power electronics in hybrid and electric · pdf filebitte decken sie die schraffierte...

50
Bitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate Summer School 2016 Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel Continental, Division Powertrain, Business Unit Hybrid Electric Vehicle Nottingham, June 2016

Upload: lamthu

Post on 06-Mar-2018

219 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Bitte decken Sie die schraffierte Fläche mit einem Bild ab.

Please cover the shaded area with a picture.

(24,4 x 11,0 cm)

Postgraduate Summer School 2016

Power Electronics in Hybrid and Electric Vehicles

Hans-Peter Feustel Continental, Division Powertrain, Business Unit Hybrid Electric Vehicle

Nottingham, June 2016

Page 2: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Agenda

2 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

2 / Schuch / 23.11.2013 © Continental AG 2 / Schuch / 23.11.2013 © Continental AG 2 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 3: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

3 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

3 / Schuch / 23.11.2013 © Continental AG 3 / Schuch / 23.11.2013 © Continental AG 3 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 4: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental Corporation Five Strong Divisions

Chassis & Safety

Vehicle Dynamics

Hydraulic

Brake Systems

Passive Safety &

Sensorics

Advanced Driver

Assistance Systems

(ADAS)

Powertrain

Engine Systems

Transmission

Hybrid Electric

Vehicle

Sensors &

Actuators

Fuel &

Exhaust Management

Interior

Instrumentation &

Driver HMI

Infotainment &

Connectivity

Intelligent Transportation

Systems

Body & Security

Commercial Vehicles &

Aftermarket

Tires

PLT,

Original Equipment

PLT, Repl. Business,

EMEA

PLT, Repl. Business,

The Americas

PLT, Repl. Business,

Asia Pacific

Commercial

Vehicle Tires

Two Wheel Tires

ContiTech

Air Spring Systems

Benecke-Kaliko

Group

Compounding

Technology

Conveyor Belt

Group

Elastomer Coatings

Fluid Technology

Power Transmission

Group

Vibration Control

PLT – Passenger and Light Truck Tires

4 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 5: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

› Since 1871 with headquarters in Hanover, Germany

› Sales of €34.5 billion

› 189,168 employees worldwide

› 317 locations in 50 countries

Continental Corporation Overview 2014

Chassis & Safety 22%

Powertrain 19%

Interior 20%

Tires 28%

ContiTech 11%

Sales by division in %

Status: December 31, 2014

5 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 6: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental Corporation Sales and Employees by Region in 2014

Sales by market in % Employees by region in %

Germany 28%

Europe (excluding Germany)

32%

Asia 19%

NAFTA 16%

Other countries 5%

Germany 23%

Europe (excluding Germany)

30%

Asia 20%

NAFTA 22%

Other countries 5%

Worldwide: €34.5 billion Worldwide: 189,168 Status: December 31, 2014

6 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 7: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental Corporation 317 Locations in 50 Countries

Europe

South America

Argentina

Brazil

Chile

Columbia

Ecuador

Peru

Asia

China

India

Indonesia

Japan

Malaysia

Philippines

Singapore

South Korea

Sri Lanka

Taiwan

Thailand

United Arab

Emirates

Algeria

Republic of South Africa

Morocco

Africa

Australia

Austria

Belgium

Denmark

Finland

France

Germany*

Greece

Ireland

Italy

Netherlands

Norway

Czech Republic

Hungary

Kazakhstan

Poland

Romania

Russia

Serbia

Slovakia

Turkey

North America

Canada

Mexico

USA

Portugal

Spain

Sweden

Switzerland

United Kingdom

*Headquarters in Hanover Status: December 2014

7 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 8: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

8 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

8 / Schuch / 23.11.2013 © Continental AG 8 / Schuch / 23.11.2013 © Continental AG 8 Dynamic Lifetime Test under real Application

Conditions Hans-Peter Feustel, © Continental AG

18.11.2014

8 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 9: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Powertrain Volume Forecast 25% of all Vehicles will be electrified in 2025

Source: Continental, IHS

20,0

120,0

60,0

0,0

100,0

80,0

40,0

11,2%

1,5%

2024 2022

47,3%

1,7%

2023

8,9%

2025 2016 2015

71,9%

2,4%

2014 2013 2012

1,0%

2021

44,8%

2018

3,9%

2020

1,1%

43,9%

2017 2019

29,5%

5,2%

ICE only

F/MHEV

12V S/S

48V

PHEV

EV

9 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 10: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Electrification Tailored to Fit Strong Growth in 48 Volt and High Volt Hybridization

30

CO2 Legislation CO2 legislation

Incentives and regulations

Market development (Mn. vehicles)

3

12

13 6

4 3

4

2

20

10

0

1

12

28

2015 2020 2025

EV HEV 48V

Source: Continental Powertrain Database

10 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 11: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

General Trend in Power Electronics Inverter Development Driven by Cost, Power, and Reliability

3 June 2016

12 Juergen Bilo, © Continental AG

Cost reduction

Power Cycles, 80°K T

150.000

Future Actual

+567%

1.000.000

3.000.000

Past

Double current and voltage

Actual

1.000 A

Future

500 A

Future Actual

?

