power of ten - nccr must :: nccr must1018s formation of structures in the universe – 13.8 ga zbox...

41
Power of Ten A journey through -me Jürg Osterwalder, Anna Garry, Thomas Feurer

Upload: others

Post on 06-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Power of Ten A  journey  through  -me  

 Jürg  Osterwalder,  Anna  Garry,  Thomas  Feurer  

Page 2: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Philosophy

Relevant to MUST

Information (enough to trigger kids to look for

more)

A piece of art (trigger kid’s curiosity)

Page 3: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Concept

•  Rela-ve  and  not  absolute  -me  scales  (an  event  takes  30  years,  and  not  started  30  years  aCer  the  big  bang  …)  •  Keywords:  

•  Molecules  relevant  to  human  life  (water,  proteins,  …)  •  Human  organism  (seeing,  hearing,  cells,  protein  and  enzyme  func-on,  …)  •  Human  environment  (universe,  milky  way,  earth,  …)  •  Things  relevant  to  MUST  (light,  math,  computers,  …)  

Page 4: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

What to do

•  Go  to  the  poster  and  pick  the  -me  scale  you  (and  your  colleagues)  want  to  work  on  •  Put  a  s-cky  note  on  the  poster  with  the  following  informa-on:  

   Name:      Email:      Group  /  Professor  /  PI:  

     Timescale:  

Page 5: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

What to deliver

1.  A  series  of  10  images  (remember  the  images  must  be  original)  2.  A  -tle  and  a  short  text  explaining  the  sequence  of  images.  3.  Short  explana-on  of  keywords  and  useful  links  4.  Provide  at  least  one  trustworthy  reference  confirming  the  -me  scale  

Deadline:  

March  10th  

Page 6: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Book design

Sabina  di  Fa]a,  Agence  Symole,  Fribourg  

Page 7: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Formation of Structures in the Universe – 13.8 Ga 1018  s  

zBox supercomputer simulation, UZH

zbox supercomputer simulation, UZH (Rok Roskar, Romain Teyssier & Ben Moore)

The  sequence  shows  the  forma-on  of  the  large  scale  structure  of  the  universe.  A  fixed  co-­‐moving  volume  of  the  universe  is  shown  that  is  3x1023  m  across  today  (therefore  smaller  in  the  past).  It  shows  the  total  mass  distribu-on  colored  according  to  its  density  –  it  includes  dark  ma]er  and  stars  and  gas.  This  region  would  form  a  massive  cluster  of  galaxies  –  the  largest  structure  in  the  universe.  

The  ages  of  individual  stars  in  the  Milky  Way  can  be  es-mated  by  measuring  the  abundance  of  long-­‐lived  radioac-ve  elements  such  as  thorium-­‐232  and  uranium-­‐238,  then  comparing  the  results  to  es-mates  of  their  original  abundance,  a  technique  called  nucleocosmochronology.  These  yield  values  of  about  12.5  ±  3  billion  years  for  CS  31082-­‐001  and  13.8  ±  4  billion  years  for  BD+17°  3248.  Once  a  white  dwarf  star  is  formed,  it  begins  to  undergo  radia-ve  cooling  and  the  surface  temperature  steadily  drops.  By  measuring  the  temperatures  of  the  coolest  of  these  white  dwarfs  and  comparing  them  to  their  expected  ini-al  temperature,  an  age  es-mate  can  be  made.  With  this  technique,  the  age  of  the  globular  cluster  M4  was  es-mated  as  12.7  ±  0.7  billion  years.  Globular  clusters  are  among  the  oldest  objects  in  the  Milky  Way  Galaxy,  which  thus  set  a  lower  limit  on  the  age  of  the  galaxy.  Age  es-mates  of  the  oldest  of  these  clusters  gives  a  best  fit  es-mate  of  12.6  billion  years,  and  a  95%  confidence  upper  limit  of  16  billion  years.  

In  2007,  a  star  in  the  galac-c  halo,  HE  1523-­‐0901,  was  es-mated  to  be  about  13.2  billion  years  old,  ≈0.5  billion  years  less  than  the  age  of  the  universe.  As  the  oldest  known  object  in  the  Milky  Way  at  that  -me,  this  measurement  placed  a  lower  limit  on  the  age  of  the  Milky  Way.  This  es-mate  was  determined  using  the  UV-­‐Visual  Echelle  Spectrograph  of  the  Very  Large  Telescope  to  measure  the  rela-ve  strengths  of  spectral  lines  caused  by  the  presence  of  thorium  and  other  elements  created  by  the  R-­‐process.  The  line  strengths  yield  abundances  of  different  elemental  isotopes,  from  which  an  es-mate  of  the  age  of  the  star  can  be  derived  using  nucleocosmochronology.  

The  age  of  stars  in  the  galac-c  thin  disk  has  also  been  es-mated  using  nucleocosmochronology.  Measurements  of  thin  disk  stars  yield  an  es-mate  that  the  thin  disk  formed  8.8  ±  1.7  billion  years  ago.  These  measurements  suggest  there  was  a  hiatus  of  almost  5  billion  years  between  the  forma-on  of  the  galac-c  halo  and  the  thin  disk.  

 

Prof  Ben  More,  Uni    Zurich  

Page 8: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Formation of the Earth – 4.6 Ga 1017  s  

h]p://en.wikipedia.org/wiki/Earth  

The  earliest  material  found  in  the  Solar  System  is  dated  to  4.5672±0.0006  Ga  therefore,  it  is  inferred  that  the  Earth  must  have  been  formed  by  accre-on  around  this  -me.  By  4.54±0.04  Ga  the  primordial  Earth  had  formed.  The  forma-on  and  evolu-on  of  the  Solar  System  bodies  occurred  in  tandem  with  the  Sun.  In  theory  a  solar  nebula  par--ons  a  volume  out  of  a  molecular  cloud  by  gravita-onal  collapse,  which  begins  to  spin  and  fla]en  into  a  circumstellar  disk,  and  then  the  planets  grow  out  of  that  in  tandem  with  the  star.  The  assembly  of  the  primordial  Earth  proceeded  for  10–20  Ma.  

