prague sum · awell-posednessresultfortheregularizedsystem theorem(moussa-s.2012) existence and...

145
On the motion of rigid bodies immersed in a two dimensional incompressible perfect fluid Franck Sueur Laboratoire Jacques-Louis Lions, Université Paris 6 (for 4 more days); Institut de Mathématiques de Bordeaux, Université de Bordeaux (from Sept. 1st) Summer School and Workshop "Particles in Flows", Prague, August 2014 Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 1 / 145

Upload: others

Post on 07-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

On the motion of rigid bodies immersedin a two dimensional incompressible perfect fluid

Franck Sueur

Laboratoire Jacques-Louis Lions, Université Paris 6 (for 4 more days);Institut de Mathématiques de Bordeaux, Université de Bordeaux (from Sept. 1st)

Summer School and Workshop "Particles in Flows",Prague, August 2014

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 1 / 145

Page 2: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 1. On the motion of a rigid body immersed in a two dimensionalirrotational and incompressible perfect fluid.

In the first part we revisit the complex-analytic approach of the motion of a rigidbody immersed in a two dimensional irrotational and incompressible perfect fluidinitiated by Blasius, Kutta, Joukowski, Chaplygin and Sedov.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 2 / 145

Page 3: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

The equations

Fluid equations :

∂u∂t

+ (u · ∇)u +∇π = 0 for t ∈ (0,∞), x ∈ F(t),

div u = 0 for t ∈ [0,∞), x ∈ F(t),

Solid equations :

m(h)′′(t) =

∫∂S(t)

πn ds for t ∈ (0,∞),

J r ′(t) =

∫∂S(t)

(x − h(t))⊥ · πn ds for t ∈ (0,∞),

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 3 / 145

Page 4: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Boundary and initial conditions

Boundary conditions :

u · n =(

(h)′(t) + r(t)(x − h(t))⊥)· n for t ∈ [0,∞), x ∈ ∂S(t),

lim|x|→∞

|u(t, x)| = 0 for t ∈ [0,∞),

Initial data :

u|t=0 = u0 for x ∈ F0,

h(0) = 0, (h)′(0) = `0, θ(0) = 0, r(0) = r0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 4 / 145

Page 5: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Rotation

There exists a rotation matrix

Rθ(t) :=

(cos θ(t) − sin θ(t)sin θ(t) cos θ(t)

)such that

S(t) := h(t) + Rθ(t)x , x ∈ S0.

Furthermore, the angle satisfies

(θ)′(t) = r(t).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 5 / 145

Page 6: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Change of frame

We apply the following isometric change of variable :v(t, x) = RT

θ(t) u(t,Rθ(t)x + h(t)),

π(t, x) = π(t,Rθ(t)x + h(t)),

`(t) = RTθ(t) (h)′(t).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 6 / 145

Page 7: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Recasting of the equations

The equations become

∂v∂t

+[(v − `− rx⊥) · ∇

]v + rv⊥ +∇π = 0 x ∈ F0,

div v = 0 x ∈ F0,

m`′(t) =

∫∂S0

πn ds −mr`⊥

J r ′(t) =

∫∂S0

x⊥ · πn ds

v · n =(`+ rx⊥

)· n x ∈ ∂S0,

v(0, x) = v0(x) x ∈ F0,

`(0) = `0, r(0) = r0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 7 / 145

Page 8: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

The Kirchoff decomposition

−∆Φi = 0 in F0,∂Φi

∂n= Ki on ∂F0, Φi −→ 0 when x →∞,

where(K1, K2, K3) := (n1, n2, x⊥ · n).

One then assumes that the velocity is of the form

v := `1∇Φ1 + `2∇Φ2 + r∇Φ3.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 8 / 145

Page 9: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Added inertia

We introduceMa :=

[mi,j

]i,j∈1,2,3 .

where, for i , j ∈ 1, 2, 3,

mi,j :=

∫F0∇Φi · ∇Φj dx .

The index a refers to “added”, by opposition to the genuine inertia :

Mg :=

m 0 00 m 00 0 J

,

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 9 / 145

Page 10: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Reformulation of the solid equations

We can first reformulate the main solid equations as follows :

(Mg +Ma)

(`r

)′= −(Ai )i=1,2,3 −

(mr`⊥

0

),

where for i = 1, 2, 3,

Ai :=12

∫∂S0|v |2Ki ds −

∫∂S0

(`+ rx⊥) · vKi ds.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 10 / 145

Page 11: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A complex-analytic approach

We identify C and R2 through (x1, x2) = x1 + ix2 = z .

We also use the notation f = f1 − if2 for any f = (f1, f2).

If f is divergence and curl free if and only if f is holomorphic.

Lemma (Blasius)

Let C be a smooth Jordan curve, f := (f1, f2) and g := (g1, g2) two smoothtangent vector fields on C. Then∫

C(f · g)n ds = i

(∫Cf g dz

)∗,∫

C(f · g)(x⊥ · n) ds = Re

(∫Czf g dz

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 11 / 145

Page 12: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Laurent expansion of the Kirchhoff potentials

Lemma

Let C be a smooth Jordan curve, f := (f1, f2) a smooth vector field on C :∫Cf dz =

∫Cf · τ ds − i

∫Cf · n ds.

We infer from this lemma that ∫∂S0∇Φi dz = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 12 / 145

Page 13: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Laurent expansion of the Kirchhoff potentials

Corollary

Let C be a smooth Jordan curve, f := (f1, f2) a smooth vector field on C :∫Czf dz =

∫C

(x1 + ix2)(f · τ) ds − i∫C

(x1 + ix2)(f · n) ds.

Lemma

We infer from this corollary that∫∂S0

z∇Φi dz = −(mi,2 + |S0|δi,2) + i(mi,1 + |S0|δi,1), for i = 1, 2;∫∂S0

z∇Φ3 dz = −(m3,2 + |S0|xG ,1) + i(m3,1 − |S0|xG ,2).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 13 / 145

Page 14: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Decomposition of the pressure

We start with the following observation :

Ai =12

∫∂S0|v − (`+ rx⊥)|2Ki ds −

12

∫∂S0|`+ rx⊥|2Ki ds,

and replace v by the decomposition

v = v# + r∇Φ3,

to get

Ai =12

∫∂S0|v# − `|2Ki ds +

12

∫∂S0|r(∇Φ3 − x⊥)|2Ki ds

+

∫∂S0

r(v# − `) · (∇Φ3 − x⊥)Ki ds −12

∫∂S0|`+ rx⊥|2Ki ds

=: Ai,a + Ai,b + Ai,c + Ai,d .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 14 / 145

Page 15: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of Ai ,d

Using Stokes formula we easily check that(Ai,d

)i=1,2

= −r`⊥|S0|+ r2xG |S0| and A3,d = −r(` · xG )|S0|,

where |S0| is the Lebesgue measure of S0 and

xG :=1|S0|

∫S0

x dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 15 / 145

Page 16: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of Ai ,a, i = 1, 2

We go on with the computation of

Ai,a =12

∫∂S0|v# − `|2Ki ds.

