practice final exam - mathwortman/1050-practice-final.pdf · practice final exam discrete math 1.)...

14
Practice Final Exam Discrete math 1.) Find 4 X i=1 (i 2 - 1) 2.) Find X i=1 2 6 i 3.) What is the 61st term of the sequence 7, 11, 15, 19, ...? 4.) What’s the 57th term of -3, 6, -12, 24, ...? 5.) What’s the sum of the first 60 terms of the sequence 3, 5, 7, 9,...? 1

Upload: ngotram

Post on 29-Jun-2018

246 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

Practice Final Exam

Discrete math

1.) Find4∑

i=1

(i2 − 1)

2.) Find∞∑i=1

2

6i

3.) What is the 61st term of the sequence 7, 11, 15, 19, ...?

4.) What’s the 57th term of −3, 6,−12, 24, ...?

5.) What’s the sum of the first 60 terms of the sequence 3, 5, 7, 9, . . .?

1

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 2: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

6.) Suppose a set A contains 243 objects. How many 92 object subsets ofA are there?

7.) How many ways are there to choose and order 49 objects from a collec-tion of 304 objects?

8.) How many different ways are there to order 93 different objects?

9.) You’re decorating a room by choosing a color to paint the walls withand a color of carpet to use for the floor. You have 6 different colors of paintto choose from for the walls, and 11 different colors of carpet to choose fromfor the floor. How many different wall and floor color combinations could youcreate?

10.) Write(93

)as an integer in standard form.

2

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 3: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

************************************************Algebra

11.) Write (278 )− 2

3 as a rational number in standard form.

12.) Write 7−4 2√79(7

12 )3 as a rational number in standard form.

13.) If a �= 0, then what is a0 as a rational number in standard form?(Notice that this is asking for the y-intercept of the graph of ax.)

14.) If a > 0, what is loga(1) as a rational number in standard form? (Theanswer has something to do with the x-intercept of the graph of loga(x).)

15.) Write log3

�5

�181

�as a rational number in standard form.

3

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

Page 4: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

16.) Find x where x3(12x+ 3)3

= 8.

17.) Find x where 2(

e2x

ex+3

)+ 5 = 7.

18.) Find x where 4 loge(x) + loge(x3) + 8 = 11.

19.) Find g ◦ f(x) if f(x) = x+ 2 and g(x) = x2.

20.) Find the inverse of g(x) = 7 loge(x+ 3).

4

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 5: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

21.) What is the implied domain of f(x) = x2 − 2x+ loge(3− 7x) ?

22.) What is the implied domain of g(x) = x3

2 − 7 3√x− 4 ?

23.) Findx3 − 3x2 − 5x+ 14

x2 − 4

5

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 6: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

24.) Complete the square: Write −2x2 − 4x− 5 in the form α(x+ β)2 + γwhere α, β, γ ∈ R.

25.) How many roots does 2x2 − 3x+ 4 have?

26.) Find a root of x3 + 2x2 − x+ 6.

27.) (2 pts.) Completely factor −2x3 + 2x+ 12. (Hint: 2 is a root.)

6

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

Page 7: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

28.) |x− y| is the distance between which two numbers?

29.) Solve for x if |3x− 2| < 4.

************************************************Linear algebra

30.) What’s the determinant of the matrix below?(2 −31 −5

)

31.) Find the product (1 03 1

)(1 20 1

)

32.) What’s the inverse of the matrix below?(1 42 3

)

7

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 8: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

33.) Write the following system of three linear equations in three variablesas a matrix equation

2x−y+ z = 2

y+2z = 1

−x+y− z = 0

34.) Solve for x, y, and z if

−1 2 −1−2 2 −1

3 −1 1

xyz

=

−221

and

−1 2 −1−2 2 −1

3 −1 1

−1 =

1 −1 0−1 2 1−4 5 2

8

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 9: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

************************************************Graphs

35.) Graph the following functions: 3, x, x2, x3, 2√x, 3

√x, 1

x ,1x2 , ex, loge(x).