Page 9: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Formation of Today’s Continents – 200 Ma 1016  s  

h]p://en.wikipedia.org/wiki/Pangaea  

Pangaea  was  a  supercon-nent  that  existed  during  the  late  Paleozoic  and  early  Mesozoic  eras,  forming  approximately  300  million  years  ago.  It  began  to  break  apart  around  200  million  years  ago.  The  single  global  ocean  which  surrounded  Pangaea  is  accordingly  named  Panthalassa.  

The  name  Pangaea  is  derived  from  Ancient  Greek  pan  (πᾶν)  meaning  "en-re",  and  Gaia  (Γαῖα)  meaning  "Mother  Earth".  The  name  was  coined  during  a  1927  symposium  discussing  Alfred  Wegener's  theory  of  con-nental  driC.  In  his  book  The  Origin  of  Con-nents  and  Oceans  (Die  Entstehung  der  Kon-nente  und  Ozeane),  first  published  in  1915,  he  postulated  that  prior  to  breaking  up  and  driCing  to  their  present  loca-ons,  all  the  con-nents  had  at  one  -me  formed  a  single  supercon-nent  which  he  called  the  "Urkon-nent".  Originally,  this  theory  was  rejected  because  the  predominant  theory  was  that  the  Earth  was  cooling  and  shrinking,  with  mountains  being  the  last  regions  to  shrink.  Wegener's  theory  that  mountains  were  made  by  two  land  masses  colliding  with  each  other  seemed  unlikely  because  it  was  thought  that  nothing  could  move  a  landmass  as  large  as  a  con-nent.  

Page 10: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Formation of the Alps – 30 Ma 1015  s  

h]p://www.geosci.usyd.edu.au/users/prey/ACSGT/EReports/eR.2003/GroupD/Report1/web%20pages/swiss_alps.html  

The  Swiss  Alps  are  a  mountain  range  that  formed  aCer  the  break-­‐up  of  the  supercon-nent  Pangea.  During  the  mesozoic,  there  was  an  ocean  that  separated  Europe  from  Africa  called  the  Tethys  Ocean.  The  subduc-on  of  this  basin  and  the  collision  of  Africa  with  the  Eurasian  plate  is  what  caused  the  forma-on  of  these  mountains.  There  were  two  main  episodes  of  orogenisis,  one  during  the  Cretaceous  causing  the  forma-on  of  the  eastern  and  western  Alps,  the  second  during  the  Ter-ary  resul-ng  in  the  forma-on  of  the  central  Alps.  These  episodes  of  deforma-on  and  orogeny  scraped  off  and  thrusted  large  por-ons  of  sediments  from  both  the  Eurasian  and  African  Plates  that  are  now  part  of  the  Alps.  These  features  are  called  nappes  are  only  a  few  kilometers  thick  but  s-ll  contribute  to  overall  con-nental  thickening.  The  final  collision  between  Africa  and  Eurasia  also  upliCed  por-ons  of  oceanic  crust  called  ophiolites  into  the  orogeny.  The  Alps  are  a  highly  complex  regime  comprising  both  ophiolites  and  nappes,  as  well  as  high  grade  metamorphism,  faul-ng  and  folding.  

Bernard  Lang,  Uni  Geneva  

Vauthey  Group  

Page 11: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Evolution of Humans – 7 Ma 1014  s  

h]p://en.wikipedia.org/wiki/Timeline_of_human_evolu-on  

Hominina  speciate  from  the  ancestors  of  the  chimpanzees.  Both  chimpanzees  and  humans  have  a  larynx  that  reposi-ons  during  the  first  two  years  of  life  to  a  spot  between  the  pharynx  and  the  lungs,  indica-ng  that  the  common  ancestors  have  this  feature;  a  precondi-on  for  vocalized  speech  in  humans.  The  latest  common  ancestor  lived  around  the  -me  of  Sahelanthropus  tchadensis,  ca.  7  Ma;  S.  tchadensis  is  some-mes  claimed  to  be  the  last  common  ancestor  of  humans  and  chimpanzees,  but  there  is  no  way  to  establish  this  with  any  certainty.  The  earliest  known  representa-ve  from  the  ancestral  human  line  post-­‐da-ng  the  separa-on  with  the  chimpanzee  lines  is  Orrorin  tugenensis  (Millennium  Man,  Kenya;  ca.  6  Ma).  

Page 12: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

CO2 Cycle from Arctic Ice – 100000 a 1013  s  

h]p://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere  

The  concentra-on  of  carbon  dioxide  (CO2)  in  Earth's  atmosphere  determines  its  contribu-on  to  the  greenhouse  effect  and  the  rates  of  plant  and  algal  photosynthesis.  The  concentra-on  has  increased  markedly  in  the  21st  century,  at  a  rate  of  2.0  ppm/yr  during  2000–2009  and  faster  since  then.  It  was  280  ppm  in  pre-­‐industrial  -mes,  and  has  risen  to  392  ppm  (parts  per  million)  in  2013  with  the  increase  largely  a]ributed  to  anthropogenic  sources.  About  57%  of  the  CO2  emissions  go  to  increase  the  atmospheric  level,  with  much  of  the  remainder  contribu-ng  to  ocean  acidifica-on.  Carbon  dioxide  is  used  in  photosynthesis,  and  is  also  a  prominent  greenhouse  gas.  Despite  its  rela-vely  small  overall  concentra-on  in  the  atmosphere,  CO2  is  an  important  component  of  Earth's  atmosphere  because  it  absorbs  and  emits  infrared  radia-on.  The  present  level  appears  to  be  the  highest  in  the  past  800,000  years  and  likely  the  highest  in  the  past  20  million  years,  but  well  below  10%  of  its  500-­‐million-­‐year  peak.  