As v# − ` is tangent to the boundary, we can apply the Blasius formula,

v# − `(z) = −`1 + i`2 + `1∇Φ1 + `2∇Φ2,

and Cauchy’s residue theorem, to obtain(Ai,a

)i=1,2

= 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 16 / 145

Page 17: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of A3,a

We proceed in the same way for i = 3 :

A3,a =12

∫∂S0|v#,I − `|2K3 ds

=12Re

(∫∂S0

z( v#,I − `)2 dz)

= Re

(∫∂S0

z(−`1 + i`2)(`1∇Φ1 + `2∇Φ2

)dz

)= (−`1)

[− `1m1,2 − `2(m2,2 + |S0|)

]+(−`2)

[`1(m1,1 + |S0|) + `2m2,1

]= `⊥M[`,

whereM[ is the following 2× 2 restriction ofMa :

M[ :=[mi,j

]i,j∈1,2 .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 17 / 145

Page 18: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Force and torque in the moving frame

We thus obtain : (A1A2

)= r2

(−m3,2m3,1

)+ r(M[`

)⊥and

A3 = `⊥M[`− r` ·(−m3,2m3,1

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 18 / 145

Page 19: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Solid motion

Let

p :=

(`r

)and µ :=

m1,3m2,30

,

Let Γg : R3 × R3 → R3 and Γa : R3 × R3 → R3 be the bilinear symmetricmappings defined as follows :

∀p =

(`r

)∈ R3, 〈Γg , p, p〉 = mr

(`⊥

0

)and 〈Γa, p, p〉 =

(r(M[`)

`⊥ · M[`

)+ rp × µ,

Thus the solid equations read :[Mg +Ma

](p)′ + 〈Γg , p, p〉+ 〈Γa, p, p〉 = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 19 / 145

Page 20: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Harmonic field

Let H the unique solution vanishing at infinity of

div H = 0 in F0, curlH = 0 in F0, H · n = 0 on ∂S0,

∫∂S0

H · τ ds = 1.

the vector field H admits a harmonic stream function ΨH(x) :

H = ∇⊥ΨH ,

which vanishes on the boundary ∂S0, and behaves like 12π ln |x | as x goes to

infinity.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 20 / 145

Page 21: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Harmonic field

the function H is holomorphic (as a function of z = x1 + ix2), and can bedecomposed in Laurent Series :

H(z) =1

2iπz+O(

1z2 ) as z →∞.

Coming back to the variable x ∈ R2, the previous decomposition implies

H(x) = O(

1|x |

)and ∇H = O

(1|x |2

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 21 / 145

Page 22: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Harmonic field

The so-called conformal center of S0 is :

ξ1 + iξ2 :=

∫∂S0

zH dz .

In the case of a disk, we have H = HR2 where we denote

HR2(x) :=12π

x⊥

|x |2.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 22 / 145

Page 23: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Decomposition of the velocity field

For ` in R2, r and γ in R given, there exists a unique vector field v verifying :

div v = 0 and curl v = 0 in F0,

v · n =(`+ rx⊥

)· n on ∂S0,

limx→∞

v = 0,∫∂S0

v · τ ds = γ,

and it is given by the law :

v = γH + `1∇Φ1 + `2∇Φ2 + r∇Φ3.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 23 / 145

Page 24: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Decomposition of the velocity field

We will denote by

v := v − γH= v# + r∇Φ3,

where, as previously,v# := `1∇Φ1 + `2∇Φ2.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 24 / 145

Page 25: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Reformulation of the solid equations

The solid equations can be rewritten in the form

(Mg +Ma)

(`r

)′= −(Ai + Bi + Ci )i=1,2,3 −

(mr`⊥

0

),

where for i = 1, 2, 3,

Ai :=12

∫∂S0|v |2Ki ds −

∫∂S0

(`+ rx⊥) · vKi ds,

Bi := γ

∫∂S0

(v − (`+ rx⊥)) · HKi ds,

Ci :=γ2

2

∫∂S0|H|2Ki ds.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 25 / 145

Page 26: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of Bi

Let us start with the term Bi . Let us prove the following.

Lemma

One has (B1B2

)= −γ(`)⊥ + γrξ,

andB3 = −γ ξ · `.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 26 / 145

Page 27: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of Ci

From Blasius lemma 1, the Laurent Series of H and Cauchy’s Residue Theorem,we deduce that

C1 = C2 = C3 = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 27 / 145

Page 28: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Conclusion

• Therefore the solid equations can be recast as follows :[Mg +Ma

](p)′ + 〈Γg , p, p〉+ 〈Γa, p, p〉 = γp × B,

where

B :=

(ξ⊥

−1

).

• Let us define, for any p ∈ R3, the energies

Eg (p) =12p · Mgp and Ea(p) =

12p · Map.

Then the total energyEg (p) + Ea(p)

is conserved along time.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 28 / 145

Page 29: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 2. On the motion of a rigid body immersed in a two dimensionalincompressible perfect fluid with vorticity.

In the second part we consider the motion of a rigid body immersed in a twodimensional incompressible perfect fluid with vorticity.

We prove a result of global in time existence and uniqueness similar to thecelebrated result by Yudovich about a fluid alone.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 29 / 145

Page 30: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Equations in the body frame

The equations become

∂v∂t

+[(v − `− rx⊥) · ∇

]v + rv⊥ +∇π = 0 x ∈ F0,

div v = 0 x ∈ F0,

m`′(t) =

∫∂S0

πn ds −mr`⊥

J r ′(t) =

∫∂S0

x⊥ · πn ds

v · n =(`+ rx⊥

)· n x ∈ ∂S0,

v(0, x) = v0(x) x ∈ F0,

`(0) = `0, r(0) = r0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 30 / 145

Page 31: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Vorticity in the body frame

The vorticity, in the body frame, is given by

ω(t, x) := curl v(t, x).

Taking the curl of the Euler equation we get

∂tω +[(v − `− rx⊥) · ∇

]ω = 0 for x ∈ F0

which yields the following conservation laws, at least for smooth solutions : forany t > 0, for any p in [1,+∞],

‖ω(t, ·)‖Lp(F0) = ‖ω0‖Lp(F0).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 31 / 145

Page 32: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Global weak formulation

We introduce the following space

H :=

Ψ ∈ L2loc(R2)

/div Ψ = 0 in R2 and ∇Ψ + (∇Ψ)T = 0 in S0

.

It is classical that the space H can be recast thanks to the property :

∃(`Ψ, rΨ) ∈ R2 × R, ∀x ∈ S0, Ψ(x) = `Ψ + rΨx⊥. (1)

More precisely,

H =

Ψ ∈ L2loc(R2)

/div Ψ = 0 in R2 and satisfies (1)

,

and the ordered pair (`Ψ, rΨ) above is unique.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 32 / 145

Page 33: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Global weak formulation

Let us also introduce

H :=

Ψ ∈ H/

Ψ|F0 ∈ C 1c (F0)

and HT := C 1([0,T ]; H).

When (u, v) ∈ H × H, we denote

< u, v >= m `u · `v + J ru rv +

∫F0

u · v dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 33 / 145

Page 34: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Global weak formulation

Definition (Weak Solution)

Let us be given v0 ∈ H and T > 0. We say that v ∈ C ([0,T ];H− w) is a weaksolution in [0,T ] if for any test function Ψ ∈ HT ,

< Ψ(T , ·), v(T , ·) > − < Ψ(0, ·), v0 >=

∫ T

0<∂Ψ

∂t, v > dt

+

∫ T

0

∫F0

v ·((v − `v − rvx⊥

)· ∇)

Ψ dx dt −∫ T

0

∫F0

rv v⊥ ·Ψ dx dt

−∫ T

0mrv `⊥v · `Ψ dt.

We say that v ∈ C ([0,+∞);H− w) is a weak solution on [0,+∞) if it is a weaksolution in [0,T ] for all T > 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 34 / 145

Page 35: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Log-Lipschitz functions

The notation LL(F0) refers to the space of log-Lipschitz functions on F0, that isthe set of functions f ∈ L∞(F0) such that

‖f ‖LL(F0) := ‖f ‖L∞(F0) + supx 6=y

|f (x)− f (y)||(x − y)(1 + ln− |x − y |)|

< +∞.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 35 / 145

Page 36: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Result

Theorem (Glass-S. 2012)

For any u0 ∈ C 0(F0;R2), (`0, r0) ∈ R2 × R, such that :

div u0 = 0 in F0 and u0 · n = (`0 + r0x⊥) · n on ∂S0,

ω0 := curl u0 ∈ L∞c (F0),

lim|x|→+∞

u0(x) = 0,

there exists a unique solution (`, r , u) in

C 1(R+;R2 × R)× L∞(R+,LL(F0)).