36.) Graph f : (−2, 0] → R where f(x) = x2.

37.) Graph g : {−4,−2, 2} → R where g(x) = 12x− 1.

38.) Graph −2e−x and label its x- and y-intercepts (if there are any).

39.) Graph 4(x+ 2)2 + 1 and label its vertex.

40.) Graph − 3√x+ 2 and label its x- and y-intercepts (if there are any).

9

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

Page 10: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

41.) Graph p(x). (Label all x-intercepts.)

p(x) = −2(x+ 1)(x+ 1)(x− 2)(x2 + 1)

42.) Graph r(x) (Label all x-intercepts and all vertical asymptotes.)

r(x) =−3(x− 1)(x− 1)

4(x+ 2)(x2 + 1)

43.) Graph

h(x) =

{ex if x 6= 1;

−3 if x = 1.

44.) Graph

m(x) =

1 if x ∈ (−∞, 1);

3 if x = 1;

x2 if x ∈ (1, 2].

10

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 11: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

Last Name: First Name:

1.) 16.)

2.) 17.)

3.) 18.)

4.) 19.)

5.) 20.)

6.) 21.)

7.) 22.)

8.) 23.)

9.) 24.)

10.) 25.)

11.) 26.)

12.) 27.)

13.) 28.)

14.) 29.)

15.) 30.)

11

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 12: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

31.) 33.)

32.) 34.)

12

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

Page 13: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

35.)

36.) f(x)

37.) g(x) 38.) −2e−x

13

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

************************************************Graphs

27.) Graph the following functions: 3, x, x2, x3, 2√x, 3

√x, 1

x ,1x2 , ex, loge(x).

28.) Graph f : (−1, 1] → R where f(x) = x3.

29.) Graph g : {2, 3, 5} → R where g(x) = 3x− 10.

30.) Graph − loge(x+ 2) and label its x-intercept.

31.) Graph 4(x+ 1)2 + 2 and label its vertex.

32.) Graph√−x+ 1 and label its y-intercept.

33.) Graph p(x). (Label all x-intercepts.)

p(x) = −2(x+ 1)(x+ 1)(x− 2)(x− 2)(x2 + 1)

34.) Graph r(x) (Label all x-intercepts and all vertical asymptotes.)

r(x) =−3(x− 1)

4(x+ 2)(x+ 2)

35.) Graph

h(x) =

�x3 if x �= −1;

2 if x = −1.

36.) Graph

m(x) =

x if x ∈ [−2, 1);

3 if x = 1;√x if x ∈ (1,∞).

8

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

8

7

S

S

2

—l

2 3 It 5 C 7 8

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

8

7

S

S

2

—l

2 3 It 5 C 7 8

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

35.)

36.) f(x)

37.) g(x) 38.) −2e−x

13

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

8

7

S

S

2

—l

2 3 It 5 C 7 8

8

7

S

S

2

—l

2 3 It 5 C 7 8

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

3

x

x2

x3

2√x

3√x

1x

1x2

ex

loge(x)

FILLING BOUNDARIES OF COARSE MANIFOLDS INSEMISIMPLE AND SOLVABLE ARITHMETIC GROUPS

MLADEN BESTVINA, ALEX ESKIN, & KEVIN WORTMAN

Abstract. We provide partial results towards a conjectural gen-

eralization of a theorem of Lubotzky-Mozes-Raghunathan for arith-

metic groups (over number fields or function fields) that implies, in

low dimensions, both polynomial upper bounds for isoperimetric

inequalities and finiteness properties.

As a tool in our proof, we also provide polynomial upper bounds

for isoperimetric inequalities and finiteness results for certain solv-

able groups that appear as subgroups of parabolic groups in semisim-

ple groups, thus generalizing a theorem of Bux.