Page 13: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Growth Time of a 4 m Stalactite – 30000 a 1012  s  

h]p://www.environmentalgraffi-.com/news-­‐biggest-­‐stalac-tes-­‐and-­‐stalagmites-­‐earth  

Stalac-tes  hanging  from  the  ceilings  of  caverns  commonly  exhibit  a  central  tube  or  the  trace  of  a  former  tube  whose  diameter  is  that  of  a  drop  of  water  hanging  by  surface  tension.  A  drop  on  the  -p  of  a  growing  stalac-te  leaves  a  deposit  only  around  its  rim.  Downward  growth  of  the  rim  makes  the  tube.  The  simplest  stalac-te  form,  therefore,  is  a  thin-­‐walled  stone  straw,  and  these  fragile  forms  may  reach  lengths  of  0.5  m  (20  inches)  or  more  where  air  currents  have  not  seriously  disturbed  the  growth.  The  more  common  form  is  a  downward-­‐tapering  cone  and  is  simply  a  thickening  of  the  straw  type  by  mineral  deposi-on  from  a  film  of  water  descending  the  exterior  of  the  pendant.  

Page 14: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Development of Western Science – 3000 a 1011  s  

h]p://www.flowo}istory.com/readings-­‐flowcharts/revival-­‐west/the-­‐age-­‐enlightenment/fc97  

Western  science,  like  so  many  other  aspects  of  Western  Civiliza-on,  was  born  with  the  ancient  Greeks.  They  were  the  first  to  explain  the  world  in  terms  of  natural  laws  rather  than  myths  about  gods  and  heroes.  They  also  passed  on  the  idea  of  the  value  of  math  and  experiment  in  science,  although  they  usually  thought  only  in  terms  of  one  to  the  exclusion  of  the  other.  It  is  easy  for  us  to  be  cri-cal  of  their  early  scien-fic  theories,  but  we  must  remember  several  things  about  their  world.  First,  by  that  -me,  the  human  race  had  learned  to  exploit  the  environment  for  survival  (e.g.,  agriculture,  woven  cloth,  metallurgy,  etc.),  but  knew  li]le  about  the  physical  laws  that  rule  nature  and  the  universe.  Also,  there  were  no  telescopes,  microscopes,  or  other  instruments  to  aid  the  naked  eye  in  its  observa-ons  and  measurements.  Everything  they  learned  about  the  natural  world  had  to  be  done  with  the  unaided  senses  and  whatever  ra-onal  deduc-ons  they  could  make  based  on  them.  

Page 15: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Development of Calculus – 350 a 1010  s  

h]p://www.uiowa.edu/~c22m025c/history.html  

The  discovery  of  calculus  is  oCen  a]ributed  to  two  men,  Isaac  Newton  and  Go�ried  Leibniz,  who  independently  developed  its  founda-ons.  Although  they  both  were  instrumental  in  its  crea-on,  they  thought  of  the  fundamental  concepts  in  very  different  ways.  While  Newton  considered  variables  changing  with  -me,  Leibniz  thought  of  the  variables  x  and  y  as  ranging  over  sequences  of  infinitely  close  values.  He  introduced  dx  and  dy  as  differences  between  successive  values  of  these  sequences.  Leibniz  knew  that  dy/dx  gives  the  tangent  but  he  did  not  use  it  as  a  defining  property.  On  the  other  hand,  Newton  used  quan--es  x'  and  y',  which  were  finite  veloci-es,  to  compute  the  tangent.  Of  course  neither  Leibniz  nor  Newton  thought  in  terms  of  func-ons,  but  both  always  thought  in  terms  of  graphs.  For  Newton  the  calculus  was  geometrical  while  Leibniz  took  it  towards  analysis.  

Page 16: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Development of Personal Computers – 25 a 109  s  

h]p://www.computerhistory.org/  

Evolu-on  of  Apple  computers  over  a  period  of  25  years    

Page 17: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Duration of a Bachelor or PhD Program – 3 a 108  s  

h]p://www.phdcomics.com  

3  to  4  year  program  depending  on  university  

Page 18: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Annual Cycle – 12 months 107  s  

h]p://en.wikipedia.org/wiki/Year  

A  year  is  the  orbital  period  of  the  Earth  moving  around  the  Sun.  For  an  observer  on  the  Earth,  this  corresponds  to  the  period  it  takes  the  Sun  to  complete  one  course  throughout  the  zodiac  along  the  eclip-c.  

In  astronomy,  the  Julian  year  is  a  unit  of  -me,  defined  as  365.25  days  of  86400  SI  seconds  each.  

Due  to  the  Earth's  axial  -lt,  the  course  of  a  year  sees  the  passing  of  the  seasons,  marked  by  changes  in  weather,  hours  of  daylight,  and  consequently  vegeta-on  and  fer-lity.  In  temperate  and  subpolar  regions,  generally  four  seasons  are  recognized:  spring,  summer,  autumn  and  winter,  astronomically  marked  by  the  Sun  reaching  the  points  of  equinox  and  sols-ce,  although  the  clima-c  seasons  lag  behind  their  astronomical  markers.  In  some  tropical  and  subtropical  regions  it  is  more  common  to  speak  of  the  rainy  (or  wet,  or  monsoon)  season  versus  the  dry  season.  

A  calendar  year  in  the  Gregorian  calendar  (as  well  as  in  the  Julian  calendar)  has  either  365  or  366  days.  

Page 19: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Lunar Cycle – 29.5 days 106  s  

h]p://stardate.org/nightsky/moon  

The  Moon  has  phases  because  it  orbits  Earth,  which  causes  the  por-on  we  see  illuminated  to  change.  The  Moon  takes  27.3  days  to  orbit  Earth,  but  the  lunar  phase  cycle  (from  new  Moon  to  new  Moon)  is  29.5  days.  The  Moon  spends  the  extra  2.2  days  "catching  up"  because  Earth  travels  about  45  million  miles  around  the  Sun  during  the  -me  the  Moon  completes  one  orbit  around  Earth.  

