power system harmonicsfeca.com/harmonics.pdfpower system harmonics tuesday, june 11, 2013 8:30am –...

39
Power System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM Florida Electric Cooperatives Association Sand Pearl Resort Clearwater, Florida Ralph Fehr, Ph.D., P.E. Senior Member, IEEE [email protected] Topics Fundamentals of Harmonics Causes of Harmonics Effects of Harmonics Power Factor Harmonic Mitigation Techniques IEEE/FECA Harmonics Seminar Jun. 2013 Ralph Fehr, Ph.D., P.E. 2

Upload: buithuy

Post on 23-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Power System Harmonics

Tuesday, June 11, 20138:30AM – 12:30PM 

Florida Electric Cooperatives AssociationSand Pearl ResortClearwater, Florida

Ralph Fehr, Ph.D., P.E.Senior Member, IEEE

[email protected]

Topics

Fundamentals of Harmonics

Causes of Harmonics

Effects of Harmonics

Power Factor

Harmonic Mitigation Techniques

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      2

Page 2: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      3

Fundamentals of Harmonics

Jean Baptiste Joseph Fourier1768‐1830

Any  periodic  waveform  W ( t )can be  represented by a  series of  sinusoidal  waveforms  with frequencies of integer multiples of the periodic waveform.

)(sin)(cos2

)(1

0 ntbntaa

tW nn

n

The coefficients are

0,)(cos)(1

ndtnttWan

1,)(sin)(1

ndtnttWbn

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      4

Page 3: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

The coefficients an and bn are of most interest.

How do we go about finding them?

)(sin)(cos2

)(1

0 ntbntaa

tW nn

n

0,)(cos)(1

ndtnttWan

1,)(sin)(

1

ndtnttWbn

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      5

Fundamentals of Harmonics

Analytically:

Empirically:

http://www.integral-calculator.com/#

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      6

Page 4: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Power system harmonics typically have half‐wave symmetry.

Half‐wave rectification destroys this symmetry.

With  half‐wave  symmetry,  a0 =  0  and  only  odd‐ordered harmonics are present.

Let’s play with some harmonics!

)(sin)(cos2

)(1

0 ntbntaa

tW nn

n

0,)(cos)(1

ndtnttWan

1,)(sin)(

1

ndtnttWbn

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      7

Fundamentals of Harmonics

For a square wave,

1 12

122sin4)(

nsquare k

tfktW

...10sin

5

16sin

3

12sin

4tftftf

first term first two terms first three terms

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      8

Page 5: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Start with a complex waveform

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      9

Fundamentals of Harmonics

Superimpose the first harmonic (fundamental frequency)

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      10

Page 6: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Add the third harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      11

Fundamentals of Harmonics

Add the fifth harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      12

Page 7: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Add the seventh harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      13

Fundamentals of Harmonics

Add the ninth harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      14

Page 8: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Add the eleventh harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      15

Fundamentals of Harmonics

Change your perspective a bit

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      16

Page 9: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Separate the harmonics

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      17

Fundamentals of Harmonics

Measure the amplitude of each harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      18

Page 10: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

The harmonic amplitude spectrum representsthe Fourier transform of the original waveform

1 3 5 7 9 11

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      19

Fundamentals of Harmonics

Harmonic spectrum (frequency domain)

Original waveform (time domain)

1 3 5 7 9 11

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      20

Page 11: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Fundamentals of Harmonics

Relationship  between  harmonic  voltages  and harmonic currents:

Vharmonic = (Iharmonic) (Zsystem)

Weak  systems  (with high Zsystem) will have greater voltage  distortion  than  stiff  systems  (with  low Zsystem).

So voltage distortion may be acceptable when on the utility system, but becomes problematic when running off a diesel generator.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      21

Causes of Harmonics

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      22

Page 12: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Causes of Harmonics

Harmonics are the result of non‐linear loads.

A purely  resistive  load  is  linear,  since  the  graph of voltage versus current is a straight line.

V

I

slope = resistance (R)I V

+

_

R

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      23

Causes of Harmonics

Transformer iron has a non‐linear  hysteresis characteristic.

The  sinusoidal  flux results  in  a  distorted excitation current.

Transformer excitation current  is  rich  in  third harmonic,  and  also contains  some  second harmonic.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      24

Page 13: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Causes of Harmonics

But  most  harmonics  come  from  loads  such  as induction and arc furnaces, and power electronics.

Power  electronics  are  the  biggest  culprit  when  it comes  to  producing  harmonics.    Static  VAR compensators, variable‐frequency motor drives, and switching power supplies are the greatest concern.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      25

Causes of Harmonics

Rectifiers  are  essentially  harmonic  current generators.   The number of pulses of  the  rectifier determine  the  harmonic  orders  that  will  be dominant.