Our main result is Theorem 5 below. Before stating it, we provide

some background.

1

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

27.)

28.) f(x)

29.) g(x) 30.) − loge(x+ 2)

10

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

Page 14: Practice Final Exam - Mathwortman/1050-Practice-Final.pdf · Practice Final Exam Discrete math 1.) Find X4 i=1 (i2 1) 2.) Find X1 i=1 2 6i 3.) What is the 61st term of the sequence

39.) 4(x+ 2)2 + 1 40.) − 3√x+ 2

41.) p(x) 42.) r(x)

43.) h(x) 44.) m(x)

14

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

Last Name: First Name:

1.) 12.)

2.) 13.)

3.) 14.)

4.) 15.)

5.) 16.)

6.) 17.)

7.) 18.)

8.) 19.)

9.) 20.)

10.) 21.)

11.) 22.)

*********************************************************************23.) p(x) 24.) r(x)

1

Last Name:______________________ First Name:______________________

1.) ___________________________ 12.) ___________________________

2.) ___________________________ 13.) ___________________________

3.) __________________________ 14.) __________________________

4.) _________________________ 15.) _________________________

5.) ___________________________ 16.) ___________________________

6.) ___________________________ 17.) ___________________________

7.) ___________________________ 18.) ___________________________

8.) ___________________________ 19.) ___________________________

9.) ___________________________ 20.) ___________________________

10.) 21.)

11.) 22.)* * ** ** * ***** * * * *** *** * *** *** ** ** * ***** ** ** ** ** ** ****** * * * * * * * ** ***** *

23.) p(x) 24.) rQc)

I I I I I I I I,-~ -3 -l -, a i a ~

1

Last Name:______________________ First Name:______________________

1.) ___________________________ 12.) ___________________________

2.) ___________________________ 13.) ___________________________

3.) __________________________ 14.) __________________________

4.) _________________________ 15.) _________________________

5.) ___________________________ 16.) ___________________________

6.) ___________________________ 17.) ___________________________

7.) ___________________________ 18.) ___________________________

8.) ___________________________ 19.) ___________________________

9.) ___________________________ 20.) ___________________________

10.) 21.)

11.) 22.)* * ** ** * ***** * * * *** *** * *** *** ** ** * ***** ** ** ** ** ** ****** * * * * * * * ** ***** *

23.) p(x) 24.) rQc)

I I I I I I I I,-~ -3 -l -, a i a ~

1

Last Name:______________________ First Name:______________________

1.) ___________________________ 12.) ___________________________

2.) ___________________________ 13.) ___________________________

3.) __________________________ 14.) __________________________

4.) _________________________ 15.) _________________________

5.) ___________________________ 16.) ___________________________

6.) ___________________________ 17.) ___________________________

7.) ___________________________ 18.) ___________________________

8.) ___________________________ 19.) ___________________________

9.) ___________________________ 20.) ___________________________

10.) 21.)

11.) 22.)* * ** ** * ***** * * * *** *** * *** *** ** ** * ***** ** ** ** ** ** ****** * * * * * * * ** ***** *

23.) p(x) 24.) rQc)

I I I I I I I I,-~ -3 -l -, a i a ~

1

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

31.) 4(x+ 1)2 + 2 32.)√−x+ 1

33.) p(x) 34.) r(x)

35.) h(x) 36.) m(x)

11

23.) −2 3√x− 1 25.) 2x− 3

24.)√−x− 1 26.) −3(x+ 2)2 − 1

2

36.) −3(x+ 2)2 − 1 39.) f(x)

37.) p(x) 40.) g(x)

38.) q(x)

12

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2

24.) ex 25.) loge(x)

26.) ex − 1 27.) loge(x+ 2)

28.) f(x) 29.) g(x)

2

25.) ex 26.) loge(x)

27.) ex − 1 28.) loge(x+ 2)

29.) f(x) 30.) g(x)

2