800 V

450 V

Higher Reliability Power up to 200 kW

12 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 12: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

› Implementation of new connection technologies

› New cooling concept

› Higher durability with less chip size

› Higher integration density

General Trend in Power Electronics Inverter Development Driven by Cost, Power, and Reliability

3 June 2016

13 Juergen Bilo, © Continental AG

Higher Reliability

Power Cycles, 80°K T

+567%

Future

3.000.000

Actual

1.000.000

Past

150.000

Power up to 200 kW

Double current and voltage

Future

1.000 A

Actual

500 A

?

Future

800 V

Actual

450 V

13 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 13: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

14 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

14 / Schuch / 23.11.2013 © Continental AG 14 / Schuch / 23.11.2013 © Continental AG 14 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 14: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

15 Author, © Continental AG

Technical Requirements HEV and EV Power Electronics

High power density >30kW/l (Inverter)

Ambient temperatures -40°C bis 125 °C

Vibration 5g to 20g

Lifetime 10 years / 8000 -10000 h (40000h)

Fluid cooling 65°C @ EV, 85°C @ HEV

High passive thermal cycling, - 40°C to max. temperature

High values of different load cycles

Automotive Safety Levels Asil C and D

High reliability demands

15 15

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 15: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

16 Author, © Continental AG

Nature of Thermal Load of the Power Devices

junction temperature

time

Passive heating by

cooling medium

Active heating by

electrical load Maximum temperature

Thermal cycles

Design criterias

TCooling medium+ Plosses x Rth <

Tmax

Load by thermal cycles (Plosses x Rth ) <

cycle lifetime

16 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 16 16

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 16: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Expert Day 2012 – Regensburg – 12. September 2012

Thermal Cycles Are The Root Cause For Mechanical Stress Of The Power Stages

Passive thermal cycles due to temperature swing of the cooling fluid

Active thermal cycles due to

Cold starts of the engine by the electric motor

Warm starts of the engine by the electric motor

Load variations of the electric motor

Boost mode of the electric motor

Mechanical stress is generated due to the mismatch in the

thermal coefficients (CTE) of the joint materials by

This mechanical stress limits the lifetime of the power electronics

17 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 17 17

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 17: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

18 Author, © Continental AG

Standard Power Module

Heat sink

Al Bond Wires

Al2O3 DCB

Ceramics

Cu Base Plate

Thermal Grease

Al or Cu Heat sink

1 3 2

Life time limitation due to thermal cycles in this areas (CTE

mismatch)!

18 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 18 18

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 18: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

19 Author, © Continental AG

Life Time Limitation due to Thermal Cycles [1/2]

Source: Fraunhofer IZM

1 Fatigue crack of bond wire after

power cycling

(thermo-mechanical alternating load)

Source: Infineon

Defect in the solder joint after

power cycling 2

19 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 19 19

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 19: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

20 Author, © Continental AG

Life Time Limitation due to Thermal Cycles [2/2]

Source: Infineon

3

20 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 20 20

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 20: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

21 Author, © Continental AG

Examples of real Data of a Mission Profile

0 200 400 600 800 1000 1200

0

1000

2000

Drive-cycle A; Tcool variabel

T [

Nm

], s

peed [

1/m

in]

torque

speed

0 200 400 600 800 1000 12000

200

400

I_rm

s [

A]

U_D

C [

V]

I_rms

U_DC

0 200 400 600 800 1000 1200-1

0

1

mod

cosPhi

0 200 400 600 800 1000 12000

20

40

60

80

Tcool [°

C]

time [s]

450 500 550 600 65085

90

95

100

105

110

115

120

125detail of Drive-cycle B

time [s]

T [

°C]

T_IGBT

T_Diode

T_DCB

Mission Profile

Temperature profile

PE- and motor

model Rainflow-

Algorithm PC-Diagram (Bond wires)

21 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 21

20 40 60 80 100 120 140 16010

3

104

105

106

107

108

109

1010

temperature swing (peak-peak)

no.