6‐Pulse RectifierDominate harmonics: 5th and 7th

12‐Pulse RectifierDominate harmonics: 11th and 13th

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      26

Page 14: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Causes of Harmonics

Variable‐frequency drives can be a major source of harmonics.   Proper DC  link design  and  good filtering help mitigate harmonics.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      27

Effects of Harmonics

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      28

Page 15: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics

Conductor Overheating

Increases as  the square of  the  rms current per unit volume  of  the  conductor.  Harmonic  currents  are subject  to  “skin  effect”,  which  increases  with frequency  and  effectively  reduces  the  conductor cross‐sectional area.

Skin Effect

Direct Current High FrequencyLow Frequency

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      29

Effects of Harmonics

The  skin depth  () of a  conductor  is defined as  the boundary  of  the  region  below  the  surface  of  the conductor that contains 63% of the charge carriers.

Skin Depth

63.0e

11

63% of thechargecarriers

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      30

Page 16: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics

Skin depth of a cylindrical conductor is given by

Skin Depth

f

s

where

= resistivity of conductor in ‐mf = frequency in hertz = permeability of free space (4 10‐7 H/m)

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      31

Skin Depth Example

Find the skin depth of copper and aluminum at 60 Hz and at 180 Hz.  (Cu = 1.72  10‐8 ‐m and Al = 2.82  10‐8 ‐m)

in335.0cm852.010460

1072.17

8

60Cu

in194.0cm492.0104180

1072.17

8

180Cu

in430.0cm091.110460

1082.27

8

60Al

in248.0cm630.0104180

1082.27

8

180Al

42% decreasefrom fundamentalto 3rd harmonic

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      32

Page 17: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of HarmonicsElectronic Device Misoperation

Various  electronic  circuits  can  misoperate due  to multiple zero crossings of the voltage waveform.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      33

Effects of Harmonics

Capacitor Bank Problems

Increased heating  in  the  capacitor units  can  lead to reduced life.

Resonance  can  be  a  concern  if  the  capacitor  is tuned near a critical harmonic.  Resonance causes overvoltage which can lead to dielectric failure.

Capacitor  banks  can  be  used  to  mitigate  the effects  of  harmonics  by  being  configured  as  a harmonic filter.  More on this later...

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      34

Page 18: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics

Protection Problems

Harmonics  can  cause  nuisance  tripping  of  circuit breakers,  and  fuses  to  blow  for  no  apparent reason.

Since  harmonic  levels  at  a  particular  location  of the power system can vary significantly  from one moment  to  the next, protection problems due  to harmonics can be very difficult to diagnose.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      35

Effects of Harmonics

Transformer Overheating

Like  conductors,  harmonics  cause  transformer windings  to experience additional heating due  to skin effect.

Additional  core  heating  also  occurs  due  to increased eddy currents and stray flux losses.

For these reasons, k‐factor transformers should be used with non‐linear loads.  More on this later...

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      36

Page 19: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics

Motor Overheating

Motors  experience  the  same  types  of  problems due to harmonics as transformers.

Additionally,  motors  can  also  overheat  due  to unbalanced voltages due to waveform distortion.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      37

Effects of Harmonics

Metering Errors

Metering  devices  can  improperly  measure electrical quantities due to harmonic distortion.

Pure Sinusoid Highly‐distorted Sinusoid

2

II peakrms

22

II peakrms 50% difference

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      38

Page 20: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of HarmonicsWhat does “rms” mean?

Root‐mean‐square  (rms)  averaging  is  done  with AC waveforms to express an effective DC value.

I V

+

_

R

If 1A DC is passed through a resistor of resistance R, the power dissipated is (1)2 R = R watts.

What  AC  current must  the  resistor  carry  to  dissipate the same power?

)usoidsinpureif(2

AA1 peak

rms

Average

SomethingElse

Peak

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      39

Effects of Harmonics

Root‐mean‐square Calculation

dt)t(iTT

1I

2

1

T

T

2

12

rms

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      40

Page 21: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics

Metering

Inexpensive meters sense the peak of a waveform, then adjust it to “rms” by scaling by       .

This is fine if the waveform is close to sinusoidal.

Distortion can cause significant error.

“True  rms” meters  sample  the  waveform, calculate  the  rms value,  and  display  accurate results regardless of the level of distortion.

