power system analysis lab 5

Upload: divante

Post on 05-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Power System Analysis Lab 5

    1/13

    David Mubayiwa12596724

    Power System Analysis

    (301/603) Name:  David Mubayiwa

    Student number: 12596724

    Title of the e!eriment: "ault #evel $al%ulation& '&in(

    )MTD$*+S$,D

    #aboratory (rou!: Monday 1-:../15:..

    #aboratory &u!ervi&or: 

    #aboratory !artner&: 0ia& handari

    Date !erformed:  13th May 2.15

    Due date: 26th

     May 2.15

    Date &ubmitted: 26th May 2.15

     I hereby declare that this report is entirely my own work and has not been copied from any

    other student or past student.  Font: Times New Roman 12 Italic

    Student &i(nature: //////////////////////////////////////////////////////////

  • 8/16/2019 Power System Analysis Lab 5

    2/13

    David Mubayiwa12596724

    Introduction This experiment is about to investiate how to use a commercia! so"tware

    proram to ca!cu!ate "au!t !eve!s and extended app!ications#

    #

    $ims and %b&ectives

     The aim o" this !aboratory was to demonstrate student how to use o"

    '()$D so"tware proram to ca!cu!ate "au!t !eve!s and extended

    app!ications#

  • 8/16/2019 Power System Analysis Lab 5

    3/13

    David Mubayiwa12596724

    $pparatus '()$D so"tware

    'rinter

    Method1# *sin the system data iven in Tab!e 1 and the impedance diarams

    shown in +iures 2,4- compute the positive- neative and .ero se/uence 0,

    bus matrices#

    2# Invert the 0,bus matrices to obtain the ,bus matrices and the Thevenin

    impedances "or each bus#

    # 3un the '()$D proram#

    4# )hoose the "au!t !ocation- type- start time and duration as per theinstructor iven va!ues#

    5# )a!cu!ate the rms "au!t current se/uence components#

     Theory and )ircuits

    Figure 1 4-bus power system

    Table 1 4 Bus System Data

  • 8/16/2019 Power System Analysis Lab 5

    4/13

    David Mubayiwa12596724

    Figure 2 Positive Sequence Diagram

    Figure 3 egative Sequence Diagram

    Figure 4 !ero Sequence Diagram

  • 8/16/2019 Power System Analysis Lab 5

    5/13

    David Mubayiwa12596724

    Figure " Fault location# $ault type# $ault start time an% $ault %uration selectors in PS&'D

    3esu!ts

    o +au!t 3esu!ts

    Figure ( o Fault &urrent 

    Figure ) o Fault *oltages

  • 8/16/2019 Power System Analysis Lab 5

    6/13

    David Mubayiwa12596724

    'hase $ to round 3esu!ts

    Figure + P,ase ' to roun% &urrent 

    Figure . P,ase ' to roun% *oltages

    'hase $ to round 3esu!ts

    Figure 1/ P,ase 'B to roun% &urrent 

  • 8/16/2019 Power System Analysis Lab 5

    7/13

    David Mubayiwa12596724

    Figure 11 P,ase 'B to roun% *oltage

    'hase $) to round

    Figure 12 P,ase 'B& to roun% &urrents

    Figure 13 P,ase 'B& to roun% *oltages

    'hase $ 3esu!ts

  • 8/16/2019 Power System Analysis Lab 5

    8/13

    David Mubayiwa12596724

    Figure 14 P,ase 'B &urrents

    Figure 1" P,ase 'B *oltages

    'hase $) 3esu!ts

    Figure 1( P,ase 'B& &urrents

  • 8/16/2019 Power System Analysis Lab 5

    9/13

    David Mubayiwa12596724

    Figure 1) P,ase 'B& *oltages

    Discussion,%%ordin( to the data li&ted in lab &heet when bu& - i& fault we %an obtain:

    Z TH (1)=Z TH (2)= j0.15 pu

    Z TH (0)= j 0.1 pu

    "or &in(le line to (round fault

     I a1= I a2= I a0=  Ea

    Z TH (1 )+Z TH  (2 )+Z TH  (0 )=

      1

     j (0.15+0.15+0.1)=− j 2.5 pu

    [

     I a I b

     I c

    ]=

    [

    1 1 1

    1   a2

    a

    1  a a

    2

    ] [

     I a 0 I a 1

     I a 2

    ]=

    [

    1 1 1

    1   a2

    a

    1  a a

    2

    ].

