power&laws&in&biology& - university of new mexico › ~forrest › classes › cs365...

28
Power Laws in Biology Stephanie Forrest Introduc9on to Scien9fic Modeling CS 365, 2012

Upload: others

Post on 07-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Power  Laws  in  Biology  

Stephanie  Forrest  Introduc9on  to  Scien9fic  Modeling  

CS  365,  2012  

Page 2: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

On  Growth  and  Form  •  D’Arcy  Thompson  “On  Growth  and  Form”  (1917)  

–  Structuralism  vs.  Survival-­‐of-­‐the-­‐FiUest  –  Structuralism:  Physical  laws  govern  the  form  of  species,  in  addi9on  to  

evolu9on  –  AUempted  to  account  for  differences  in  the  forms  of  related  animals  

could  be  described  by  means  of  rela9vely  simple  mathema9cal  transforma9ons  

–  Style  was  descrip9ve  

Transforma9on  of  Argyropelecus  into  Sternoptyx  diaphana  by  applying  a  20°  shear  mapping  

Page 3: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Allometry:  The  study  of  rela9onships  between  body  size  and  shape  

Page 4: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Metabolic  Scaling  Theory  A  general  theory  for  the  origin  of  allometric  scaling  

laws  in  biology  (1997)  

Page 5: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

In biology, bigger networks are slower when they are centralized"

Page 6: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Kleiber’s  Law    

Hemmingson 1960

3/4  

Observed Metabolic Scaling: ""B ∝ M3/4"

"B is the rate of energy (oxygen) use"B: the master biological rate governs"

"ecological interactions""food webs & ecosystem dynamics""growth and reproduction"

"Mass Specific Scaling"Other biological rates ∝ M-1/4"

Biological times ∝ M1/4"

Page 7: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

“There is a unity of the single system of energy, ecology, and economics…

let us here seek common sense overview

which comes from overall energetics.”    

H.  T.  Odum  (1973)  

Page 8: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Organisms  have  evolved  networks  to  distribute  energy  efficiently  

Page 9: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Social  insects  use  networks  to  acquire  energy  and  communicate  

Page 10: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Global  Shipping  Routes  Halpern  et  al  Science  2008  

Human  engineered  networks  span  the  globe    

Page 11: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Metabolic  Scaling  Theory  

"Bigger organisms require bigger networks"•  Pipe lengths (L) are longer"•  Cross sectional areas (A) are larger"•  # of capillaries increases slower than pipe volume"

"N = cV3/4"

!Metabolism: B = cM3/4"""""Increasing volume (mass) 100 times increases delivery rate 30 times!""Diminishing returns: Network size grows faster than network delivery rate"""

Page 12: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Elements  of  the  Theory  Metabolic  Ecology:  A  Scaling  Approach  (2012)  

•  All  cells  need  nutrients  and  oxygen  –  Delivered  by  an  internal  space-­‐filling,  hierarchical  (fractal)  distribu9on  

network  –  This  assump9on  has  been  adjusted  in  later  versions  of  the  theory  

•  The  final  branch  of  the  network  (capillary)  is  constant  size,  independent  of  organism  size  (invariant  terminal  units)  –  This  assump9on  has  been  adjusted  in  later  versions  of  the  theory  

•  The  energy  required  to  distribute  resources  is  minimized  (network  design  is  op9mized)  

•  Network  is  area  preserving  at  every  level  of  hierarchy  

Page 13: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Network  scaling  concepts  

•  Network  volume  (Vnet)  increases  faster  than  number  of  capillaries  (Nc)        [1]  Vnet  ∝  Nc

4/3    

Diminishing  returns:  Network  volume  grows  faster  than  delivery  rate  A  network  100  9mes  bigger  delivers  only  30  9mes  more  blood  per  unit  9me    •  Each  capillary  is  the  same:  B  ∝  Nc    

 [2]  Vnet  ∝  B4/3    

 •  Biological  constraint,  blood  volume  is  a  constant  %  of  mass:  Vnet  ∝  M        

 [3]  B  ∝  M3/4    Controversy,  but  accepted  that  centralized  distribu9on  networks  generate    

Vnet  ∝  NcD+1/D  

       

Page 14: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Network scaling accurately predicts rates and times  

•  Physiology"•  Individual Growth"•  Population growth"•  Reproduction"•  Disease spread"•  Lifespan"•  Photosynthesis & carbon flux "•  …"

Page 15: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Biomass  Produc9on:                                  P∝M 3/4

Page 16: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Physiological  Rates:      B∝M −1/4

-1/4!

Page 17: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Scaling  9mes  associated  with  disease  

Time to first symptoms! Time to death!

1/4!