2

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      41

Effects of Harmonics“True rms” Metering

0.0‐2.3‐7.8‐0.19.418.626.243.762.158.361.570.771.482.188.683.576.172.877.683.3

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      42

91.498.195.594.793.194.795.598.191.483.377.672.876.183.588.682.171.470.761.558.3

62.143.726.218.69.4‐0.1‐7.8‐2.3‐1.8‐0.3‐0.10.12.37.80.1‐9.4

‐18.6‐26.2‐43.7‐62.1

‐58.3‐61.5‐70.7‐71.4‐82.1‐88.6‐83.5‐76.1‐72.8‐77.6‐83.3‐91.4‐98.1‐95.5‐94.7‐93.1‐94.7‐95.5‐98.1‐91.4

‐83.3‐77.6‐72.8‐76.1‐83.5‐88.6‐82.1‐71.4‐70.7‐61.5‐58.3‐62.1‐43.7‐26.2‐18.6‐9.40.17.82.30.0

Page 22: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Effects of Harmonics“True rms” Metering

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      43

0.0‐2.3‐7.8‐0.19.4

18.626.243.762.158.361.570.771.482.188.683.576.172.877.683.3

91.498.195.594.793.194.795.598.191.483.377.672.876.183.588.682.171.470.761.558.3

62.143.726.218.69.4‐0.1‐7.8‐2.3‐1.8‐0.3‐0.10.12.37.80.1‐9.4

‐18.6‐26.2‐43.7‐62.1

‐58.3‐61.5‐70.7‐71.4‐82.1‐88.6‐83.5‐76.1‐72.8‐77.6‐83.3‐91.4‐98.1‐95.5‐94.7‐93.1‐94.7‐95.5‐98.1‐91.4

‐83.3‐77.6‐72.8‐76.1‐83.5‐88.6‐82.1‐71.4‐70.7‐61.5‐58.3‐62.1‐43.7‐26.2‐18.6‐9.40.17.82.30.0

2222222222rms 3.581.627.432.266.184.9)1.0()8.7()3.2(0.0

10

1i

~

2222222222 3.836.778.721.765.836.881.824.717.705.61

~~

2222222222 3.834.911.985.957.941.937.945.951.984.91

~~

2222222222 3.585.617.704.711.826.885.831.768.726.77

~~2222222222 )3.0()8.1()3.2()8.7()1.0(4.96.182.267.431.62

~~

2222222222 )1.62()7.43()2.26()6.18()4.9(1.08.73.21.0)1.0(

~~

2222222222 )6.77()8.72()1.76()5.83()6.88()1.82()4.71()7.70()5.61()3.58(

~~

2222222222 )4.91()1.98()5.95()7.94()1.93()7.94()5.95()1.98()4.91()3.83(

~~

2222222222 )5.61()7.70()4.71()1.82()6.88()5.83()1.76()8.72()6.77()3.83(

~~

2222222222 0.03.28.71.0)4.9()6.18()2.26()7.43()1.62()3.58(

~ = 63.7 Arms

A4.692

ipeak

Power Factor

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      44

Page 23: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

AC Power

v(t) = Vm cos (t + v) i(t) = Im cos (t + i)

= Vm Im cos (t + v) cos (t + i)

s(t) = (Vm Im)/2 [cos (v i) + cos (2ωt + v + i)]

s(t) = v(t) x i(t)

coscos2

1coscos

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      45

AC Power

s(t) = (Vm Im)/2 [cos (v i) + cos (2ωt + v + i)]

ivvivmm t2coscos2

I

2

V)t(s

ivvivvivrmsrms sint2sincost2coscosIV)t(s

2ωt + v + i = 2(ωt + v) – (v – i)

cos ( – ) = cos cos + sin sin

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      46

Page 24: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

AC Power

ivvivvivrmsrms sint2sincost2coscosIV)t(s

Constant component of real power

Oscillating component of real power

Reactive power

s(t) = P + P cos [2(t + v)] + Q sin [2(t + v)]

Let P = Vrms Irms cos (v – i)and Q = Vrms Irms sin (v – i)

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      47

AC PowerAC Power

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      48

Page 25: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

AC Power

s(t) = P + P cos [2(t + v)] + Q sin [2(t + v)]

P = Vrms Irms cos (v – i)

Q = Vrms Irms sin (v – i)

= Vrms Irms [cos (v – i) + j sin (v – i)]S = P + j Q

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      49

P = P + P cos [2(t + v)]

Q = Q sin [2(t + v)]

AC Power

= Vrms Irms [cos (v – i) + j sin (v – i)]

jesinjcos

= Vrms Irms ej(v) e j(– i)

= Vrms v Irms –i

S = P + j Q

S = V I*

S = Vrms Irms ej(v – i)

S = Vrms ej(v) Irms ej(– i)

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      50

Complex Conjugate

Page 26: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Power Triangle

Total or Apparent PowerS

kVA

Real PowerPkW

Reactive PowerQ

kVAR

cos Power Factor

This is the only “useful” work done.