At  the  new  Moon  phase,  the  Moon  is  so  close  to  the  Sun  in  the  sky  that  none  of  the  side  facing  Earth  is  illuminated.  In  other  words,  the  Moon  is  between  Earth  and  Sun.  At  first  quarter,  the  half-­‐lit  Moon  is  highest  in  the  sky  at  sunset,  then  sets  about  six  hours  later.  At  full  Moon,  the  Moon  is  behind  Earth  in  space  with  respect  to  the  Sun.  As  the  Sun  sets,  the  Moon  rises  with  the  side  that  faces  Earth  fully  exposed  to  sunlight.  

Page 20: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

The Eukaryotic Cell Cycle – 1 day 105  s  

h]p://www.ncbi.nlm.nih.gov/books/NBK9876/  

The  division  cycle  of  most  cells  consists  of  four  coordinated  processes:  cell  growth,  DNA  replica-on,  distribu-on  of  the  duplicated  chromosomes  to  daughter  cells,  and  cell  division.  In  bacteria,  cell  growth  and  DNA  replica-on  take  place  throughout  most  of  the  cell  cycle,  and  duplicated  chromosomes  are  distributed  to  daughter  cells  in  associa-on  with  the  plasma  membrane.  In  eukaryotes,  however,  the  cell  cycle  is  more  complex  and  consists  of  four  discrete  phases.  Although  cell  growth  is  usually  a  con-nuous  process,  DNA  is  synthesized  during  only  one  phase  of  the  cell  cycle,  and  the  replicated  chromosomes  are  then  distributed  to  daughter  nuclei  by  a  complex  series  of  events  preceding  cell  division.  Progression  between  these  stages  of  the  cell  cycle  is  controlled  by  a  conserved  regulatory  apparatus,  which  not  only  coordinates  the  different  events  of  the  cell  cycle  but  also  links  the  cell  cycle  with  extracellular  signals  that  control  cell  prolifera-on.  

Page 21: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Sleep Cycle – 8 h 104  s  

h]p://psychology.about.com/od/statesofconsciousness/a/SleepStages.htm  

The  Beginnings  of  Sleep:  During  the  earliest  phases  of  sleep,  you  are  s-ll  rela-vely  awake  and  alert.  The  brain  produces  what  are  known  as  beta  waves,  which  are  small  and  fast.  As  the  brain  begins  to  relax  and  slow  down,  slower  waves  known  as  alpha  waves  are  produced.  During  this  -me  when  you  are  not  quite  asleep,  you  may  experience  strange  and  extremely  vivid  sensa-ons  known  as  hypnagogic  hallucina-ons.  Common  examples  of  this  phenomenon  include  feeling  like  you  are  falling  or  hearing  someone  call  your  name.  Another  very  common  event  during  this  period  is  known  as  a  myoclonic  jerk.  If  you've  ever  startled  suddenly  for  seemingly  no  reason  at  all,  then  you  have  experienced  this  odd  phenomenon.  

Stage  1:  Is  the  beginning  of  the  sleep  cycle,  and  is  a  rela-vely  light  stage  of  sleep.  Stage  1  can  be  considered  a  transi-on  period  between  wakefulness  and  sleep.  In  Stage  1,  the  brain  produces  high  amplitude  theta  waves,  which  are  very  slow  brain  waves.  This  period  of  sleep  lasts  only  a  brief  -me  (5-­‐10  min.).  If  you  awaken  someone  during  this  stage,  they  might  report  that  they  weren't  really  asleep.  

Stage  2:  Is  the  second  stage  of  sleep  and  lasts  for  approximately  20  min.  The  brain  begins  to  produce  bursts  of  rapid,  rhythmic  brain  wave  ac-vity  known  as  sleep  spindles.  Body  temperature  starts  to  decrease  and  heart  rate  begins  to  slow.  

Stage  3:  Deep,  slow  brain  waves  known  as  delta  waves  begin  to  emerge  during  stage  3  sleep.  Stage  3  is  a  transi-onal  period  between  light  sleep  and  a  very  deep  sleep.  

Stage  4:  Is  some-mes  referred  to  as  delta  sleep  because  of  the  slow  brain  waves  known  as  delta  waves  that  occur  during  this  -me.  Stage  4  is  a  deep  sleep  that  lasts  for  approximately  30  minutes.  

Stage  5:  Most  dreaming  occurs  during  the  fiCh  stage  of  sleep,  known  as  rapid  eye  movement  (REM)  sleep.  REM  sleep  is  characterized  by  eye  movement,  increased  respira-on  rate  and  increased  brain  ac-vity.  Dreaming  occurs  due  because  of  increased  brain  ac-vity,  but  voluntary  muscles  become  paralyzed.  

The  Sequence  of  Sleep  Stages:  It  is  important  to  realize,  however,  that  sleep  does  not  progress  through  these  stages  in  sequence.  Sleep  begins  in  stage  1  and  progresses  into  stages  2,  3  and  4.  ACer  stage  4  sleep,  stage  3  and  then  stage  2  sleep  are  repeated  before  entering  REM  sleep.  Once  REM  sleep  is  over,  the  body  usually  returns  to  stage  2  sleep.  Sleep  cycles  through  these  stages  approximately  four  or  five  -mes  throughout  the  night.  On  average,  we  enter  the  REM  stage  approximately  90  minutes  aCer  falling  asleep.  The  first  cycle  of  REM  sleep  might  last  only  a  short  amount  of  -me,  but  each  cycle  becomes  longer.  REM  sleep  can  last  up  to  an  hour  as  sleep  progresses.  