Moreover for all t > 0,ω0 := curl u(t) ∈ L∞c (F0).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 36 / 145

Page 37: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Green’s function and Biot-Savart operator

LetG (x , y) be the Green’s function of F0 with Dirichlet boundary conditions,K (x , y) = ∇⊥G (x , y),K [ω] be the so-called Biot-Savart operator acting on ω ∈ L∞c (F0) throughthe formula

K [ω](x) =

∫F0

K (x , y)ω(y) dy .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 37 / 145

Page 38: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Green’s function and Biot-Savart operator

Proposition

Let ω ∈ L∞c (F0). Then K [ω] is in LL(F0), divergence-free, tangent to theboundary and such that curlK [ω] = ω.Moreover, it satisfies

K [ω](x) = O(

1|x |2

)as x →∞,

and its circulation around ∂S0 is given by∫∂S0

K [ω] · τ ds = −∫F0ω dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 38 / 145

Page 39: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Velocity decomposition

Proposition

Let be given ω in L∞c (F0), ` in R2, r and γ in R. Then there is a unique solutionv in LL(F0)

div v = 0, for x ∈ F0,curl v = ω for x ∈ F0,v · n =

(`+ rx⊥

)· n for x ∈ ∂S0,

v −→ 0 as x →∞,∫∂S0 v · τ ds = γ.

Moreover v is given by

v = K [ω] + (γ + α)H + `1∇Φ1 + `2∇Φ2 + r∇Φ3,

withα :=

∫F0ω dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 39 / 145

Page 40: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Hydrodynamic Biot-Savart operator and Green function

Let us also introduce the so-called hydrodynamic Biot-Savart operator

KH := K + αH,

which satisfies

div KH [ω] = 0, and curlKH [ω] = ω, for x ∈ F0,

KH [ω] · n = 0, for x ∈ ∂S0,∫∂S0

KH [ω] · τ ds = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 40 / 145

Page 41: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Hydrodynamic Biot-Savart operator and Green function

Then v can be decomposed as

v = KH [ω] + γH + `1∇Φ1 + `2∇Φ2 + r∇Φ3.

We also introduce the hydrodynamic Green function GH as

GH(x , y) := G (x , y) + ΨH(x) + ΨH(y).

Consequently one has

KH [ω](x) =

∫F0∇⊥GH(x , y)ω(y) dy .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 41 / 145

Page 42: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A priori estimates. Vorticity transport and circulationconservation

In addition to the conservation of Lp norms of vorticity, Kelvin’s theorem alsoholds true, at least for smooth solutions, and the total vorticity is conserved aswell :

γ :=

∫∂S0

v(t, ·) · τ ds =

∫∂S0

v0 · τ ds.,

α =

∫F0ω(t, x) dx =

∫F0ω0(x) dx .

We introducev := v − βH,

whereβ = α + γ.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 42 / 145

Page 43: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A priori estimates. Energy-like estimate

Proposition

There exists a constant C > 0 (depending only on S0, m and J ) such that forany solution (`, r , v) of the problem on the time interval [0,T ], with

(`, r) ∈ C 1([0,T ];R3) and v ∈ C 1([0,T ]; (L2 ⊗ RH) ∩ C∞(F0)),

and with compactly supported vorticity,

E (t) :=12

(m|`(t)|2 + J r(t)2 +

∫F0

v(t, ·)2dx),

satisfies the inequalityE (t) 6 E (0)eC |β|t .

In the case where β = 0, that is, when the solution is of finite energy, the energyis conserved.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 43 / 145

Page 44: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A priori estimates. Bound of the body acceleration

Proposition

There exists a constant C > 0 depending only on S0, m, J , β and E (0) such thatany classical solution satisfies the estimate

‖(`′, r ′)‖L∞(0,T ) ≤ C .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 44 / 145

Page 45: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Reformulation

The system can be recast as follows :

∂tω +[(v − `− rx⊥) · ∇

]ω = 0,

(Mg +Ma)

[`r

]′=[∫F0

(v ·[((v − `− rx⊥) · ∇)∇Φi

]− rv⊥ · ∇Φi

)dx]i∈1,2,3

+

[−mr`⊥

0

],

wherev = KH [ω] + γH + `1∇Φ1 + `2∇Φ2 + r∇Φ3.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 45 / 145

Page 46: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Existence

Theorem (Schauder)

Let E denotes a Banach space and let C be a nonempty closed convex set in E .Let F : C 7→ C be a continuous map such that F (C ) ⊂ K, where K is a compactsubset of C . Then F has a fixed point in K.

F : (ω, `, r) 7→ (ω, ˜, r) with

∂t ω +[(v − `− rx⊥) · ∇

]ω = 0,

(Mg +Ma)

r

]′=[∫F0

(v ·[((v − `− rx⊥) · ∇)∇Φi

]− rv⊥ · ∇Φi

)dx]i∈1,2,3

+

[−mr`⊥

0

].

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 46 / 145

Page 47: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Energy conservation

Let us define

E(ω) := −12

∫F0×F0

GH(x , y)ω(x)ω(y) dx dy − γ∫F0ω(x)ΨH(x) dx ,

andH := Eg (p) + Ea(p) + E(ω).

Proposition

The quantity H is conserved along the motion.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 47 / 145

Page 48: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Short-range and longe-range interactions

Lemma

Let f in L1(R2) ∩ L∞(R2). We denote by

ρf := inf d > 1 / Supp(f ) ⊂ B(0, d).

Then there exists C > 0 such that∫R2

∣∣∣ln |x − y |f (x)∣∣∣ dx ≤ C‖f ‖L∞ + ln(2ρf )‖f ‖L1 ,

for any y ∈ B(0, ρf ).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 48 / 145

Page 49: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Short/long-range interactions

Proposition

For some constant C, depending only on m,J , ‖ω0‖L1∩L∞ , |`0|, |r0|, |γ|, ρω0 andthe geometry,

|`(t)|+ |r(t)| ≤ C [1 + ln(ρ(t))],

whereρ(t) := ρω(t,·) = infd > 1 / Supp(ω(t, ·)) ⊂ B(0, d).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 49 / 145

Page 50: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 3. A vanishingly small body in an rotational 2d flow.

In the third part we still consider the motion of a rigid body immersed in a twodimensional incompressible perfect fluid with vorticity but we are now interested inthe limit where the body shrinks to a pointwise particle.

We will consider two cases depending on whether the body shrinks to a massive ora massless particle.

In both cases the circulation is assumed to be fixed.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 50 / 145

Page 51: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A vanishingly small body

Sε0 := εS0,

The body moves rigidly so that at times t it occupies a domain Sε(t) which isisometric to Sε0 . We denote

Fε(t) := R2 \ Sε(t)

the domain occupied by the fluid at time t starting from the initial domain

Fε0 := R2 \ Sε0 .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 51 / 145

Page 52: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

The equations

∂uε

∂t+ (uε · ∇)uε +∇πε = 0 for t ∈ (0,∞), x ∈ Fε(t),

div uε = 0 for t ∈ [0,∞), x ∈ Fε(t),

mε(hε)′′(t) =

∫∂Sε(t)

πεn ds for t ∈ (0,∞),

J ε(rε)′(t) =

∫∂Sε(t)

(x − hε(t))⊥ · πεn ds for t ∈ (0,∞),

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 52 / 145

Page 53: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Initial and boundary conditions

uε · n =(

(hε)′(t) + rε(t)(x − hε(t))⊥)· n for t ∈ [0,∞), x ∈ ∂Sε(t),

lim|x|→∞

|uε(t, x)| = 0 for t ∈ [0,∞),

uε|t=0 = uε0 for x ∈ Fε0 ,hε(0) = 0, (hε)′(0) = `ε0, θε(0) = 0, rε(0) = rε0 .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 53 / 145

Page 54: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Indeed, since Sε(t) is isometric to Sε0 there exists a rotation matrix

Rθε(t) :=

(cos θε(t) − sin θε(t)sin θε(t) cos θε(t)

)such that

Sε(t) := hε(t) + Rθε(t)x , x ∈ Sε0.