of

cycle

s

Life-time prediction for IGBT

limiting curve for 20% failure rate

Nf(240.000km)=54241;LT Consumption=0.173;Tmean[°C]=85

21 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 21: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

22 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

22 / Schuch / 23.11.2013 © Continental AG 22 / Schuch / 23.11.2013 © Continental AG 22 Dynamic Lifetime Test under real Application

Conditions Hans-Peter Feustel, © Continental AG

18.11.2014

22 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 22: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability

3 June 2016

23 Author, © Continental AG

Minimized thermal cycles

Reduction of drive cycle / load

low thermal resistance (capacitance)

Use of materials with matched expansion coefficients

(CTE)

Use of joining technique with higher stability

23 / /H.-P. Feustel 20.10.2013 © Continental AG23 23

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 23: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability Reduction of Losses

3 June 2016

24 Author, © Continental AG

Minimized thermal cycles

Reduction of drive cycle / load

low thermal resistance (capacitance)

Use of materials with matched expansion coefficients

(CTE)

Use of joining technique with higher stability

.

24 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 24

Enhanced

Gate Drive

Flat Top

Modulation

24 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 24: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by 3 Step Switching [1/7] Fast Switching but limited Overvoltage (di/dt)

Target: Switch off the IGBT correctly under all conditions

› Driver has to be adjusted to the maximum DC-link voltage and the maximum load current

› Max load current = 900Ap (threshold over current protection including tolerances)

› Max. overshoot: 620V – 490V = 130V defines max. possible switching speed

650V

620V

490V

0V

VCE,IGBT_max

VDC-link_max

ΔV=LStray • dI/dt

Margin: 30V

VCE,Driver_max

VCE

IC

Fast

Switching

reduces

switching

losses

Limited

overvoltage

by

controlled

di/dt

25 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 25: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by 3 Step Switching [3/7] Switching Off

Switch-Off

command

(NPWM)

UCE

IC

UGE

IG (nominal and

actual)

td

B1 (OFF_PHASE1)

› Start: NPWM = OFF-Command

› Apply gate current level for OFF_PHASE1

› Difference between IG_nom and IG_act (limited slew

rate of current, limited voltage difference)

› Controls duration of Miller-Plateau

› Defines switching losses (delay td between detection of

desaturation and setting of new gate current level)

B2 (OFF_PHASE2)

› Start: collector comparator detects desaturation

› Apply gate current level for OFF_PHASE2

› Defines UCE overvoltage level (reduction of du/dt at

phase of high di/dt)

› UCE overvoltage is defined by delay td and DC-link level

B3 (OFF_PHASE3)

› Start: gate comparator detects level below threshold

› Discharge Gate to VNEG level (no more current

regulation, voltage controlled in order to reduce

quiescent current when end level is reached)

27 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 26: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by 3 Step Switching [4/7] Switching On

Switch-On

command

(NPWM)

UCE

IC

UGE

IG (nominal and actual)

td

T1 (ON_PHASE1)

› Start: NPWM = ON-Command

› Apply gate current level for ON_PHASE1

› Difference between IG_nom and IG_act (limited slew

rate of current, limited voltage difference)

› Has influence on switching losses

› Defines delay between switch-on command and start of

UCE decrease

T2 (ON_PHASE2)

› Start: gate comparator detects level above threshold

› Apply gate current level for ON_PHASE2

› Defines overcurrent level

› Defines switching losses

T3 (ON_PHASE3)

› Start: collector comparator has level below threshold

› Charge Gate to VPOS level (no more current regulation,

voltage controlled in order to reduce quiescent current

when end level is reached)

28 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 27: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by 3 Step Switching [5/7] Switch-Off: Variation of UDC-link (IC = 500A)

UDC-link = 450V

UDC-link = 350V

UDC-link = 250V

UDC-link = 120V

29 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 28: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by Flat Top Modulation [1/3] Transistor Current Motor Mode

3 June 2016

32 Author, © Continental AG 32 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 29: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

33 / Schuch / 23.11.2013 © Continental AG

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40

U1 [V]

U2 [V]

U3 [V]

DC-Link [V]

-400

-300

-200

-100

0

100

200

300

400

0 10 20 30 40

U1-U2 [V]

U2-U3 [V]

U3-U1 [V]

Reduction of Switching Losses by Flat Top Modulation [2/3] Output Voltages with Standard Modulation

33 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 30: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Reduction of Switching Losses by Flat Top Modulation [3/3] Output Voltages with 60° Flat Top Modulation

34 / Schuch / 23.11.2013 © Continental AG

-400

-300

-200

-100

0

100

200

300

400

0 10 20 30 40

U1-U2 [V]

U2-U3 [V]

U3-U1 [V]

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40

U1f [V]

U2f [V]

U3f [V]

DC-Link [V]

No switching losses

~ 15% IGBT loss reduction

or 15% higher current rating!