This component of the power furnishes  the energy  required to  establish  and  maintain electric and magnetic fields.

Our  electrical  system  must handle this component.

THEREFORE,  VARS  REDUCE THE  “USEFULNESS” OF  THE TOTAL ELECTRIC POWER.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      51

Not quite...

Power Factor

cos is called “displacement power factor” because it is due to the displacement between the voltage and current phasors

complexplane

voltage

current

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      52

watts

vars

Q

S

P

Page 27: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Power Factor

Just  like  the  current  being  out  of  phase  from  the voltage  reduces  the  “usefulness” of  the  power, distortion  of  the  current  waveform  has  a  similar effect.

This  is  because  a  harmonic  current times  a fundamental  frequency  voltage produces  zero  real power (watts).

Distortion of Current Waveform

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      53

Effects of HarmonicsHarmonic Power

Alex McEachern’sPower Quality Teaching Toy

http://www.powerstandards.com/PQTeachingToyIndex.php

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      54

Page 28: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Power Factor

watts

vars

distortion

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      55

complex plane

Total Effective Power

NOT this

Power Factor

Distortion power factor

rms,effective

rms,lfundamenta

distortionI

Ipf

1n

2

neffective II

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      56

Page 29: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Distortion Power Factor Example

A power quality analysis revealed the following current components:

%74.969674.0A399

A386pfdistortion

A39948121627425066386I 222222222effective

I1 = 386 AI3 = 66 AI5 = 50 AI7 = 42 AI9 = 27 AI11 = 16 A

I13 = 12 AI15 = 8 AI17 = 4 AI19 = 3 AI21 = 1 AI23 = 1 A

Find the distortion power factor.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      57

Ignore harmonics if |Ix| < 1% of I1

Total Power Factor(Power Factor)

The total power factor, considering both displacement and distortion effects, is expressed as:

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      58

powerapparent

powerrealpf

ntdisplacemedistortion pfpf

cosI

I

eff

1

effLL

1LL

IV3

cosIV3

Page 30: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic MitigationTechniques

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      59

Neutral Conductor Sizing

Harmonic currents behave like sequence currents.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      60

HarmonicOrder

Sequencing

35791113

zeronegativepositivezero

negativepositive

(see Alex McEachern’s Power Quality Teaching Toy)

zero‐sequenceharmonics are called“triplen harmonics”

Triplen harmonics do not cancel – they are additive on the neutral.

3, 9, 15, 21, ...

Page 31: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Neutral Conductor Sizing

Neutral  conductors  supplying  non‐linear  loads should not be downsized.

The neutral on such circuits shall be at least equal in size to the phase conductors.

In  situations  where  triplen harmonic  content  is very high, one neutral  conductor equal  in  size  to the phase conductors should be provided for each phase.

Switching  power  supplies are  notorious  triplenharmonic producers.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      61

k‐Factor Transformers

Special  transformers  can  be  designed  to  better  tolerate the heating effects due to non‐linear loads.

These  transformers  do  not  reduce  current  distortion –they simply perform better in the presence of harmonics.

Multiple  small  winding  conductors  are  paralleled  to reduce skin effect.

Additional iron is used in the core to reduce core heating.

These transformers are called k‐factor transformers.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      62

Page 32: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

k‐Factor Transformers

The distortion of the current flowing to a non‐linear  load can be described using the k‐factor.

The k‐factor is calculated as

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      63

2eff

1n

2n

2

factorI

In

k

k‐Factor Transformers

Calculate the k‐factor for the following distorted current waveform:

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      64

HarmonicOrder

Magnitude(Amperes)

1 385

3 120

5 85

7 40

9 15

11 12

13 8

15 6

17 4

19 3

Amperes415

346812154085120385I 2222222222eff

48.3

415

319417615813121115940785512033851k

2

22222222222222222222

Page 33: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

k‐Factor Transformers

Various load types have different typical k‐factors:

HID and fluorescent lighting systems k‐4

Classrooms, healthcare facilitiesProduction lines with VFDs k‐13

Office buildings, computer facilities k‐20and up

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      65

Twelve‐Pulse Rectifiers 

Producing a six‐phase systemfrom a three‐phase system.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      66