Furthermore, the angle satisfies

(θε)′(t) = rε(t).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 54 / 145

Page 55: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Two pointwise limits

Case (i) : the solid occupying the domain Sε(q) is assumed to have a massand a moment of inertia of the form

mε = m and J ε = ε2J ,

where m > 0 and J > 0 are fixed, so that the solid tends to a massivepointwise particle.Case (ii) : the solid occupying the domain Sε(q) is assumed to have a massand a moment of inertia of the form

mε = εαm and J ε = εα+2 J ,

where α > 0 and m > 0 and J > 0 are fixed, so that the solid tends to amassless pointwise particle.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 55 / 145

Page 56: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Vorticity and circulation

We will consider an initial fluid vorticity wε0 = w0 ∈ L∞c (R2 \ 0) independent of

ε and an initial circulationγ :=

∫∂Sε

0

uε0 · τ ds

around the solid independent of ε as well.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 56 / 145

Page 57: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Initial solid velocity

We will consider an initial solid velocity (`ε0, rε0 ) independent of ε :

(`ε0, rε0 ) = (`0, r0) ∈ R2 × R.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 57 / 145

Page 58: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Initial fluid velocity

The initial fluid velocity uε0 is then defined as the unique log-Lipschitz solution ofthe div-curl type system :

div uε0 = 0, curl uε0 = wε0 in Fε0 ,

uε0 · n = (`0 + r0x⊥) · n on ∂Sε0 ,lim|x|→∞ |uε0(x)| = 0,

∫∂Sε

0uε0 · τ ds = γ,

where wε0 := w0|Fε

0, hence, for ε small enough (depending on dist(supp w0; h0)

and the size of S0), we havewε

0 := w0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 58 / 145

Page 59: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Biot-Savart operator in R2

We will use the following notation for the Biot-Savart operator in R2 :

KR2 [w ] :=

∫R2

HR2(x − y)w(t, y) dy ,

which is the convolution operator with the vector field HR2 (already) defined by

HR2(x) :=12π

x⊥

|x |2.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 59 / 145

Page 60: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Case (i). The massive limit

Theorem (Glass-Lacave-S. 2012)

Consider T > 0. Then, up to a subsequence, one has the following :hε converges to h weakly-∗ in W 2,∞(0,T ;R2),εθε converges to 0 weakly-∗ in W 2,∞(0,T ;R),wε converges to w in C 0([0,T ]; L∞(R2)− w∗),(h,w) satisfy

∂w∂t

+ div([

u +γ

2π(x − h(t))⊥

|x − h(t)|2

]w)

= 0,

mh′′(t) = γ(h′(t)− u(t, h(t))

)⊥,

w |t=0 = w0, h(0) = 0, h′(0) = `0.

with u(t, x) := KR2 [w(t, ·)](x).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 60 / 145

Page 61: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Case (ii). The massless limit

Theorem (Glass-Lacave-S. Soon)

For any T > 0, as ε→ 0+,hε converges to h weakly-∗ in W 1,∞(0,T ;R2),wε converges to w in C 0([0,T ]; L∞(R2)− w∗),(h,w) satisfy

∂w∂t

+ div([

u +γ

2π(x − h(t))⊥

|x − h(t)|2

]w)

= 0,

h′(t) = u(t, h(t)) in [0,T ],

w |t=0 = w0, h(0) = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 61 / 145

Page 62: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Change of frame

We apply again the following isometric change of variable :vε(t, x) = RT

θε(t) u(t,Rθε(t)x + hε(t)),

ωε(t, x) = wε(t,Rθε(t)x + hε(t)) = curl vε(t, x),

`ε(t) = RTθε(t) (hε)′(t).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 62 / 145

Page 63: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A few basic remarks on scaling laws

Hε(x) =1εH1(xε

),

(∇Φεi )(x) = (∇Φ1

i )(xε

) for i = 1, 2,

(∇Φε3(x) = ε (∇Φ1

3)(xε

),

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 63 / 145

Page 64: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A few basic remarks on scaling laws

LetMε

a :=[mε

i,j]i,j∈1,2,3 ,

withmε

i,j :=

∫Fε0

∇Φεi · ∇Φε

j = ε2+δi≥3+δj≥3

∫F0∇Φ1

i · ∇Φ1j .

Therefore

Mεa = ε2 IεMaIε, with Iε :=

1 0 00 1 00 0 ε

.

This has to compared with

Mεg :=

[mε Id2 0

0 J ε]

= εα IεMg Iε.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 64 / 145

Page 65: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Energy estimates

We have seen that the following quantity is conserved along the motion :

Hε =12

(Iεpε)T(εαMg + ε2Ma

)(Iεpε)

−12

∫Fε0×Fε

0

G εH(x , y)ωε(x)ωε(y) dx dy − γ∫Fε0

ωε(x)ΨHε(x) dx ,

where

pε :=

(`ε

)and Iεpε :=

(`ε

εrε

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 65 / 145

Page 66: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Energy estimates

Using the short/long-range decomposition of the interactions we deduce that

|ε`ε(t)|+ |ε2rε(t)| ≤ C [1 + ln(ρε(t))],

whereρε(t) := ρωε(t,·) = infd > 1 / Supp(ωε(t, ·)) ⊂ B(0, d),

for some constant C = C (m,J0, ‖w0‖L1∩L∞ , |`0|, |r0|, |γ|, ρw0), depending only onthese values and the geometry for ε = 1.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 66 / 145

Page 67: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Decomposition of the pressure

In the presence of vorticity the solid equations can be rewritten in the form

(`ε

)′= −(Aεi + Bεi + C εi )i=1,2,3 − (Dε

i )i=1,2,3 −(mrε(`ε)⊥

0

),

where for i = 1, 2, 3,

Aεi :=12

∫∂Sε

0

|vε|2Ki ds −∫∂Sε

0

(`ε + rεx⊥) · vεKi ds,

Bεi := γ

∫∂Sε

0

(vε − (`ε + rεx⊥)) · HεKi ds,

C εi :=γ2

2

∫∂Sε

0

|Hε|2Ki ds,

andDε

i :=

∫Fε0

ωε[vε − `ε − rεx⊥]⊥ · ∇Φεi (x) dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 67 / 145

Page 68: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Obstacle to the complex-analytical strategy

In the previous slide,vε := vε − γHε

is not curl free.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 68 / 145

Page 69: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Two extra Kirchhoff potentials

−∆Φεi = 0 in Fε0 , Φε

i −→ 0 when x →∞, ∂Φεi

∂n= Ki on ∂Fε0 ,

where

(K4, K5) :=

((−x1x2

)· n,(x2x1

)· n).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 69 / 145

Page 70: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Approximation of the velocity

We have

(∇KR2 [ωε]|x=0)x = aε(−x1x2

)+ bε

(x2x1

).

We introduce

vε# := KR2 [ωε]|x=0 + (∇KR2 [ωε]|x=0)x

−2∑

i=1

(KR2 [ωε]|x=0)i∇Φεi − aε∇Φε

4 − bε∇Φε5.

which is a good approximation of

K εH [ωε].

