power system frequency support of wind turbines with

22
Power System Frequency Support of Wind Turbines with Virtual Synchronous Machine Control Liang Lu PhD student Centrale Nantes, Nantes, France 29-10-2019

Upload: others

Post on 03-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Power System Frequency Support of Wind Turbineswith Virtual Synchronous Machine Control

Liang LuPhD student

Centrale Nantes, Nantes, France29-10-2019

Power System Frequency Stability

/ 222

Three-phase Alternating Current (AC) Power System

Synchronous Generator

Power System Frequency Stability

/ 223

WT

Three-phase Alternating Current (AC) Power System

Synchronous Generator

Power System Frequency Stability

/ 224

π‘ƒπ‘ƒπ‘šπ‘š

π‘ƒπ‘ƒπ‘šπ‘š

πœ”πœ”

πœ”πœ”

π‘ƒπ‘ƒπ‘šπ‘š βˆ’ π‘ƒπ‘ƒπ‘œπ‘œ = π½π½πœ”πœ”π‘‘π‘‘πœ”πœ”π‘‘π‘‘π‘‘π‘‘

Type-4 wind turbine

Power System Frequency StabilityVirtual Synchronous Machine (VSM) Control

/ 225

β€’ A control scheme for a converter to enable renewable power sources to behave as a synchronous machine (SM) by adding the model and control of an SM within the control scheme;

π‘ƒπ‘ƒπ‘šπ‘š

π‘ƒπ‘ƒπ‘šπ‘š

πœ”πœ”

πœ”πœ”

π‘ƒπ‘ƒπ‘šπ‘š βˆ’ π‘ƒπ‘ƒπ‘œπ‘œ = π½π½πœ”πœ”π‘‘π‘‘πœ”πœ”π‘‘π‘‘π‘‘π‘‘

Type-4 wind turbine

Prabha Kundur, Neal J. Balu and Mark G. Lauby. Power system stability and control. Vol. 7. New York: McGraw-Hill, 1994.

Synchronous Generator (SG) Model and Control

/ 226

βˆ†οΏ½Μ‡οΏ½πœ”βˆ†οΏ½Μ‡οΏ½π›Ώβˆ†Ξ¨Μ‡π‘“π‘“π‘“π‘“βˆ†Ξ¨Μ‡1π‘“π‘“βˆ†Ξ¨Μ‡1π‘žπ‘žβˆ†Ξ¨Μ‡2π‘žπ‘ž

=

π‘Žπ‘Ž11π‘Žπ‘Ž21

0000

π‘Žπ‘Ž120π‘Žπ‘Ž32π‘Žπ‘Ž42π‘Žπ‘Ž52π‘Žπ‘Ž62

π‘Žπ‘Ž130π‘Žπ‘Ž33π‘Žπ‘Ž43π‘Žπ‘Ž53π‘Žπ‘Ž63

π‘Žπ‘Ž140π‘Žπ‘Ž34π‘Žπ‘Ž44π‘Žπ‘Ž54π‘Žπ‘Ž64

π‘Žπ‘Ž150π‘Žπ‘Ž35π‘Žπ‘Ž45π‘Žπ‘Ž55π‘Žπ‘Ž65

π‘Žπ‘Ž160π‘Žπ‘Ž36π‘Žπ‘Ž46π‘Žπ‘Ž56π‘Žπ‘Ž66

βˆ†πœ”πœ”βˆ†π›Ώπ›Ώβˆ†Ξ¨π‘“π‘“π‘“π‘“βˆ†Ξ¨1π‘“π‘“βˆ†Ξ¨1π‘žπ‘žβˆ†Ξ¨2π‘žπ‘ž

+

𝑏𝑏1100000

00𝑏𝑏32000

βˆ†π‘‡π‘‡π‘šπ‘šβˆ†πΈπΈπ‘“π‘“π‘“π‘“

Motivation 1

/ 227

Qualified simplicity

WT application

Frequency controlSG Model

Swing equation

Governor

ExciterStator windings

Field circuit

Proposed VSM Control

/ 228

Yong Chen et al. Comparison of methods for implementing virtual synchronous machine on inverters. International conference on renewable energies and power quality. 2012.

Salvatore D’Arco et al. Small-signal modeling and parametric sensitivity of a virtual synchronous machine. Power Systems Computation Conference. IEEE, 2014.

