capacitor 358

    11.6 Summary and Conclusions 361

    References 362

    12 Power Electronics for More Electric Aircraft 365

    12.1 Introduction 365

    12.2 More Electric Aircraft 367

    72.2./ Airbus 380 Electrical System 369

    72.2.2 Boeing 787 Electrical Power System 370

    12.3 More Electric Engine (MEE) 372

    12.3.1 Power Optimized Aircraft (POA) 372

  • xii Contents

    12.4 Electric Power Generation Strategies 374

    12.5 Power Electronics and Power Conversion 378

    12.6 Power Distribution 381

    12.6.1 High-voltage operation 383

    12.7 Conclusions 384

    References 385

    13 Electric and Plug-In Hybrid Electric Vehicles 387

    13.1 Introduction 387

    13.2 Electric, Hybrid Electric and Plug-In Hybrid Electric Vehicle Topologies 388

    13.2.1 Electric Vehicles 388

    13.2.2 Hybrid Electric Vehicles 389

    13.2.3 Plug-In Hybrid Electric Vehicles (PHEVs) 391

    13.3 EV and PHEV Charging Infrastructures 392

    13.3.1 EV/PHEV Batteries and Charging Regimes 392

    13.4 Power Electronics for EV and PHEV Charging Infrastructure 404

    13.4.1 Charging Hardware 405

    13.4.2 Grid-Tied Infrastructure 406

    13.5 Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) Concepts 407

    13.5.1 Grid Upgrade 408

    13.6 Power Electronics for PEV Charging 410

    13.6.1 Safety Considerations 410

    13.6.2 Grid-Tied Residential Systems 411

    13.6.3 Grid-Tied Public Systems 412

    13.6.4 Grid-Tied Systems with Local Renewable Energy Production 416

    References 419

    14 Multilevel Converter/Inverter Topologies and Applications 422

    14.1 Introduction 422

    14.2 Fundamentals of Multilevel Converters/Inverters 423

    14.2.1 What Is a Multilevel Converter/Inverter? 423

    14.2.2 Three Typical Topologies to Achieve Multilevel Voltage 424

    14.2.3 Generalized Multilevel Converter/Inverter Topology and Its Derivations to

    Other Topologies 425

    14.3 Cascaded Multilevel Inverters and Their Applications 432

    14.3.1 Merits of Cascaded Multilevel Inverters Applied to Utility Level 432

    14.3.2 Y-Connected Cascaded Multilevel Inverter and Its Applications 433

    14.3.3 ^-Connected CascadedMultilevel Inverter and Its Applications 438

    14.3.4 Face-to-Face-Connected Cascaded Multilevel Inverter for Unified Power Flow

    Control 441

    14.4 Emerging Applications and Discussions 444

    14.4.1 Magnetic-less DC/DC Conversion 444

    14.4.2 Multilevel Modular Capacitor Clamped DC/DC Converter (MMCCC) 449

    14.4.3 nX DC/DC Converter 451

    14.4.4 Component Cost Comparison ofFlying CapacitorDC/DC Converter, MMCCC

    and nX DC/DC Converter 453

    14.4.5 Zero Current Switching: MMCCC 455

    14.4.6 Fault Tolerance and Reliability ofMultilevel Converters 458

    14.5 Summary 459

    Acknowledgment 461

    References 461

  • Contents xiii

    15 Multiphase Matrix Converter Topologies and Control 463

    15.1 Introduction 463

    15.2 Three-Phase Input with Five-Phase Output Matrix Converter 464

    15.2.1 Topology 464

    15.2.2 Control Algorithms 46415.3 Simulation and Experimental Results 484

    15.4 Matrix Converter with Five-Phase Input and Three-Phase Output 48815.4.1 Topology 48815.4.2 Control Techniques 489

    15.5 Sample Results 499

    Acknowledgment 501References 501

    16 Boost Preregulators for Power Factor Correction

    in Single-Phase Rectifiers 50316.1 Introduction 503

    16.2 Basic Boost PFC 504

    16.2.1 Converter's Topology and Averaged Model 50476.2.2 Steady-State Analysis 507

    16.2.3 Control Circuit 507

    16.2.4 Linear Control Design 509

    16.2.5 Simulation Results 511

    16.3 Half-Bridge Asymmetric Boost PFC 51116.3.1 CCM/CVM Operation and Average Modeling of the Converter 513

    16.3.2 Small-Signal Averaged Model and Transfer Functions 514

    16.3.3 Control System Design 51516.3.4 Numerical Implementation and Simulation Results 518

    16.4 Interleaved Dual-Boost PFC 519

    16.4.1 Converter Topology 52216.4.2 Operation Sequences 523

    16.4.3 Linear Control Design and Experimental Results 526

    16.5 Conclusion 528

    References 529

    17 Active Power Filter 534

    17.1 Introduction 534

    17.2 Harmonics 535

    17.3 Effects and Negative Consequences of Harmonics 53517.4 International Standards for Harmonics 536

    17.5 Types of Harmonics 53717.5.1 Harmonic Current Sources 537