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 70 / 145

Page 71: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

An exercise

Letn be an integerA be a real n × n skew-symmetric matrix,B be a real n × n matrix,y0, y1 ∈ Rn,ε ∈ (0, 1) and yε(t) the solution to

εy ′′ε = A(y ′ε − Byε),yε(0) = y0, y ′ε(0) = y1.

Prove that there exists T > 0 such that (yε)ε∈(0,1) is bounded in C 1([0,T ];Rn).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 71 / 145

Page 72: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Modulation

Let

˜ε(t) := `ε(t)− KR2 [ωε(t, ·)](0)− ε∇KR2 [ωε(t, ·)](0) · ξ,

where

`ε(t) := RTθε(t) (hε)′(t).

Let

pε := (˜ε, εrε).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 72 / 145

Page 73: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Normal Form

Proposition

Let us fix ρ > 0. If for a given T > 0 and an ε ∈ (0, 1) one has for all t ∈ [0,T ] :

d(hε(t), Supp (ωε(t))) ≥ 1/ρ and Supp (ωε(t)) ⊂ B(hε(t), ρ),

then on [0,T ] : [εαMg + ε2Ma

](pε)′ + 〈εα−1Γg + εΓa, pε, pε〉

= γ pε × B+εγG (ε, t) + εmin(α,2)F (ε, t),

where G is weakly gyroscopic and F is weakly nonlinear.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 73 / 145

Page 74: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

The function G = G (ε, t) : (0, 1)× [0,T ]→ R3 satisfies∣∣∣∣∫ t

0pε(s) · G (ε, s) ds

∣∣∣∣ ≤ εC (1 + t +

∫ t

0|pε(s)|2 ds

),

and the function F = F (ε, t) : (0, 1)× [0,T ]→ R3 satisfies

|F (ε, t)| ≤ C(1 + |pε(t)|+ ε|pε(t)|2

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 74 / 145

Page 75: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 1.Bis. A new look at the irrotational case

We revisit the irrotational case of the first part following this time a real-analyticapproach after Lamb.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 75 / 145

Page 76: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

We have seen that the solid equations can be rewritten in the form

(Mg +Ma)(p)′ + 〈Γg , p, p〉 = −(12

∫∂S0|v |2Ki ds −

∫∂S0

(`+ rx⊥) · vKi ds)i ,

where i runs over the integers 1, 2, 3.

Let us recall that(K1, K2, K3) := (n1, n2, x⊥ · n).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 76 / 145

Page 77: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Lamb’s lemma

Letζ1(x) := e1 , ζ2(x) := e2 and ζ3(x) := x⊥

denote the elementary rigid velocities.

Lemma

For any pair of vector fields (u, v) in C∞(R2 \ S0;R2) satisfyingdiv u = div v = curl u = curl v = 0,u(x) = O(1/|x |) and v(x) = O(1/|x |) as |x | → +∞,

one has, for any i = 1, 2, 3,∫∂S0

(u · v)Kids =

∫∂S0

ζi ·(

(u · n)v + (v · n)u)ds.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 77 / 145

Page 78: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

As a consequence, using Lamb’s lemma and the boundary conditions, we obtain :

12

∫∂S0|v |2Ki ds =

∫∂S0

(v · n)(v · ζi ) ds

=

∫∂S0

((`+ rx⊥) · n

)(v · ζi

)ds

=

∫∂S0

((`+ rx⊥) · n

)(v · n

)Ki ds

+

∫∂S0

((`+ rx⊥) · n

)(v · τ

)(ζi · τ

)ds,

so that

12

∫∂S0|v |2Ki ds −

∫∂S0

(`+ rx⊥) · vKi ds

= −∫∂S0

((`+ rx⊥) · τ

)(v · τ

)Ki ds +

∫∂S0

((`+ rx⊥) · n

)(v · τ

)(ζi · τ

)ds

=∑k

pk

∫∂S0

(v · τ

)[(ζi · τ

)Kk −

(ζk · τ

)Ki ] ds

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 78 / 145

Page 79: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Computation of the brackets

For instance,

(ζ1 · τ

)K2 −

(ζ2 · τ

)K1 =

(ζ1 · τ

)(ζ2 · n

)−(ζ2 · τ

)(ζ1 · n

)=

(ζ2 · n

)2+(ζ2 · τ

)2= 1

and (ζ1 · τ

)(ζ3 · n

)−(ζ3 · τ

)(ζ1 · n

)=

(ζ2 · n

)(ζ3 · n

)+(ζ3 · τ

)(ζ2 · τ

)= ζ2 · ζ3.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 79 / 145

Page 80: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Conclusion

One obtains exactly the same kind of formulation than previously, that is :[Mg +Ma

](p)′ + 〈Γg , p, p〉+ 〈Γa, p, p〉 = γp × B,

with

B :=

(ξ⊥

−1

),

whereξ :=

∫∂S0

x(H · τ

)ds,

(instead of

ξ1 + iξ2 :=

∫∂S0

zH dz

in the first part).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 80 / 145

Page 81: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Link with the complex-analytic approach

Lemma

Denote ξ := (ξ1, ξ2). Then ξ = ξ1 + i ξ2.

The proof relies on the formula :∫∂S0

(f1 − if2) dz =

∫∂S0

(f · τ − if · n

)ds. (2)

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 81 / 145

Page 82: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Back to the original frame

Going back to the original frame the equations read

q′ = p, (Mg +Ma, ϑ) p′ + 〈Γϑ, p, p〉 = Fϑ(p),

where

Ma,ϑ := R(ϑ)MaR(ϑ)t ,

〈Γϑ, p, p〉 := −(Pa, ϑ0

)× p − rMa, ϑ

(0`⊥

),

Fϑ(p) := γ

(`⊥ − rζϑζϑ · `

)= γp × Bϑ,

with

R(ϑ) :=

(R(ϑ) 00 1

)∈ SO(3),

Pa, ϑ for the two first coordinates ofMa, ϑ p,

Bϑ :=

(−1ζ⊥ϑ

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 82 / 145

Page 83: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A geodesic interpretation

Let

〈Γϑ, p, p〉 =:

∑1≤i,j≤3

(Γϑ)ki,jpipj

1≤k≤3

∈ R3.

Then for every i , j , k ∈ 1, 2, 3,

(Γϑ)ki,j(q) :=

12

((Ma,ϑ)i

k,j + (Ma,ϑ)jk,i − (Ma,ϑ)k

i,j

)(q),

where(Ma,ϑ)k

i,j :=∂(Ma,ϑ)i,j

∂qk.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 83 / 145

Page 84: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 4. A rigid body immersed in a bounded domain

We will make use of Lamb’s approach to tackle the case where the fluid-solidsystem occupies a bounded domain, still in the irrotational case.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 84 / 145

Page 85: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

An immersed body

Let now S(t) be a rigid body moving in Ω.

S(t)F(t) Ω

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 85 / 145

Page 86: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Setting

Ω : bounded open regular connected and simply connected domain of R2

occupied by the system fluid-solid,S0 ⊂ Ω : domain initially occupied by the solid,F0 := Ω \ S0 : domain initially occupied by the fluid,at time t, the solid occupies S(t) := R(ϑ(t))S0 + h(t),

at time t, he fluid occupies F(t) := Ω \ S(t).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 86 / 145

Page 87: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Motion of the rigid body

The solid can translate : its center of gravity h(t) evolves in Ω,The solid can rotate of an angle ϑ(t),

The evolutions of h and ϑ are given by Newton’s laws :

mh′′ =

∫∂S(t)

πn ds,

where n denotes the normal,There’s a similar equation for ϑ :

J ϑ′′ =

∫∂S(t)

π(x − h(t))⊥ · n ds,

The walls (of the cavity and of the body) are impermeable so that the normalcomponent of the velocity is continuous at the fluid-solid interface.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 87 / 145

Page 88: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Helmholtz and Kelvin

For any t,curl u(t, ·) = 0 in F(t),

and ∫∂S(t)

u(t) · τds = γ :=

∫∂S0

u0 · τds.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 88 / 145

Page 89: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Leth := (h1, h2), q := (h1, h2, ϑ) ∈ R3,

and their time derivatives

` := (`1, `2), p := (`1, `2, r) ∈ R3.