More Complex VSM Control

/ 229

Modelling & Simulation

/ 2210

25%, 50%, 75%, 100%

10 π‘˜π‘˜π‘˜π‘˜

1 𝑃𝑃,𝑄𝑄,𝑉𝑉, 𝑓𝑓

2 Simulation time

Grid-side converter

Results

/ 2211

Results

/ 2212

Proposed: 321 s

Complex: 495 s

Conclusions 1

/ 2213

β€’ A simpler but qualified VSM control scheme is proposed for frequency control;

β€’ The proposed VSM control scheme is adapted for WT application;

β€’ To achieve VSM control for frequency control capability of WTs, to emulate the swing equation and governor is enough;

β€’ Including the modeling of exciter and stator windings does not improve much, while increasing dynamics of voltage;

β€’ Including the modeling of field circuit will make things more complex, not necessary;

β€’ The proposed VSM control scheme works better in voltage control;

Motivation 2

/ 2214https://orbit.dtu.dk/en/activities/a-virtual-synchronous-machine-control-scheme-for-wind-turbines(4cdc26fd-1829-4c00-af62-5775529c73f3).html

The VSM Control Scheme for WTs Power Angle Small Signal Stability

β€’ Focusing on the power loop while idealizing inner voltage and current loops;

β€’ State space representation and block diagram of an inverter connected to an infinite bus;

β€’ Influence of parameters on the stability by analyzing eigenvalue trajectories;

Power Angle Small Signal Stability (PAS) Model

/ 2215

1 12 2 2 2

0 0 01 1 00

s

n m

dr dr

g r g

KDH H H Hd T

dtT T

T D T

Ο‰ ωδ Ο‰ Ξ΄

βˆ’ βˆ’ βˆ’ βˆ† βˆ† βˆ† = βˆ† + βˆ† βˆ† βˆ† βˆ’

0cosbs

E EKX

Ξ΄β€²

=

Verification

/ 2216

Grid-side converter Voltage source

β€’ 𝑑𝑑 = 1𝑠𝑠, π‘‡π‘‡π‘šπ‘š is dropped by 0.5 pu, or π‘ƒπ‘ƒπ‘šπ‘šis dropped by 5 π‘˜π‘˜π‘˜π‘˜

Parameter Design – Inertia Constant 𝑯𝑯

/ 2217

β€’ 0.1 ~ 0.5;

β€’ Little influence on πœ†πœ†3;

β€’ Stability margin reduced by increasing 𝐻𝐻;

β€’ A larger 𝐻𝐻 is better for inertia response;

β€’ A compromise;

β€’ Exact value also depends on grid code requirements and converter rating;

πœ†πœ†1

πœ†πœ†2

πœ†πœ†3

Parameter Design – Damping Coefficient 𝑫𝑫

/ 2218

β€’ 10~53: stable, 54~100: unstable;

β€’ Little influence on πœ†πœ†3;

β€’ Stability margin improved by increasing 𝐷𝐷in the stable range;

β€’ Positive effects of a smaller 𝐷𝐷;

β€’ A trade-off;

πœ†πœ†1

πœ†πœ†2πœ†πœ†3

Parameter Design – Droop 𝑫𝑫𝒓𝒓

/ 2219

β€’ 1% ~ 100%;

β€’ Much influence on πœ†πœ†3;

β€’ Stability improved by increasing π·π·π‘Ÿπ‘Ÿ;

β€’ Constraint and most likely determined by grid code requirements, converter rating and capacity of energy storage;

πœ†πœ†1

πœ†πœ†2

πœ†πœ†3

Parameter Design – Response Time π‘»π‘»π’ˆπ’ˆ

/ 2220

β€’ 0.01 ~ 10;

β€’ Much influence on πœ†πœ†3;

β€’ Stability is worse when increasing 𝑇𝑇𝑔𝑔;

πœ†πœ†3πœ†πœ†1

πœ†πœ†2

Conclusions 2 & Future Work

/ 2221

β€’ Power angle small signal stability (PAS) is proposed as a simpler way of analyzing the small signal stability of VSM-controlled grid-forming inverters;

β€’ Helpful for analyzing the rotor angle small signal stability of a big power system with large share of converter-interfaced renewable power sources;

β€’ A larger inertia constant 𝐻𝐻 or damping coefficient 𝐷𝐷 reduces the stability margin, but enhances the inertial response and frequency control capability;

β€’ A larger droop π·π·π‘Ÿπ‘Ÿ or a smaller response time 𝑇𝑇𝑔𝑔 helps improving the stability;

Overall and systematic design of all parameters simultaneously considering practical constraints;

What is the optimal or acceptable power response from a non-synchronous power source for fast frequency regulation?

Thank you !

Liang [email protected]

This work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 727680 (TotalControl).

This work has also received funding from project PowerKey (EUDP Project No. 12558).