 

 

Page 22: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Visual (Rhodopsin) Cycle – 30 min 103  s  

h]p://www.vetmed.vt.edu/educa-on/curriculum/vm8054/eye/rhodopsn.htm  

h]p://www.reference.com/browse/rhodopsin  

The  visual  pigment  rhodopsin  (some-mes  called  "visual  purple")  is  bound  to  the  plasma  membrane  of  the  rod  and  forms  transmembrane  protein  complexes  within  it.  Rhodopsin  undergoes  a  cyclic  decomposi-on  and  recons-tu-on  in  response  to  the  presence  of  light.  This  rather  complicated  cycle  is  the  basis  for  absorp-on  of  light  and  its  transduc-on  into  a  nervous  signal.  

The  visual  cycle  is  a  circular  enzyma-c  pathway,  which  is  the  front-­‐end  of  phototransduc-on.  It  regenerates  11-­‐cis-­‐re-nal.  For  example,  the  visual  cycle  of  mammalian  rod  cells  is  as  follows:    

1.  all-­‐trans-­‐re-nyl  ester  +  H2O  →  11-­‐cis-­‐re-nol  +  fa]y  acid;  RPE65  isomerohydrolases,  

2.  11-­‐cis-­‐re-nol  +  NAD+  →  11-­‐cis-­‐re-nal  +  NADH  +  H+;  11-­‐cis-­‐re-nol  dehydrogenases,  

3.  11-­‐cis-­‐re-nol  +  aporhodopsin  →  rhodopsin  +  H2O;  forms  Schiff  base  linkage  to  lysine,  -­‐CH=N+H-­‐,  

4.  rhodopsin  +  hν  →  metarhodopsin  II;  11-­‐cis  photoisomerizes  to  all-­‐trans,  rhodopsin  +  hν  →  photorhodopsin  →  bathorhodopsin  →  lumirhodopsin  →  metarhodopsin  I  →  metarhodopsin  II,  

5.  metarhodopsin  II  +  H2O  →  aporhodopsin  +  all-­‐trans-­‐re-nal,  

6.  all-­‐trans-­‐re-nal  +  NADPH  +  H+  →  all-­‐trans-­‐re-nol  +  NADP+;  all-­‐trans-­‐re-nol  dehydrogenases,  

7.  all-­‐trans-­‐re-nol  +  fa]y  acid  →  all-­‐trans-­‐re-nyl  ester  +  H2O;  lecithin  re-nol  acyltransferases  (LRATs).  

Steps  3,4,5,6  occur  in  rod  cell  outer  segments;  Steps  1,  2,  and  7  occur  in  re-nal  pigment  epithelium  (RPE)  cells.  

Type  2  rhodopsin  (rainbow  colored)  embedded  in  a  lipid  bilayer  (heads  red  and  tails  blue)  with  transducin  below  it.  Gtα  is  colored  red,  Gtβ  blue,  and  Gtγ  yellow.  There  is  a  bound  GDP  molecule  in  the  Gtα-­‐subunit  and  a  bound  re-nal  (black)  in  the  rhodopsin.  The  N-­‐terminus  terminus  of  rhodopsin  is  red  and  the  C-­‐terminus  blue.  Anchoring  of  transducin  to  the  membrane  has  been  drawn  in  black.  

Page 23: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Frying an Egg – 2 min 102  s  

h]p://voices.yahoo.com/the-­‐kitchen-­‐chemist-­‐happens-­‐fry-­‐egg-­‐2969005.html  

The  front-­‐right  burner  is  on  in  your  gas  stove,  and  you  have  a  small  stainless  steel  skillet  with  a  few  tablespoons  of  bu]er  melted  in  it.  You  grab  hold  of  a  jumbo  white  egg,  and  cracking  it  on  the  edge  of  the  skillet,  you  spread  the  shell  halves  apart  and  deposit  the  contents  of  the  egg  without  breaking  the  yolk,  right  into  the  center  of  the  sizzling  bu]er.  You  toss  the  shells,  repeat  this  process  once  or  twice  more,  and  then  you  wash  your  hands  and  dry  them.  Within  seconds  of  the  -me  the  clear  albumen  strikes  the  hot  bu]er,  it  begins  turning  white.  To  speed  up  the  process,  you  take  a  spoon  and  dip  up  some  of  the  molten  bu]er,  splashing  it  onto  the  white  and  the  yolk,  un-l  it  is  at  least  partly  cooked,  with  the  film  over  the  yolk  clouding  up.  Even  if  you  don't  want  the  yolk  cooked  solid,  you  probably  like  the  white  totally  cooked.  When  you  are  done,  the  clear  albumen  is  completely  white.  Why?  Why  does  an  egg  white  turn  white?  What  is  the  chemistry  of  it?  

Protein  DenaturaIon  

This  process  that  you  have  observed  so  many  dozens  of  -mes  is  called  denatura6on.  The  albumen  or  "white"  of  an  egg  is  a  solu-on  of  proteins  in  water  surrounding  the  yolk  of  an  egg.  Proteins  are  chains  of  various  amino  acids.  When  heat  is  applied  to  the  white  of  an  egg,  the  protein  chains  are  broken,  and  they  then  recombine  in  a  different  order.  This  s-ffens  and  whitens  the  albumen  of  an  egg.  Also  some  of  the  moisture  is  driven  off.  The  whole  process  is  termed  denatura-on.  The  average  person  prefers  to  think  of  it  as  "cooking."  

PepIde  Linkage  

Proteins  are  important  chemicals  found  throughout  nature,  that  possess  a  "pep-de"  linkage.  A  pep-de  linkage  consists  of  a  carboxylic  group,  symbolized  by  -­‐COOH,  combined  with  an  amino  group,  symbolized  by  -­‐NH2,  minus  water.  Thus,  if  you  have  two  molecules,  say,  

R1-­‐COOH  and  R2-­‐NH2,  and  you  combine  them  you  get,  at  first,  

R1-­‐COO-­‐-­‐NH4+-­‐R2  (this  is  an  amine  salt,  which,  aCer  removing  a  water,  becomes,)  

R1-­‐CONH2-­‐R2  

The  -­‐CONH2-­‐  por-on  of  the  molecule  is  called  a  pep-de  linkage.  