S(t), F(t) depend on q only, we shall rather denote them S(q) and F(q),

Q := q ∈ R3 : d(S(q), ∂Ω) > 0,

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 89 / 145

Page 90: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Kirchhoff potentials

Let, for any q in Q, ζj(q, ·), Kj(q, ·) and Φj(q, ·)/

ζj(q, x) := ej−1, for j = 1, 2 and ζ3(q, x) := (x − h)⊥,

Kj(q, ·) := n · ζj(q, ·) on ∂Ω ∪ ∂S(q).

∆Φj = 0 in F(q),

∂Φj

∂n(q, ·) = Kj(q, ·) on ∂S(q),

∂Φj

∂n(q, ·) = 0 on ∂Ω.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 90 / 145

Page 91: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Kirchhoff potentials

We also denote

K (q, ·) := (K1(q, ·),K2(q, ·),K3(q, ·))t ,

and

Φ(q, ·) := (Φ1(q, ·),Φ2(q, ·),Φ3(q, ·))t .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 91 / 145

Page 92: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Inertia

Let

Mg :=

J 0 00 m 00 0 m

,

Ma(q) :=

∫∂S(q)

Φ(q, ·)⊗ ∂Φ

∂n(q, ·)ds =

(∫F(q)

∇Φi · ∇Φjdx)

16i,j63,

and

M(q) :=Mg +Ma(q).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 92 / 145

Page 93: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Christoffel symbols

Let

〈Γ(q), p, p〉 :=

∑1≤i,j≤3

Γki,j(q)pipj

1≤k≤3

∈ R3,

where, for every i , j , k ∈ 1, 2, 3, we set

Γki,j(q) :=

12

((Ma)i

k,j + (Ma)jk,i − (Ma)k

i,j

)(q),

where(Ma)k

i,j :=∂(Ma)i,j

∂qk.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 93 / 145

Page 94: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Stream function for the circulation term

For every q ∈ Q, there exists a unique C (q) ∈ R such that the unique solutionψ(q, ·) of the Dirichlet problem :

∆ψ(q, ·) = 0 in F(q),

ψ(q, ·) = C (q) on ∂S(q),

ψ(q, ·) = 0 on ∂Ω,

satisfies ∫∂S(q)

∂ψ

∂n(q, ·)ds = −1.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 94 / 145

Page 95: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Force term

Eventually, we also define :

B(q) :=

∫∂S(q)

(∂ψ

∂n

(∂Φ

∂n× ∂Φ

∂τ

))(q, ·) ds,

E (q) := −12

∫∂S(q)

(∣∣∣∣∂ψ∂n∣∣∣∣2 ∂Φ∂n

)(q, ·) ds,

and the force termF (q, p) := γ2E (q) + γ p × B(q).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 95 / 145

Page 96: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Reformulation as an ODE

Theorem (Glass-Munnier-S. 2014)

Up to the first collision, the fluid-body system is equivalent to the second orderODE

q′ = p,M(q)p′ + 〈Γ(q), p, p〉 = F (q, p),

with Cauchy data

q(0) = 0 ∈ Q, p(0) = (r0, `0) ∈ R× R2.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 96 / 145

Page 97: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Scheme of proof

We will use the weak formulation :

m`′ · `∗ + J r ′r∗ +

∫F(q)

(∂u∂t

+12∇|u|2

)· u∗dx = 0,

for all p∗ = (`∗, r∗) ∈ R3, with

u∗ := ∇(Φ(q, ·) · p∗),

which is defined on F(q).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 97 / 145

Page 98: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Scheme of proof

We decomposeu(q, ·) = u1(q, ·) + u2(q, ·),

with

u1(q, ·) := ∇(Φ(q, ·) · p) = ∇

3∑j=1

Φj(q, ·)pj

and

u2(q, ·) := γ∇⊥ψ(q, ·).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 98 / 145

Page 99: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Scheme of proof

This leads to

m`′ · `∗ + J r ′r∗ +

∫F(q)

(∂u1

∂t+

12∇|u1|2

)· u∗dx = −

∫F(q)

(12∇|u2|2

)· u∗dx

−∫F(q)

(∂u2

∂t+

12∇(u1 · u2)

)· u∗dx .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 99 / 145

Page 100: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Scheme of proof

The proof then reduces to proving that

m`′ · `∗ + J r ′r∗ = Mg (q)p′ · p∗,∫F(q)

(∂u1

∂t+

12∇|u1|2

)· u∗dx = Ma(q)p′ · p∗ + 〈Γ(q), p, p〉 · p∗,

−∫F(q)

(12∇|u2|2

)· u∗dx = γ2E (q) · p∗,

−∫F(q)

(∂u2

∂t+∇(u1 · u2)

)· u∗dx = γ

(p × B(q)

)· p∗.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 100 / 145

Page 101: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Scheme of proof of the second identity

First we prove that∫F(q)

(∂u1

∂t+

12∇|u1|2

)· u∗dx =

(ddt∂E1∂p− ∂E1

∂q

)· p∗,

withE1(q, p) :=

12

∫F(q)

|u1|2dx .

Then we observeE1(q, p) =

12Ma(q)p · p.

and deduce that(ddt∂E1∂p− ∂E1

∂q

)· p∗ =Ma(q)p′ · p∗ + 〈Γ(q), p, p〉 · p∗.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 101 / 145

Page 102: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Energy conservation

Proposition

For any solution (q, p) ∈ C∞([0,T ];Q× R3),

ddtE(q, p) = 0, where E(q, p) :=

12M(q)p · p + U(q),

where the potential energy U(q) is given by

U(q) := −12γ2C (q).

Moreover∀q ∈ Q, E (q) =

12DC (q).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 102 / 145

Page 103: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

No collision implies that the velocity is bounded

Let, for δ > 0,

Qδ := q ∈ R3 : d(S(q), ∂Ω) > δ.

Then there exists K > 0 (depending only on S0,Ω, p0, γ,m,J , δ) such that|p|R3 ≤ K on [0,T ].

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 103 / 145

Page 104: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

First proof of the energy conservation : with the PDEformulation

First we prove the conservation of

E :=12

∫F(q)

u2 dx +12m`2 +

12J r2

thanks to the weak formulation of the PDE formulation.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 104 / 145

Page 105: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

First proof of the energy conservation : with the PDEformulation

Then we prove that E coincides with E in the following way. We first decomposeagain u into

u(q, ·) = u1(q, ·) + u2(q, ·),

and use again that ∫F(q)

u21 dx =Ma(q)p,

to obtain that

E =12

∫F(q)

u22 dx +

∫F(q)

u1 · u2 dx +12M(q)p · p,

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 105 / 145

Page 106: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

First proof of the energy conservation : with the PDEformulation

Moreover, by some integration by parts, we have that

12

∫F(q)

u22 dx =

12γ2∫F(q)

∇⊥ψ · ∇⊥ψ dx

=12γ2∫S(q)

∂ψ

∂n(q, ·)ψ(q, ·)ds

= −12γ2C (q),

since ψ(q, ·) is constant equal to C (q) on ∂S(q) and satisfies∫∂S(q)

∂ψ

∂n(q, ·)ds = −1.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 106 / 145

Page 107: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

First proof of the energy conservation : with the PDEformulation

Finally by another integral by parts,∫F(q)

u1 · u2 dx = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 107 / 145

Page 108: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Second proof : with the ODE formulation

First we observe that(E(q, p)

)′=M(q)p′ · p +

12

(DM(q) · p)p · p − 12γ2DC (q) · p.