    17.5.2 Harmonic Voltage Sources 537

    17.6 Passive Filters 539

    17.7 Power Definitions 540

    17.7.1 Loading Power and Power Factor 541

    17.7.2 Loading Power Definition 541

    17.7.3 Power Factor Definition in 3D Space Current Coordinate

    System 541

    17.8 Active Power Filters 543

    17.8.1 Current Source Inverter APF 544

    17.8.2 Voltage Source Inverter APF 544

  • xiv Contents

    17.8.3 Shunt Active Power Filter 544

    17.8.4 Series Active Power Filter 545

    17.8.5 Hybrid Filters 545

    17.8.6 High-Power Applications 547

    17.9 APF Switching Frequency Choice Methodology 547

    17.10 Harmonic Current Extraction Techniques (HCET) 54817.10.1 P-Q Theory 548

    17.10.2 Cross-Vector Theory 550

    17.10.3 The Instantaneous Power Theory Using the Rotating P-Q-R

    Reference Frame 551

    17.10.4 Synchronous Reference Frame 553

    17.10.5 Adaptive Interference Canceling Technique 553

    17.10.6 Capacitor Voltage Control 554

    17.10.7 Time-Domain Correlation Function Technique 554

    17.10.8 Identification by Fourier Series 555

    17.10.9 Other Methods 555

    17.11 Shunt Active Power Filter 555

    17.11.1 Shunt APF Modeling 557

    17.11.2 Shunt APFfor Three-Phase Four-Wire System 560

    17.12 Series Active Power Filter 564

    17.13 Unified Power Quality Conditioner 565

    Acknowledgment 569

    References 569

    18A Hardware-in-the-Loop Systems with Power Electronics:

    A Powerful Simulation Tool 573

    18A.1 Background 573

    18A.1.1 Hardware-in-the-Loop Systems in General 573

    18A.1.2 "Virtual Machine" Application 574

    18A.2 Increasing the Performance of the Power Stage 57518A.2.1 Sequential Switching 575

    18A.2.2 Magnetic Freewheeling Control 577

    I8A.2.3 Increase in Switching Frequency 58018A.3 Machine Model of an Asynchronous Machine 581

    18A.3.1 Control Problem 581

    18A.3.2 "Inverted" Machine Model 582

    18A.4 Results and Conclusions 583

    18A.4.1 Results 583

    18A.4.2 Conclusions 589

    References 589

    18B Real-Time Simulation of Modular Multilevel Converters (MMCs) 591

    18B.1 Introduction 591

    18B.1.1 Industrial Applications of MMCs 591

    18B. 1.2 Constraint Introduced by Real-Time Simulation ofPower Electronics

    Converter in General 592

    18B.1.3 MMC Topology Presentation 594

    I8B.1.4 Constraints ofSimulating MMCs 595

    18B.2 Choice of Modeling for MMC and Its Limitations 597

  • Contents xv

    18B.3 Hardware Technology for Real-Time Simulation 59818B.3.1 Simulation Using Sequential Programming with DSP Devices 598

    18B.3.2 Simulation Using Parallel Programming with FPGA Devices 59918B.4 Implementation for Real-Time Simulator Using Different Approach 601

    /8B. 4.1 Sequential Programmingfor Average Model A Igorithm 602

    18B.4.2 Parallel Programmingfor Switching Function Algorithm 60418B.5 Conclusion 606

    References 606

    19 Model Predictive Speed Control of Electrical Machines 60819.1 Introduction 608

    19.2 Review of Classical Speed Control Schemes for Electrical Machines 60919.2.1 Electrical Machine Model 609

    19.2.2 Field-Oriented Control 610

    19.2.3 Direct Torque Control 611

    19.3 Predictive Current Control 613

    19.3.1 Predictive Model 614

    19.3.2 Cost Function 615

    19.3.3 Predictive Algorithm 61619.3.4 Control Scheme 616

    19.4 Predictive Torque Control 617

    19.4.1 Predictive Model 618

    19.4.2 Cost Function 618

    19.4.3 Predictive Algorithm 61819.4.4 Control Scheme 618

    19.5 Predictive Torque Control Using a Direct Matrix Converter 619

    19.5.1 Predictive Model 620

    19.5.2 Cost Function 620

    19.5.3 Predictive Algorithm 62019.5.4 Control Scheme 620

    19.5.5 Control ofReactive Input Power 62119.6 Predictive Speed Control 622

    19.6.1 Predictive Model 624

    19.6.2 Cost Function 624

    19.6.3 Predictive Algorithm 62519.6.4 Control Scheme 625

    19.7 Conclusions 626

    Acknowledgment 627

    References 627

    20 The Electrical Drive Systems with the Current Source Converter 63020.1 Introduction 630

    20.2 The Drive System Structure 631

    20.3 The PWM in CSCs 633

    20.4 The Generalized Control of a CSR 636

    20.5 The Mathematical Model of an Asynchronous and a Permanent Magnet

    Synchronous Motor 63920.6 The Current and Voltage Control of an Induction Machine 641