    [

    − j 2.5− j 2.5

    − j2.5

    ]=

    [

    − j 7.50

    0

      ] pu

  • 8/16/2019 Power System Analysis Lab 5

    10/13

    David Mubayiwa12596724

    V a 0V a 1V a 2

    =[0

    1

    0]−[

     j 0.1 0 0

    0   j 0.15 0

    0 0   j 0.15]  I a 0 I a 1 I a 2

    =[ −0.25

    0.625

    −0.375] puSo

    V agV bgV cg

    =[1 1 1

    1   a2

    a

    1   a a2][−0.250.6250.375 ]=[

      0

    0.944∠−113.4 °0.944∠113.4 ° ] pu

    "or double line to (round fault

     I a1= Ea

    Z TH  (1 )+Z TH  (2) ∙ Z TH ( 0 )

    Z TH  (2 )+Z TH  (0 )

    =  1

     j 0.15+ j 0.015

     j0.25

    =− j 4.76 pu

    V a1=V a2=V a0=V a

    3= Ea− I a1 ∙ Z TH (1)=1−(− j4.76) ( j 0.15 )=0.286 pu

     I a 0=−V a 0

    Z TH  (0 )= j 2.86 pu I a2=

    −V a 2

    Z TH  (2 )=

    0.286

     j 0.15= j 1.9 pu

    [ I a I b I c ]=

    [1 1 1

    1   a2

    a

    1   a a2] [

     I a 0 I a 1 I a 2]

    =

    [1 1 1

    1   a2

    a

    1   a a2]

    .

    [  j

    2.857

    − j 4.762

     j 1.905 ]=

    [  0

    7.190∠−143.4 °

    7.190∠36.6 ° ] pu

    V agV bgV cg

    =[1 1 1

    1   a2

    a

    1   a a2] .

    V a 0V a 1V a 2

    =[1 1 1

    1   a2

    a

    1   a a2] .[0.2860.2860.286]=[

    0.858

    0

    0 ] pu

    "or line to line fault

  • 8/16/2019 Power System Analysis Lab 5

    11/13

    David Mubayiwa12596724

     I a1=  Ea

    Z th1 +Z th

    2 =

      1

     j 0.15+ j 0.15=− j 3.333 pu

     I a 0=0 I a 2=− I a 1= j 3.33 pu 

    [ I a I b I c

    ]=[1 1 1

    1   a2

    a

    1   a a2] [

     I a 0 I a 1 I a 2

    ]=[1 1 1

    1   a2

    a

    1   a a2] [   0−3.333.33 ]=[

      0

    −5.775.77

     ] pu

    V a0V a1

    V a2

    =[0

    1

    0]−[

     j 0.1 0 0

    0   j0.15 0

    0 0   j 0.15]  I a0 I a1

     I a2

    =[  0

    0.5005

    0.4995] pu

    ,nd

    V agV bgV cg

    =[1 1 1

    1   a2

    a

    1   a a2][   00.50050.4995 ]=[

      1

    −0.5

    −0.5] pu

    n thi& e!erien%e the fault analy&i& i& analy&ed by +S$,D &oftware in numeri%al analy&i&

    a!!lied to !ower &y&tem8 +S$,D &how& the waveform& for variou& level& of fault ty!e in a

    &u((e&ted bu& and !ha&e8 Different fault ty!e !rodu%e different waveform&8

    Q1

    The %al%ulated re&ult& &how that the mo&t &evere fault ty!e i& the &in(le line to (round fault8

    The %urrent throu(h !ha&e , i& 785!u whi%h i& 19869, %om!arin( to other two ty!e& of

    fault& line to line fault and double line to (round fault8

    Q2

  • 8/16/2019 Power System Analysis Lab 5

    12/13

    David Mubayiwa12596724

    f  for &in(le line to (round fault i& 785!u8

    f  for line to line fault i& 7819!u8

    f  for double line to (round fault i& .835!u8

    Q3

     I a1=  Ea

    Z TH (1)+Z TH  (0 )∥Z TH  (2 )

     I a 0=−V a 0

    Z TH  (0 )

     I a

    2= −V a2

    Z TH  (2 )

    Z TH  (1 )=Z TH  (1 )∥Z 441= j 0.15 ∥( j 0.4 × 10050 + j 0.12)= j 0.1289

    Z TH  (2 )=Z TH  (1 )∥ Z 442= j 0.15 ∥( j 0.45× 10050 + j 0.12)= j 0.132

    Z TH  (0 )= j 0.07

    V a1=V a2=V a0= Ea− I a1×Z TH (1 )=0.259 pu

    { I a 1=− j 5.7

     I a 2= j 2

     I a 0= j 3.71

    Thu&

    [ I a I b I c

    ]=[1 1 1

    1   a2

    a

    1   a a2] [

     I a 0 I a 1 I a 2

    ]=1 1 1

    1   a2

    a

    1   a a2[

      j 3.71

    − j 5.7

     j 2 ]=[  0

    8.7∠140.28 °

    8.7∠39.72° ] pu

    [V agV bgV cg

    ]=[1 1 1

    1   a2

    a

    1   a a2] .[

    V a 0V a 1V a 2

    ]=[1 1 1

    1   a2

    a

    1   a a2] .[0.2590.2590.259]=[

    0.778

    0

    0 ] pu

  • 8/16/2019 Power System Analysis Lab 5

    13/13

    David Mubayiwa12596724

    )onc!usions To conc!ude- the "au!t ana!ysis is an important too! app!ied to power

    system by comparin the vo!tae and current wave"orm when the

    dierence "au!ts happened at dierence bus# (tudents in this experiment

    ana!yse the power 8ow and ca!cu!ate "au!t by usin '()$D proram- thusthis !aboratory is success"u!#