Using the ODE we have

M(q)p′ · p = −〈Γ(q), p, p〉 · p + F (q, p) · p,

andF (q, p) · p = γ2E (q) · p,

so that (E(q, p)

)′= −〈Γ(q), p, p〉 · p +

12

(DM(q) · p)p · p

+γ2(E (q) · p − 1

2DC (q) · p

).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 108 / 145

Page 109: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Second proof : with the ODE formulation

The proof then follows from the two following identities :

−〈Γ(q), p, p〉 · p +12

(DM(q) · p)p · p = 0,

E (q) · p − 12DC (q) · p = 0.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 109 / 145

Page 110: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Second proof : with the ODE formulation

The second identity follows from the fact that the matrix

S(q, p) :=

∑1≤i≤3

Γki,j(q)pi

1≤k,j≤3

,

is such that〈Γ(q), p, p〉 = S(q, p)p.

and such that12DM(q) · p − S(q, p)

is skew-symmetric.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 110 / 145

Page 111: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Hamiltonian structure and third proof of the energyconservation

We introduce the impulses :(PgΠg

):=Mgp,

(PaΠa

):=Ma(q)p,

(PΠ

)=

(Pg + PaΠg + Πa

).

LetI := (P,Π) andM(q) :=Mg +Ma(q),

such that (PΠ

):=M(q)p.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 111 / 145

Page 112: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Poisson manifold

Definition

We say that the manifold P of the smooth functions (q, I ) has a Poisson structureif there exists a a bracket ·, · acting on C∞ functionals f : P → R, bilinear andskew-symmetric, satisfying the Jacobi and the Leibniz identities.

Jacobi : f 1, f 2, f 3+ f 2, f 3, f 1+ f 3, f 1, f 2 = 0,

Leibniz : f 1f 2, f 3 = f 1f 2, f 3+ f 2f 1, f 3.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 112 / 145

Page 113: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Non-canonical Hamiltonian structure

We set

f 1, f 2 :=∂f 2

∂q· ∂f

1

∂I− ∂f 1

∂q· ∂f

2

∂I− γB(q) ·

(∂f 1

∂I× ∂f 2

∂I

),

and consider

H = −E = −12M(q)p · p − U(q) = −1

2I · M(q)−1I − U(q),

as a functional on P.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 113 / 145

Page 114: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Hamiltonian structure

Proposition

If (q, p) satisfies the previous ODE then, for any smooth functional f on P,

ddt

f = f ,H.

(Above f and H stand respectively for f (q, I ) and H(q, I )).

As a trivial consequence of the skew-symmetry of the bracket ·, · we get that Hand therefore E is conserved by the solutions.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 114 / 145

Page 115: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 5. A vanishingly small body in a bounded domain

Let us now turn our attention to the limit of the dynamics in the setting of Part 4when the size of the solid goes to 0.

As above, we will distinguish the two cases :Case (i) : when the mass of the solid is fixed, and then the solid tends to amassive pointwise particle, andCase (ii) : when the mass tends to 0 along with the size, and then the solidtends to a massless pointwise particle.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 115 / 145

Page 116: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A vortex point in a bounded domain

If initiallyω|t=0 = γδh0

then at time t > 0,ω = γδh(t)

with

(h)′(t) = γuΩ(h),

where uΩ is a smooth vector field on Ω, depending only on Ω.Smooth solutions to Euler initially close to

ω|t=0 = γδh0

stay close toω = γδh(t),

cf. Turkington, Marchioro-Pulvirenti.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 116 / 145

Page 117: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Definition of uΩ

Let ψ(h, ·) be the solution to :

∆ψ(h, ·) = 0 in Ω, ψ(h, ·) = G (· − h) on ∂Ω,

whereG (r) := − 1

2πln |r |.

The Kirchhoff-Routh stream function ψΩ is then defined by :

ψΩ(x) :=12ψ(x , x),

and the Kirchhoff-Routh velocity uΩ by

uΩ := ∇⊥ψΩ.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 117 / 145

Page 118: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Case (i) : Dynamics of a solid shrinking to a pointwisemassive particle

The solid occupying the domain

Sε(q) := R(ϑ)Sε0 with Sε0 := εS0,

is assumed to have a mass and a moment of inertia of the form

mε = m and J ε = ε2J 1,

where m > 0 and J 1 > 0 are fixed.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 118 / 145

Page 119: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Case (i)

We get at the limit :

m(h(i))′′ = γ

((h(i))

′ − γuΩ(h(i)))⊥.

We have : lim inf T ε ≥ T(i), and the convergence holds for any T ∈ (0,T(i)).

The convergence holds in W 2,∞([0,T ];R2) weak-*, and we think that thisconvergence is optimal.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 119 / 145

Page 120: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Case (ii)

We then get the equation of a point vortex of intensity γ :

(h(ii))′ = γuΩ(h(ii)).

The solution is global (no collision with the boundary), and T ε −→ +∞.

The convergence holds in W 1,∞([0,T ];R2) weak-*, and, once again, wethink that this convergence is optimal.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 120 / 145

Page 121: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

The normal form

Withp =

(εϑ′, h′ − γ(uΩ(h) + εuc(θ, h))

),

the ODE can be recast as :

εmin(2,α)M∂Ω(ϑ, ε)(p)′

+ ε〈Γ∂Ω(ϑ), p, p〉 =

γp × B∂Ω(ϑ) + εγ2G (q) + O(εmin(2,α)),

where G (q) is weakly gyroscopic so that an extra ε comes out in the energyestimate.The two last lines of p × B∂Ω(ϑ) = 0 reads

h′ = γuΩ(h).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 121 / 145

Page 122: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Multi-scale expansions

S(t)F(t) Ω

Fluid state in Ω \ Sε(t) = Fluid state as if ∂Ω

+ Corrector as if Sε(t)

+ Corrector(Corrector) as if ∂Ω

+ ...

Method : Potential Theory / Fredholm for ...

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 122 / 145

Page 123: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

We expand uε1 and uε2 in

γ2E ε(qε), γ p × Bε(qε) and the main part of 〈Γε(qε), pε, pε〉,

which are all three expressions of the form∫∂Sε

0

((uε1 or uε2) · (uε1 or uε2))(ξj · n) ds,

and finally repeatedly use Lamb’s lemma.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 123 / 145

Page 124: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Part 6. A mean-field limit.

In this part we introduce an Euler-Vlasov system which seems a plausible relevantcandidate to describe a cloud of small massive particles in a two dimensionalincompressible perfect fluid. We will provide a piece of beginning of justification ina regularized setting.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 124 / 145

Page 125: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A mean-field limit

Let N solid bodies in a two dimensional incompressible perfect fluid, shrunk tomassive pointwise particles, with mass mi > 0, circulation γi and position hi (t),

∂tω + div x(ωu) = 0,

u(t, x) = KR2 [ω](t, x) +N∑

j=1

γjHR2(x − hj(t)),

mih′′i (t) = γi

(h′i (t)− vi (t, hi (t))

)⊥,

vi (t, x) = KR2 [ω](t, x) +∑j 6=i

γjHR2(x − hj(t)),

ω|t=0 = ω0, hi (0) = hi,0, h′i (0) = hi,1.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 125 / 145

Page 126: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Mean-field

We want to study the limit system obtained by the empirical measure

fN(t) :=1N

N∑i=1

δ(hi (t),h′i (t))

when N goes to infinity, with an appropriate scaling of the amplitudes.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 126 / 145