 

Page 24: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

World Record 100 m – 9.58 s 101  s  

h]p://www.sciencekids.co.nz/sciencefacts/topten/fastestmanintheworld.html  

Who  is  the  fastest  man  in  the  world?  Currently  the  answer  is  Jamaican  sprinter  Usain  Bolt,  he’s  also  the  fastest  man  in  history  with  a  world  record  -me  of  9.58  seconds.  The  fastest  woman  is  history  is  Florence  Griffith-­‐Joyner  with  a  world  record  -me  of  10.49.  Take  a  look  at  the  other  fastest  people  ever,  what  countries  are  they  from?  Are  humans  ge�ng  faster?  

Page 25: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Blink of an Eye – 1 s 100  s  

h]p://www.madsci.org/posts/archives/1998-­‐11/911697403.Me.r.html  

The  average  -me  it  takes  for  a  complete  human  blink  is  about  300  to  400  milliseconds  or  3/10ths  to  4/10ths  of  a  second.  Of  course  this  is  an  average  only  and  can  differ  from  person  to  person.  Also,  there  are  other  factors  that  can  affect  blink  speed,  like  fa-gue,  medica-ons,  diseases,  and  injury  to  the  eye  area.  Most  factors  decrease  or  slow  the  blink  rate.  

Andrin  Caviezel,  ETH  Zurich  

Beaud  Group  

Page 26: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

The Speed of Thoughts – 300 ms 10-­‐1  s  

Current  Biology  1994,  Vol  4  No  12,  1125  

The  'speed  of  thought'  may  be  measured  in  a  number  of  ways  by  researchers  working  in  different  disciplines,  such  as  cogni-ve  psychologists  or  neuropsychologists.  Only  the  neurophysiologist,  however,  is  able  to  go  to  the  heart  of  the  ma]er  -­‐  the  speed  of  the  response  of  neurons.  Such  inves-ga-ons  provide  crucial  informa-on  for  all  those  working  on  how  the  brain  works,  as  it  allows  them  to  base  their  ideas  in  a  biologically  plausible  framework.  In  almost  all  studies  of  a  neuron's  response  to  a  s-mulus,  the  response  is  sampled  over  long  -me  periods,  usually  around  300  to  500  milliseconds  (ms).  Is  this  a  biologically  plausible  length  of  -me?  We  know  that  it  is  possible  to  recognize  and  respond  to  a  visual  s-mulus  within  400-­‐500  ms.  If  one  considers  that  at  least  half  of  this  -me  is  involved  in  the  genera-on  and  implementa-on  of  motor  commands,  then  the  total  amount  of  -me  available  for  processing  in  the  whole  visual  system  is  considerably  less  than  the  period  over  which  a  neuron's  response  is  conven-onally  measured.  A  number  of  recent  results  allow  es-ma-on  of  the  length  of  -me  each  neuron  must  be  ac-ve  to  mediate  visual  percep-on;  the  processing  -me  inferred  from  these  results  may  have  implica-ons  for  how  neuronal  responses  are  measured  and  how  these  responses  are  interpreted.  

Page 27: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Enzyme Triggered Reactions – 10 ms 10-­‐2  s  

h]p://www.eurekalert.org/pub_releases/2003-­‐05/uonc-­‐wec050503.php  

Without  enzyme  catalyst,  slowest  known  biological  reac-on  takes  1  trillion  years  

All  biological  reac-ons  within  human  cells  depend  on  enzymes.  Their  power  as  catalysts  enables  biological  reac-ons  to  occur  usually  in  milliseconds.  But  how  slowly  would  these  reac-ons  proceed  spontaneously,  in  the  absence  of  enzymes  -­‐  minutes,  hours,  days?  And  why  even  pose  the  ques-on?  One  scien-st  who  studies  these  issues  is  Dr.  Richard  Wolfenden,  Alumni  dis-nguished  professor  of  biochemistry  and  biophysics  and  chemistry  at  the  University  of  North  Carolina  at  Chapel  Hill  and  a  member  of  the  Na-onal  Academy  of  Sciences.  In  1998,  he  reported  a  biological  transforma-on  deemed  "absolutely  essen-al"  in  crea-ng  the  building  blocks  of  DNA  and  RNA  would  take  78  million  years  in  water.  

Page 28: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Protein Folding – us … h, mostly ms 10-­‐3  s  

h]p://en.wikipedia.org/wiki/Protein_folding  

Protein  folding  is  the  process  by  which  a  protein  structure  assumes  its  func-onal  shape  or  conforma-on.  It  is  the  physical  process  by  which  a  polypep-de  folds  into  its  characteris-c  and  func-onal  three-­‐dimensional  structure  from  random  coil.  Each  protein  exists  as  an  unfolded  polypep-de  or  random  coil  when  translated  from  a  sequence  of  mRNA  to  a  linear  chain  of  amino  acids.  This  polypep-de  lacks  any  stable  (long-­‐las-ng)  three-­‐dimensional  structure.  Amino  acids  interact  with  each  other  to  produce  a  well-­‐defined  three-­‐dimensional  structure,  the  folded  protein,  known  as  the  na-ve  state.  The  resul-ng  three-­‐dimensional  structure  is  determined  by  the  amino  acid  sequence.  

The  correct  three-­‐dimensional  structure  is  essen-al  to  func-on,  although  some  parts  of  func-onal  proteins  may  remain  unfolded.  Failure  to  fold  into  na-ve  structure  generally  produces  inac-ve  proteins,  but  in  some  instances  misfolded  proteins  have  modified  or  toxic  func-onality.  Several  neurodegenera-ve  and  other  diseases  are  believed  to  result  from  the  accumula-on  of  amyloid  fibrils  formed  by  misfolded  proteins.  Many  allergies  are  caused  by  incorrect  folding  of  some  proteins,  for  the  immune  system  does  not  produce  an-bodies  for  certain  protein  structures.  