I I

B

A

B

I

H2

x b

X1

I

c

CI

A

C

H1

I

H3

z yI

X2

I

X3

b

c

aI

I y

xI

zIc

IcC

BI

B

c

b

I

X2 c

aA

A

I

C

I Ia

H1 I

I

I b

I c

aI

Ib InX3

X0

X1

b

n

a

H2

H3

,

,

,

A B C

Six-Phase

a

b

c

a’

b’

c’

a

b

c

Th

ree-

Ph

ase

Page 34: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Twelve‐Pulse Rectifiers Supplying  rectifiers  with  six‐phase  input substantially reduces harmonics.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      67

Six‐phase input Twelve‐pulse 

rectifier

Dominant harmonics:11th

13th

Harmonic Filters

Once  a  harmonic  analysis  is  done  to  find  the  problematic harmonic(s),  a  harmonic  filter  (capacitor  and  reactor  in  series with  each  other,  connected  in  shunt  with  the  load)  can  be designed to mitigate the effects of the problematic harmonic(s).

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      68

Page 35: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic Filters

The  reactor  impedance  at  the  fundamental frequency  to  achieve  resonance  at  the  nth harmonic frequency is 

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      69

2C

23

2LL

Ln

X

n)MVAR(

kVX

A common practice  is to tune the harmonic filter slightly  below  (3%  to  10%)  the  harmonic  of concern.  Doing so reduces the duty on the filter, since the path to neutral will not be a short circuit at the harmonic frequency. 

Harmonic Filters

Consider  the  following  example,  which  converts an  existing  600  kVAR capacitor  bank  to  a  fifth harmonic filter.

The  harmonic  analysis  indicated  that  the  fifth harmonic  current  comes  from  a  3000  kVA load with a 5% fifth harmonic component. 

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      70

Page 36: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic Filters

The  line‐to‐line  voltage  is  12.47  kV,  so  the impedance of  the  reactor at 60 hertz needed  for the harmonic filter is

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      71

4.105)600.0(

47.12X

2

2

L

The  rated  current  of  the  capacitor  at  the fundamental frequency is

amperes8.2747.123

600IC

5th harmonic

Harmonic Filters

The  impedance  of  the  capacitor  at  the fundamental frequency must then be

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      72

2598.27

3/470,12XC

Since the algebraic signs of XL and XC are opposite, their  impedances  in  series  are  subtractive.  Therefore, the shunt impedance at 60 hertz of the harmonic filter is

6.2484.10259XXX LCf

Page 37: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic Filters

The  current  through  the  harmonic  filter  at  the fundamental frequency is

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      73

amperes8.296.248

3/470,12I )1(f

Note  that  this  current  is  slightly  higher  than  the current drawn by the shunt capacitor alone.

Harmonic Filters

The fifth harmonic current to which the harmonic filter will be subjected is

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      74

amperes9.647.123

300005.0I )5(f

Therefore,  the  effective  current  flowing  through the harmonic filter is

amperes8.29III 2)5(f

2)1(feff

Page 38: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic Filters

The next  step  is  to verify  that  the voltage across the  capacitor  does  not  exceed  the  capacitor's maximum  voltage  rating.    The  fundamental frequency voltage across the capacitor is

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      75

volts7511)259()29(V )1(C

This  means  that  the  fundamental  frequency voltage across the reactor is

volts31175117200V )1(R

Harmonic Filters

The fifth harmonic voltage across the capacitor is

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      76

volts3575

259)9.6(V )5(C

Assuming  that VC(1) and VC(5) are  in phase, which produces a worst case scenario,

volts75193577511V 22)total(C

This is less than 110% of the nominal voltage, so is within the capacitor rating.

Page 39: Power System Harmonicsfeca.com/Harmonics.pdfPower System Harmonics Tuesday, June 11, 2013 8:30AM – 12:30PM ... cos ( ) sin 2 ( ) 1 0 a nt b nt a W t n n n The coefficients are (

Harmonic Filters

The  last  step  is  to  verify  that  the  total  kVARproduction  of  the  capacitor  is  less  than  135%  of nominal, which is an ANSI‐defined limit.

IEEE/FECA Harmonics Seminar      Jun. 2013 Ralph Fehr, Ph.D., P.E.      77

/kVAR1.224IVkVAR efftotal1

The three‐phase kVAR production is

kVAR2.672kVAR3kVAR 13

This value exceeds the nominal kVA rating by only 12%, so is within the acceptable range.   Therefore, simply  placing  a  10.4  (at  60  hertz)  reactor  in series with  the existing 600 kVAR shunt  capacitor creates an acceptable fifth harmonic filter.

Thank you!

Power System Harmonics

Tuesday, June 11, 20138:30AM – 12:30PM 

Florida Electric Cooperatives AssociationSand Pearl ResortClearwater, Florida

Ralph Fehr, Ph.D., P.E.Senior Member, IEEE

[email protected]