Page 18: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Metabolic  scaling  determines  growth  rates  

Emdmdt

= B0m3 / 4 − Bmm

Rate  energy  is  available  for  growth  =    incoming  metabolic  rate  -­‐  maintenance  metabolic  rate  

West et al 2001 Moses et al 2008

(m/M

)1/4  

T=(at/4M)1/4-­‐ln(1-­‐(m0/M)1/4)  

1-­‐e-­‐T  

Page 19: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Metabolic  scaling  during  growth:  B∝M 3/4

Page 20: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Life9me  reproduc9ve  effort:  %  of  mother’s  mass  invested  in  offspring  

Predicted  LRE  =  1/δ  =  4/3    (in  theory)      δ  =  0.7  in  prac>ce  

A female lizard lays 1.4 times her own body mass in eggs (hatchling mass)"A female mammal raises to weaning offspring totaling 1.4 times her body mass"  

Page 21: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

What  about  computa9onal  networks?  

•  Modern  microprocessors  contain  ~1  billion  transistors  

•  operate  at  power  densi9es  (W/m2)    approaching  a  nuclear  blast  

•  Wire-­‐scaling  drives  increased  power  on  single  core  chips  

Predic9ng  &  Minimizing  Power  Requirements  of  Microprocessors    

Page 22: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Scaling  in  compu9ng  (Moses  and  Forrest)  

Summed area of transistors on a chip as a function of die area (observed b = 0.53, predicted b = 1/2, data from www.icknowledge.com/history/history.html  

Internet backbone bandwidth as a function of the processing power of Internet hosts (observed b = 0.66, predicted b = 2/3, data from www.isc.org/index.pl?/ops/ds/host-count-history.php and www.zakon.org/robert/ internet/timeline/

Page 23: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Challenges    for  a  MST  Theory  of  Computer  Chips  

•  Distributed  networks:  Computer  networks  are  not  centralized  like  the  vascular  system  

•  Density  dependence    – MST  assumes  cells  are  constant  size  –  Transistor  densi9es  have  increased  exponen9ally  over  9me  from  thousands  to  millions  of  transistors  per  sq.  mm.  

•  The  last  mile:  network  delivers  resource  to  a  service  unit  and  then  it  is  delivered  to  des9na9on  using  other  methods    –  E.g.,  the  isochronic  region  in  chips  

•  Superlinear  scaling:  The  wire  scaling  problem  

Page 24: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Clock  trees:  Scale  like  circulatory  networks  

Hierarchical  Space  filling  Fractal  branching  Varia9on  in  length  of  terminal  wires  Aclock  ∝  NAchip

1/2  

 

Page 25: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Decentralized  vs.  Centralized  Networks  

Computer  Chips  

0.5 1 1.5 2 2.50.5

1

1.5

2

2.5

log10

Predicted Power From Decentralized Modello

g10 O

bse

rve

d P

ow

er

P ∝λV 2Ntr1/ 2Achip

1/ 2 fSlope = 0.95!

-4 -3 -2 -1 0 1 2 3 4!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5

log

ob

serv

ed

po

we

r

log predicted power

P ∝λV 2NtrAchip1/ 2 f

Slope = 0.5!

Each  Wire  length  depends  on  radius:  N  *  (A1/2)  

Each  Wire  length  depends  on  distance  between  nearest  components:  N  *  (ρ-­‐1/2)  

Page 26: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Decentralized  vs.  Centralized  Networks  

Centralized Network Prediction " " Decentralized Network Prediction"

Road  Networks  

Page 27: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

Hierarchical  Fractal  Networks  

Aorta: k = 0 Capillaries: k = K

Area  preserving  branching    

   

rkrk+1

= b1/ 2

Space-­‐filling  branching  

lklk+1

= b1/ 3

 Metabolic  rate  B~  Nc  Nc  =  bK  

Nc = bK

lK = lcrK = rc

N0 =1r0 ~ rcb

K / 2

l0 ~ lcbK / 3

Vnet = πr02l0 b− i / 3

i= 0

K

Vnet  ∝  Nc4/3  

b  is  the  branching  ra9o  

Page 28: Power&Laws&in&Biology& - University of New Mexico › ~forrest › classes › cs365 › lectures › ... · 2014-08-27 · Power&Laws&in&Biology& Stephanie&Forrest Introduc9on&to&Scien9fic&Modeling&

LRE  =(offspring/year)*(offspring  mass  at  independence)*(adult  lifespan)  /                            (adult  mass)  

dm/dt:  Simple  growth  &  produc9on  model  δ:  metabolic  exponent    R0:  Fitness=total  #  of  offspring  per  life9me      α:  age  at  1st  reproduc9on      S:  prob  of  living  to  age  α      E:  adult  lifespan      Maximize  R0:  set  deriva9ve  wrt  α  =  0    Z:  Instantaneous  mortality  rate    Z=  1/E    

Calcula9ng  Op9mal  Life9me  Reproduc9ve  Effort  

__  __    __    __          __  

≈  4/3  Alterna9ve    growth  model