    20.6.7 Field-Oriented Control 641

    20.6.2 The Current Multi-Scalar Control 643

    20.6.3 The Voltage Multi-Scalar Control 647

  • xvi Contents

    20.7 The Current and Voltage Control of Permanent Magnet SynchronousMotor 651

    20.7.1 The Voltage Multi-scalar Control ofa PMSM 651

    20.7.2 The Current Control ofan Interior Permanent Magnet Motor 653

    20.8 The Control System of a Doubly Fed Motor Supplied by a CSC 657

    20.9 Conclusion 661

    References 662

    21 Common-Mode Voltage and Bearing Currents in PWM Inverters:

    Causes, Effects and Prevention 664

    21.1 Introduction 664

    21.1.1 Capacitive Bearing Current 668

    21.1.2 Electrical Discharge Machining Current 668

    21.1.3 Circulating Bearing Current 669

    21.1.4 Rotor Grounding Current 671

    21.1.5 Dominant Bearing Current 671

    21.2 Determination of the Induction Motor Common-Mode Parameters 671

    21.3 Prevention of Common-Mode Current: Passive Methods 674

    21.3.1 Decreasing the Inverter Switching Frequency 674

    21.3.2 Common-Mode Choke 675

    21.3.3 Common-Mode Passive Filter 678

    21.3.4 Common-Mode Transformer 679

    21.3.5 Semiactive CM Current Reduction with Filter Application 680

    21.3.6 Integrated Common-Mode and Differential-Mode Choke 68121.3.7 Machine Construction and Bearing Protection Rings 682

    21.4 Active Systems for Reducing the CM Current 682

    21.5 Common-Mode Current Reduction by PWM Algorithm Modifications 683

    21.5.1 Three Non-parity Active Vectors (3NPAVs) 685

    27.5.2 Three Active Vector Modulation (3AVM) 687

    21.5.3 Active Zero Voltage Control (AZVC) 688

    21.5.4 Space Vector Modulation with One-Zero Vector (SVM1Z) 689

    21.6 Summary 692

    References 692

    22 High-Power Drive Systems for Industrial Applications: Practical Examples 695

    22.1 Introduction 695

    22.2 LNG Plants 696

    22.3 Gas Turbines (GTs): the Conventional Compressor Drives 697

    22.3.1 Unit Starting Requirements 69722.3.2 Temperature Effect on GT Output 697

    22.3.3 Reliability and Durability 69822.4 Technical and Economic Impact of VFDs 699

    22.5 High-Power Electric Motors 70022.5.1 State-of-the-Art High-Power Motors 701

    22.5.2 Brushless Excitation for SM 703

    22.6 High-Power Electric Drives 70522.7 Switching Devices 705

    22.7.1 High-Power Semiconductor Devices 70722.8 High-Power Converter Topologies 709

    22.8.1 LCI 709

  • Contents xvii

    22.8.2 VSI 710

    22.8.3 Summary 711

    22.9 Multilevel VSI Topologies 711

    22.9.1 Two-Level Inverters 711

    22.9.2 Multilevel Inverters 712

    22.10 Control of High-Power Electric Drives 719

    22.10.1 PWM Methods 721

    22.11 Conclusion 723

    Acknowledgment 724References 724

    23 Modulation and Control of Single-Phase Grid-Side Converters 72723.1 Introduction 727

    23.2 Modulation Techniques in Single-Phase Voltage Source Converters 729

    23.2.1 Parallel-Connected H-Bridge Converter (H-BC) 12923.2.2 H-Diode Clamped Converter (H-DCC) 733

    23.2.3 H-Flying Capacitor Converter (H-FCC) 736

    23.2.4 Comparison 74323.3 Control of AC-DC Single-Phase Voltage Source Converters 748

    23.3.1 Single-Phase Control Algorithm Classification 749

    23.3.2 DQ Synchronous Reference Frame Current Control - Pl-CC 751

    23.3.3 ABC Natural Reference Frame Current Control - PR-CC 75423.3.4 Controller Design 756

    23.3.5 Active Power Feed-Forward Algorithm 759

    23.4 Summary 763References 763

    24 Impedance Source Inverters 76624.1 Multilevel Inverters 766

    24.1.1 Transformer-Less Technology 766

    24.1.2 Traditional CM1 or Hybrid CMI 767

    24.1.3 Single-Stage Inverter Topology 767

    24.2 Quasi-Z-Source Inverter 767

    24.2.1 Principle ofthe qZSl 16124.2.2 Control Methods ofthe qZSI 111

    24.2.3 qZSI with Battery'far PV Systems 113

    24.3 qZSI-Based Cascade Multilevel PV System 775

    24.3.1 Working Principle 775

    24.3.2 Control Strategies and Grid Synchronization 779

    24.4 Hardware Implementation 780

    24.4.1 Impedance Parameters 780

    24.4.2 Control System 781

    Acknowledgments 782

    References 782

    Index 787