Levinthal's  paradox  is  a  thought  experiment,  also  cons-tu-ng  a  self-­‐reference  in  the  theory  of  protein  folding.  In  1969,  Cyrus  Levinthal  noted  that,  because  of  the  very  large  number  of  degrees  of  freedom  in  an  unfolded  polypep-de  chain,  the  molecule  has  an  astronomical  number  of  possible  conforma-ons.  An  es-mate  of  3300  or  10143  was  made  in  one  of  his  papers.  The  Levinthal  paradox  observes  that  if  a  protein  were  folded  by  sequen-ally  sampling  of  all  possible  conforma-ons,  it  would  take  an  astronomical  amount  of  -me  to  do  so,  even  if  the  conforma-ons  were  sampled  at  a  rapid  rate  (on  the  nanosecond  or  picosecond  scale).  Based  upon  the  observa-on  that  proteins  fold  much  faster  than  this,  Levinthal  then  proposed  that  a  random  conforma-onal  search  does  not  occur,  and  the  protein  must,  therefore,  fold  through  a  series  of  meta-­‐stable  intermediate  states.  

Page 29: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Lightening Propagation– 100 us 10-­‐4  s  

Phys.  Rev.  Le].  108,  138104  (2012)  

One  way  that  animals,  including  humans,  locate  a  sound  source  is  by  detec-ng  slight  differences  in  the  arrival  -mes  of  sound  waves  to  the  leC  and  right  ears.  Animal  auditory  systems  are  capable  of  detec-ng  interaural  -me  differences  of  less  than  100  microseconds,  even  though  individual  neurons  respond  on  the  rela-vely  sluggish  -me  scale  of  milliseconds.  

Prof  Jean-­‐Pierre  Wolf,  Uni  Geneva  

Page 30: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Highest Audible Frequency – 50 us 10-­‐5  s  

h]p://hyperphysics.phy-­‐astr.gsu.edu/hbase/sound/earsens.html  

The  highest  frequency  audible  to  the  human  ear  is  20  kHz,  and  only  takes  50  microseconds.  

Page 31: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

A Ligand in a Protein 10-­‐6  s  The  movie  shows  the  unbinding  of  an  arylsulfonamide  ligand  from  a  pocket  inside  the  carbonic  anhydrase  II  (hCa  II)  protein—responsible  for  the  reversible  hydra-on  of  carbon  dioxide.  Overexpression  of  CA  has  been  associated  with  different  human  diseases,  such  as  osteoporosis  and  glaucoma.  A  number  of  clinically-­‐used  drugs  are  known  to  display  CA-­‐inhibitory  proper-es.  

Markus  Meuwly,  Uni  Basel  

Page 32: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Light Traveling a Distance of 100 m – 300 ns 10-­‐7  s  

h]p://en.wikipedia.org/wiki/Speed_of_light  

Compare  to  100m  world  record  men.    

Page 33: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Fluorescence Lifetime – 0.5 … 20 ns 10-­‐8  s  

h]p://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Electronic_Spectroscopy/Fluorescence  

Fluorescence,  a  type  of  luminescence,  occurs  in  gas,  liquid  or  solid  chemical  systems.  Fluorescence  is  brought  about  by  absorp-on  of  photons  in  the  singlet  ground  state  promoted  to  a  singlet  excited  state.  The  spin  of  the  electron  is  s-ll  paired  with  the  ground  state  electron,  unlike  phosphorescence.  As  the  excited  molecule  returns  to  ground  state,  it  involves  the  emission  of  a  photon  of  lower  energy,  which  corresponds  to  a  longer  wavelength,  than  the  absorbed  photon.  

Ursula  Röthlisberger,  EPFL  

Page 34: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Transistor Switching Time – 3 ns 10-­‐9  s  

h]p://www.intel.com/pressroom/kits/45nm/Intel45nmFunFacts_FINAL.pdf  

A  45nm  transistor  can  switch  on  and  off  approximately  300  billion  -mes  a  second.  A  beam  of  light  travels  less  than  a  tenth  of  an  inch  during  the  -me  it  takes  a  45nm  transistor  to  switch  on  and  off.  

 

Page 35: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Photodissociation of Molecules – 100 ps 10-­‐10  s  

h]p://www.chemphys.lu.se/old/kfresearch/rdynamics.html  

In  a  simplified  picture  we  can  visualize  the  photodissocia-on  as  follows:  A  short  femtosecond  laser  pulse  promotes  the  transi-on  to  a  repulsive  poten-al  surface  and  the  molecule  will  dissociate.  In  the  gas  phase,  the  story  more  or  less  ends  here.  It  is  not  likely  that  the  dissocia-ng  fragments  ever  will  encounter  each  other  again.  But  adding  solvent  molecules  around  the  run  away  fragments  the  story  con-nues.  Now,  it  is  possible  for  the  fragments  to  recombine  into  the  original  configura-on  i.e.  geminate  recombina-on.  The  surrounding  solvent  molecules  act  as  a  cage,  and  provide  the  -me  and  space  for  the  fragments  to  find  the  way  back  to  each  other.  And  also,  as  we  have  shown  for  several  halo  alkanes,  they  can  recombine  into  another  configura-on  by  in-­‐cage  isomerisa-on.  Of  course,  there  is  s-ll  the  possible  route  to  finite  dissocia-on  as  in  the  gas  phase  and  the  final  products  will  be  the  dissocia-ng  fragments.  The  solvent  is  not  only  a  sta-c  cage  that  keeps  the  molecule  together,  but  interacts  in  many  ways  with  the  fragments  on  the  course  of  events.  One  example  is  that  the  surrounding  solvent  will  act  as  a  heat  reservoir  for  energy  dissipa-on  since  the  excita-on  to  the  repulsive  state  provides  an  excess  of  energy.  To  what  extent  various  process  will  occur  is  a  delicate  interplay  between  solute-­‐solvent  interac-ons,  solvent  dynamics  and  the  poten-al  energy  surfaces  of  the  reac-on.  