Page 127: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

We therefore consider now the solutions of

∂tω + div x(ωu) = 0,

u(t, x) = KR2 [ω](t, x) +1N

N∑j=1

HR2(x − hj(t)),

h′′i (t) =(h′i (t)− vi (t, hi (t))

)⊥,

vi (t, x) = KR2 [ω](t, x) +1N

∑j 6=i

HR2(x − hj(t)),

ω|t=0 = ω0, hi (0) = hi,0, h′i (0) = hi,1.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 127 / 145

Page 128: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A plausible limit system

Our guess is that one obtains in the limit the following PDE system :

∂tω + div x(ωu) = 0,∂t f + div x(f ξ) + div ξ(f (ξ − u)⊥) = 0,

where

u := KR2 [ω + ρ] and ρ :=

∫R2

fdξ.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 128 / 145

Page 129: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

An alternative formulation based on the fluid velocity

An alternative way to describe the system is to use the following velocityformulation :

∂tu + div x(u ⊗ u) +∇p = (ρu − j)⊥,div x u = 0

∂t f + div x(f ξ) + div ξ(f (ξ − u)⊥) = 0,

where

ρ :=

∫R2

fdξ and j :=

∫R2

f ξdξ.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 129 / 145

Page 130: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A regularized version of the system

u := K [ω + ρ] and ρ :=

∫R2

fdξ,

where K is defined by

K [g ](x) :=

∫R2

H(x − y)g(y)dy ,

with H is in W 1,∞(R2) and satisfies H(0) = 0. With this regularization, a properproof of the mean field limit is possible thanks to optimal transportation.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 130 / 145

Page 131: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Measures

We will denote byM(Rd) the set of signed measures,M+(Rd) the set of finite measures on Rd ,P(Rd) the set of the probability measures that is the subset ofM+(Rd)verifying ν(Rd) = 1,M1(Rd) the subspace of signed measures having a finite first moment

M1(Rd) :=

ν ∈M(Rd) :

∫Rd|x |1d |ν| <∞

,

and similarlyM+1 (Rd) and P1(Rd).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 131 / 145

Page 132: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Pushforward

Givena measure ν inM(Rd1)

and a map τ : Rd1 → Rd2

we define the pushforward measure τ#ν ∈M(Rd2) of ν by τ by

τ#ν[B] := ν[τ−1(B)],

for any Borel subset B of Rd2 .

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 132 / 145

Page 133: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Measures

Given a measure γ over the product space

Rd × Rd = R2d

and the projections π1 and π2 on it factors, we define the first and secondmarginals of γ as the measures π1

#γ and π2#γ.

This means that for any Borel set B of Rd ,

π1#γ[B] = γ[B × Rd ] and π2

#γ[B] = γ[Rd × B].

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 133 / 145

Page 134: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Wasserstein distances for measures

Definition

Let ν1 and ν2 be inM+1 (Rd) two finite measures on Rd such as ν1(Rd) = ν2(Rd).

We define the Wasserstein distance W1(ν1, ν2) of order p between this twomeasures by

W1(ν1, ν2) := infγ

∫Rd×Rd

γ(x , y)|x − y |dxdy

where the infimum is taken over all γ ∈M+(Rd × Rd) with marginals ν1 and ν2.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 134 / 145

Page 135: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Wasserstein distances for signed measures

Definition

We will say that two signed measures ν1 and ν2 on Rd are compatible wheneverν±1 (Rd) = ν±2 (Rd).

Definition

Given two compatible elements ν1, ν2 ofM1(Rd), we define the Wassersteindistance

W1(ν1, ν2) := W1(ν+1 + ν−2 , ν

−1 + ν+

2 ).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 135 / 145

Page 136: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Kantorovitch duality

Proposition

Let ν1 and ν2 be two compatible elements ofM1(Rd). Then

W1(ν1, ν2) = supφ

∫Rdφ d(ν1 − ν2),

where the supremum is taken over the unit ball of Lip(Rd).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 136 / 145

Page 137: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Translation invariance

Lemma

If ν1, ν2 and ν3, ν4 are two pairs of compatible elements ofM1(Rd), then the twomeasures ν1 + ν3 and ν2 + ν4 are compatible and we have

W1(ν1 + ν3, ν2 + ν4) 6 W1(ν1, ν2) + W1(ν3, ν4),

with equality in the particular case where ν3 = ν4.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 137 / 145

Page 138: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Lemma

Consider two compatible elements ν1, ν2 ofM1(Rd1). Let τ : Rd1 → Rd2 be aLipschitz map. Then

W1(τ#ν1, τ#ν2) 6 ‖τ‖LipW1(ν1, ν2).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 138 / 145

Page 139: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Lemma

Consider two compatible elements ν1, ν2 ofM1(Rd × Rd). We have, for i = 1, 2,

W1(πi#ν1, π

i#ν2) 6 W1(ν1, ν2).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 139 / 145

Page 140: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Wasserstein distances for vector measures

Definition

Let d1 and d2 be two positive integers. Consider two pairs ν1, ν2 and σ1, σ2 ofcompatible measures (respectively inM1(Rd1) andM1(Rd2)).We introduce the couples

µi := (νi , σi ) ∈M1(Rd1)×M1(Rd2),

i = 1, 2 and define the associated Wasserstein distance W1(µ1, µ2) between µ1and µ2 by

W1(µ1, µ2) := W1(ν1, ν2) + W1(σ1, σ2).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 140 / 145

Page 141: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

A well-posedness result for the regularized system

Theorem (Moussa-S. 2012)

Existence and uniqueness. Assume that (ω0, f0) is inM1(R2)× P1(R2 × R2). Then there exists only one corresponding solution

(ω, f ) ∈ C 0([0,∞);M1(R2)× P1(R2 × R2)).

Stability. Consider two solutions

µ1 := (ω1, f1) and µ2 := (ω2, f2)

associated with two initial data

µ10 := (ω1

0 , f10 ) and µ2

0 := (ω20 , f

20 )

inM1(R2)× P1(R2 × R2).Then, for any t ≥ 0,

W1(µ1(t), µ2(t)) ≤ e2Ct W1(µ10, µ

20),

where C > 0 depends only on ‖H‖Lip and |ω0|(R2).Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 141 / 145

Page 142: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Mean-field limit for regularized kernels

Assume that(ω0, f0) ∈M1(R2)× P1(R2 × R2)

and(h0

i , h1i )i∈N∗ ∈ (R2 × R2)N

are such that

f N0 :=

1N

N∑i=1

δ(h0i ,h1i ) ∈ P1(R2 × R2),

satisfiesW1(f N

0 , f0)→ 0 when N → +∞.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 142 / 145

Page 143: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Mean-field limit for regularized kernels

Let us denote byµN := (ωN , f N)N∈N∗ and µ := (ω, f )

the solutions respectively associated with the initial data

(ω0, f N0 )N∈N∗ and (ω0, f0)

given by the previous theorem.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 143 / 145

Page 144: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Mean-field limit for regularized kernels

Then, for any t > 0, for any N ≥ 1,

f N(t) =1N

N∑i=1

δ(hi,N(t),h′i,N(t)),

where

h′′i,N(t) =(h′i,N(t)− uN(t, hi,N(t))

)⊥,

uN = K [ωN ] +1N

N∑j=1

H(· − hj,N(t)),

(hi,N(0), h′i,N(0)) = (h0i , h

1i ).

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 144 / 145

Page 145: Prague Sum · Awell-posednessresultfortheregularizedsystem Theorem(Moussa-S.2012) Existence and uniqueness.Assumethat(! 0;f 0) isin M 1(R2) P 1(R2 R2

Mean-field limit for regularized kernels

Moreover for any T > 0,W1(µN , µ)→ 0

when N → +∞.

Franck Sueur Rigid bodies in 2d perfect flows Prague, August 2014 145 / 145