34 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 31: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability Reduction of thermal Resistance

3 June 2016

35 Author, © Continental AG

Minimized thermal cycles

Reduction of drive cycle / load

low thermal resistance (capacitance)

Use of materials with matched expansion coefficients

(CTE)

Use of joining technique with higher stability

Direct fluid

cooling of the

power module

.

.

.

35 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 35 35

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 32: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Standard Power Module

3 June 2016

36 Author, © Continental AG

Standardized power designs based on

DCB with copper base plates

Heat sink

Al Bond Wires

Al2O3 DCB

Ceramics

Cu Base Plate

Thermal Grease

Al or Cu Heat sink

Additional high thermal resistance between

base plate and heat sink

Source: Bosch,

Advanced Packaging Conference, Semicon 2013

36 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 36 36

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 33: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental Hybrid Power Module

3 June 2016

37 Author, © Continental AG

AlO2 DCB

Ceramics

Power stage design on DCB with

integrated

liquid cooler for optimized cooling

Operating range at junction temperatures

of -40 to 150 / 175 °C

Heat sink

Al Bond Wires

Cu Base Plate

Thermal Grease

Reduced thermal resistance and lower thermal

stress to all components -> high cycle capability

AlN DCB

Ceramics

AlSiC Heat Sink

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 37 37

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 34: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability CTE adapted Materials

3 June 2016

38 Author, © Continental AG

Minimized thermal cycles

Reduction of drive cycle / load

low thermal resistance (capacitance)

Use of materials with matched expansion coefficients

(CTE)

Use of joining technique with higher stability

.

38 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 38 38

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 35: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information 3 June 2016

39 Author, © Continental AG

Measures to increase the Power Cycle Capability CTE adapted Material AlSiC for the Heatsink

Source: Infineon

Use of CTE-matched materials like AlSiC

baseplate or heat sink

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 39 39

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 36: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability CTE adapted Material AlSiC for the Heatsink

AlSiC Cooler

Example: @400A-Module, Tcool=85°C 5l/min

housing

40 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 37: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability Advanced Joining Technique

3 June 2016

41 Author, © Continental AG

Minimized thermal cycles

Reduction of drive cycle / load

low thermal resistance (capacitance)

Use of materials with matched expansion coefficients

(CTE)

Use of joining technique with higher stability .

41 / /H.-P. Feustel 20.10.2013 © Continental AG

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 41 41

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 38: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

@240V Gen. 1 Gen. 2

› Cont. Current 235A 290A

› Peak Current @10s 250A 305A

Measures to increase the Power Cycle Capability Advanced Joining Technique - Current Requirements

42 / /H.-P. Feustel 20.10.2013 © Continental AG

@450V

Cont.Current 240A

Peak Current@10s 450A

T

Gen. 3 300mm²

per IGBT

switch

400mm²

per IGBT

switch

New improved

assembly technique

necessary !

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 42

Even with cooling

enhancements not

possible with

standard assembly

technique !

42 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Target: with increased current

ratings only 300mm² per IGBT switch

due to cost and space limits

Page 39: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Measures to increase the Power Cycle Capability Advanced Joining Technique - Low-Temperature Silver Sintering

3 June 2016

44 Author, © Continental AG

The lifetime and the performance of power module is defined by:

Chip

Wirebond

Substrate

Solder

Chip

Wirebond

Substrate

Solder

Sintered Silver Layer

Improvement of the power cycling

capability better than factor 10 !

1. The wirebonds – limit the power cycling capability: 100-200 K cycles @ delta T =80K

2. The solder die attach – limits also the power cycling capability (value depends on the die

size)

3. Due to cost and space reasons the number of dies has to be reduced and/or the current

rating has to be increased

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 44 44

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Standard assembly Assembly with silver sintering

Page 40: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Properties

SnAgCu

Solder

Sintered Silver

Layer

Maximum Operation

Temperature

(=0,8∙Tm)

≈125°C ≈700°C

Thermal

Conductivity 70 W/mK 240 W/mK

Electrical

Conductivity 8∙106 /Ωm 41∙106 /Ωm

Coefficient of

Thermal

Expansion

28 ppm/K 19 ppm/K

Tensile Strength 30 Mpa 55 Mpa

Layer Thickness 100µm 25µm

Material Benefit:

• Lower thermal resistance

• Higher electrical conductivity

• Higher reliability due to:

• Reduced homologues temperature

no recrystallization

• Mono-metal contact Ag/Ag

no intermetallic compound

formation

no dissolution of surface

metallization

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 45

Measures to increase the Power Cycle Capability Advanced Joining Technique - Low-Temperature Silver Sintering

45 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 41: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Sinter Process Flow

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 46

Measures to increase the Power Cycle Capability Advanced Joining Technique - Low-Temperature Silver Sintering

46 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 42: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Low-Temperature Silver Sintering Power Module EPF2.8 – Die Attach and Interconnection sintered

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 47 47

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 43: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Power Cycling Test Results

3 June 2016

51 H.-P. Feustel, © Continental AG

Probability Grid

Weibull – 95% Conf. Level

LSXY- Statistical

Nominal Result:

1 Mio. @ 100K dT,

Equiv. 2 Mio. @ 80K dT

Perc

en

tag

e

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 51 51

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 44: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

52 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

52 / Schuch / 23.11.2013 © Continental AG 52 / Schuch / 23.11.2013 © Continental AG 52 Dynamic Lifetime Test under real Application

Conditions Hans-Peter Feustel, © Continental AG

18.11.2014

52 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 45: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental HV Power Electronics Innovations in Performance

Gen 1 Gen 2 Gen 2.8

(Gen 3)

Gen 2.8+

Gen 4

1st SOP 2009 2011 2014 2017 2020

Inverter * 200 Arms 305 Arms 450 Arms 605 Arms + ~ 661kVA

DCDC (contin.) ** 120 A 240 A 250 A 250 A ~ 4 kW

Density (INV contin.)

7,4 kVA/l 21,2 kVA/l 38,9 kVA/l 38,9 kVA/l ~ 53 kVA/l

Specials Mounted to

C-Engine

Powerdensity

Incl. Excitation

EV/HEV

Powerdensity

Reliability

Powerdensity,

Reliability,

Timing

Powerdensity,

Reliability,

Cost, Timing

* @450V, 10sec, 7l/min, 65°C, f_switch = 10kHz, cosPhi = 0,8, mod = 1,0; **: @14V, 65°C

Powertrain Division 17.01.2016

Hybrid Electric Vehicle BU H.-P. Feustel © Continental AG 53 53

Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 46: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

DCB - Half bridge

Continental Power Electronics EPF1

3 June 2016

54 Author, © Continental AG

Cross section through

device

Inverter Power Modul

54 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 47: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental Power Electronics EPF2

3 June 2016

55 Author, © Continental AG

DCAC Powermodul

Inverter (DCAC)

55 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 48: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

Continental HV Power Electronics EPF2.8

Inverter with integrated DC/DC Converter

Benefits

› Control module for the

electric machine in hybrid

and electric vehicles

› Modular design with high

flexibility through

integration of inverter and

DC/DC converter in one

housing

› DC/DC-converter replaces

conventional

14 V-generator

› New generation with

volume reduction to

approx. 5 liters

Technical Information

› Fluid cooled

Inverter

› Ratings up to 150kW @

450V

DC/DC Converter

› Up to 3kW

› Modular design for

different board

net loads

56 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 49: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

57 / Schuch / 23.11.2013 © Continental AG

Measures to increase the Power Cycle Capability 4

Examples of realized Power Electronics 5

6

Short Introduction of Continental 1

Future Market and Challenges of PE for Hybrid and Electric Vehicles 2

3 Technical Requirements HEV and EV Electronics

Outlook

57 / Schuch / 23.11.2013 © Continental AG 57 / Schuch / 23.11.2013 © Continental AG 57 Dynamic Lifetime Test under real Application

Conditions Hans-Peter Feustel, © Continental AG

18.11.2014

57 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

Page 50: Power Electronics in Hybrid and Electric · PDF fileBitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 11,0 cm) Postgraduate

Confidential

Space for Sender Information

But fast switching needs advanced assembly concepts with

extremely low stray inductance, advanced gate drive and an

improved EMC concept.

This means, that SiC material changes everything in the inverter. The Way to the Benefit of Wide

Band Gap Power Modules

Source: ROHM

Outlook Silicon Carbide Inverter for Future Drive Systems

So it´s still a lot to do in the wide field

of Power Electronics in the future!

Electric Motor ?

59 Postgraduate Summer School 2016 - Nottingham

Power Electronics in Hybrid and Electric Vehicles Hans-Peter Feustel, © Continental AG

June 2016

6-10% increase in fuel efficiency