The  movie  shows  the  photodissocia-on  of  a  sulfuric  acid  molecule.  It  illustrates  the  two  concepts  of  kine-cs  and  dynamics:  aCer  excita-on  by  a  light  quantum  the  molecule  shakes  and  ra]les  (“is  vibra-onally  excited”)  for  about  100  picoseconds  before  a  hydrogen  atom    from  one  OH  group  switches  bonds  and  a  water  molecule  detaches  within  tens  of  femtoseconds.  Kine-cs  is  governed  by  the  probability  for  the  last  step  to  occur,  while  dynamics  describes  the  mo-on  of  the  actual  detachment  process  and  is  thus  much  faster.  (<<<  men-on  rela-on  to  acid  rain  ?  >>>)  

 

Markus  Meuwly,  EPFL  

Page 36: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Molecular Rotation – 3…300 ps 10-­‐11  s  

h]p://mackenzie.chem.ox.ac.uk/teaching/Molecular%20Rota-onal%20Spectroscopy.pdf  

The  free  rota-on  of  a  rigid  object  with  no  forces  ac-ng  on  it  is  of  obvious  importance  in  chemistry.  It  is  also  a  very  complicated  problem.  In  simple  examples  the  angular  velocity  is  simple  to  interpret  and  remains  constant  throughout  the  rota-on.  This  is  true  of  a  rigid  object  rota-ng  about  one  of  its  principal  axes,  however  objects  rota-ng  about  an  axis  that  is  not  a  principal  axis  wobble  during  the  course  of  the  rota-on  (think  about  the  mo-on  of  a  rugby  ball  in  flight).  The  result  of  this  is  that  the  angular  velocity  is  not  constant  and  the  orienta-on  of  the  moment  of  iner-a  is  not  constant  either.  

However,  the  conserva-on  laws  ensure  that  two  quan--es  are  constant:  the  angular  momentum,  which  is  given  in  terms  of  the  iner-al  tensor  as  

 

Markus  Meuwly,  Uni  Basel  

Page 37: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Breaking and Forming of Hydrogen Bonds – 1 ps 10-­‐12  s  

h]p://www1.lsbu.ac.uk/water/hbond.html  

Polar  covalent  bonds  are  responsible  for  the  charged  regions  in  a  water  molecule.  Water  molecules  in  close  proximity  are  a]racted  to  the  oppositely  charged  regions  of  adjacent  molecules  to  form  hydrogen  bonds.  Every  water  molecule  can  form  hydrogen  bonds  with  mul-ple  partners  and  these  associa-ons  change  frequently.  

Peter  Hamm,  Uni  Zurich  

Page 38: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Cis/Trans Isomerization of Retinal – 200 fs 10-­‐13  s  

h]p://www.elmhurst.edu/~chm/vchembook/534photochemical.html  

Photochemical  events  in  vision  involve  the  protein  opsin  and  the  cis/trans  isomers  of  re-nal.  

Opsin  does  not  absorb  visible  light,  but  when  it  is  bonded  with  11-­‐cis-­‐re-nal  to  form  rhodopsin,  which  has  a  very  broad  absorp-on  band  in  the  visible  region  of  the  spectrum.  The  peak  of  the  absorp-on  is  around  500  nm,  which  matches  the  output  of  the  sun  closely.  

Upon  absorp-on  of  a  photon  of  light  in  the  visible  range,  cis-­‐re-nal  can  isomerize  to  all-­‐trans-­‐re-nal.  The  shape  of  the  molecule  changes  as  a  result  of  this  isomeriza-on.  The  molecule  changes  from  an  overall  bent  structure  to  one  that  is  more  or  less  linear.  All  of  this  is  the  result  of  trigonal  planar  bonding  (120  o  bond  angles)  about  the  double  bonds.  

Ursula  Röthlisberger,  EPFL  

Page 39: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Molecular Vibration – 8 fs … 1 ps 10-­‐14  s  

h]p://en.wikipedia.org/wiki/Molecular_vibra-on  

h]p://www.fuw.edu.pl/~krp/papers/vib_spli�ng_prl.pdf  

A  molecular  vibra-on  occurs  when  atoms  in  a  molecule  are  in  periodic  mo-on  while  the  molecule  as  a  whole  has  constant  transla-onal  and  rota-onal  mo-on.  The  frequency  of  the  periodic  mo-on  is  known  as  a  vibra-on  frequency,  and  the  typical  frequencies  of  molecular  vibra-ons  range  from  less  than  1012  to  approximately  1014  Hz.  

Fundamental  vibra-on  of  H2:  4161  cm-­‐1  -­‐>  T  =  8.02  fs    

Page 40: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Oscillation Period of Visible Light – 1.3 … 2.5 fs 10-­‐15  s  

h]p://www.mc2.chalmers.se/pl/lc/engelska/tutorial/light.html  

Visible  light:  400  nm  …  750  nm  -­‐>  1.33  fs  …  2.50  fs  

Page 41: Power of Ten - NCCR MUST :: NCCR MUST1018s Formation of Structures in the Universe – 13.8 Ga zBox supercomputer simulation, UZH zbox supercomputer simulation, UZH (Rok Roskar, Romain

Electron Dynamics – 100 as 10-­‐16  s  

h]p://newscenter.lbl.gov/news-­‐releases/2010/08/04/electrons-­‐moving/  

h]p://www.rsc.org/chemistryworld/News/2010/June/09061002.asp  

Exploi-ng  the  a]osecond  light  source  technology  to  inves-gate  extremely  rapid  electron  dynamics  in  atomic  and  molecular  systems.  The  electronic  mo-on  in  atoms  and  molecules  occurs  on  a  very  fast  -mescale:  the  Bohr  orbit  of  the  ground  state  electron  in  the  hydrogen  atom  corresponds  to  150  a]oseconds.