precast concrete systems (1)

274
 Precast Concrete Systems

Upload: abu-bidu

Post on 14-Jan-2016

139 views

Category:

Documents


4 download

DESCRIPTION

precast system

TRANSCRIPT

Page 1: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 1/274

Precast Concrete Systems

Page 2: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 2/274

A brief introduction to CFS

Quality, innovation, support

These three words are at the heart of everything CFSprovides to the lift industry, and remain as true today aswhen the business was first founded back in 2000 byTim Chart.

The goal of CFS is simple: provide an enhanced level ofservice within the existing market, while always delivercost-effective, technically brilliant solutions that resolveany application problem. Making this goal a reality is onlypossible through the drive, passion and commitment ofthe whole CFS team, who for over a decade have held thecompany’s philosophy true:

Analysis – Discussion – Action – Result

Quality products you can trust

Ideally suited to concrete, steel or composite structures,the highly innovative CFS product range includes liftsuspension eyes, lift frames, through bolts for guide railfixings, plus the newly created S-Fix secure bolt fixing.

However, the company is forever pushing to develop newproducts to meet the needs of an ever-changing industry.

Product quality is also key to CFS’ continued success, whichis why the company is proud to be ISO 9001 certified.

Testing and technical support

CFS is a member of the LEEA Association (LiftingEquipment Engineers Association) and fully understandsthe importance of on-site testing for both safety reasonsand for peace of mind.

CFS can also provide rapid technical backup for themany products provided, while full AutoCAD drawingservices are available. Furthermore, CFS has the services ofqualified engineers to assist with all projects and carries

professional indemnity.

Recent CFS projects include: Central St. Giles / The Cube,Birmingham / Stratford Olympic Village / UCLH Hospital.

Page 3: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 3/274

www.cfsfixings.com  0-1

Contents

1 Lifting Systems Design Criteria

2 Lifting Sockets

3 Fixing Sockets

4 Spherical Head Anchors

5 Quick Lift Anchors

6 Cast-in Lifting Loops

7  Double Wall Lifting Anchors

8 Reinforcement Continuity Systems

9 Cast-in Channels

10 Precast Panel Support and Restraint Systems

11 MOSO Precast Panel Suspension System

12 Precast Wall Connection Wire Rope Boxes

13 CVS Staircase Connectors

14Precast Column and Wall Shoes,and Other Connection Systems

15 Thermokorb Balcony Connector System

16 Well Void Tube

17 Recostal Permanent Formwork forConstruction Joints

18 Magnetic Formwork Systems

Page 4: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 4/274

www.cfsfixings.com0-2

Quality and CE Certification

Lifting ComponentsMachinery Directive 2006/42/EC

Lifting anchors, loops, eyes and chains are all coveredby the European Machinery Directive as they are liftingaccessories and an ‘integral part of the load’.

 The requirements have been implemented in theUK by the Supply of Machinery (Safety) Regulations2008, as amended by the Supply of Machinery (Safety)(Amendment) Regulations 2011.

The CE marking on our lifting products shows that theitem complies with the Machinery Directive and thatthey are safe to use. This same requirement has nowbeen implemented as national law in all countries in theEuropean Economic Area and in Switzerland.

The Machinery Directive outlines the process fordesigning and marking the steel. Manufacturing is inaccordance with BS EN 1090. The Machinery Directivedoes not make any consideration of the failure ofconcrete and there is no UK or European HarmonisedStandard for considering the failure of lifting inserts.

The best practice guidance in the industrycurrently is the Association of GermanEngineers (VDI) Guidance Document for LiftingInsert Systems VDI/BV-BS-6205 April 2012

This has not yet been adopted as a national or European

Standard, however CFS products follow this guidanceto ensure our sockets provide our customers with thehighest quality standards available on the market. Inaddition to this, we believe the technical support wecan provide is amongst the most comprehensive andresponsive in the market.

Fixing ComponentsConstruction Products Regulation (CPR) 305/211/EC

Fixing Sockets are coveredby the Construction ProductsRegulation (CPR) as they arestructural steel constructioncomponents for the permanentworks (ie not used temporarilyfor construction purposes).

The CE marking on our fixing products shows that theitem complies with the Construction Products Regulationand that they are safe to use. The Construction ProductsRegulation outlines the process for designing andmarking the steel. Manufacturing is in accordance withBS EN 1090.

Harmonised European Standards

Most of our fixing products do not come under aharmonised European standard. Alternatively theproduction standard EN 1090 is used. In addition, ifrequired for safety-critical applications perhaps for examplein the rail and nuclear sectors, we have some productshave enhanced approval via European Technical Approval.

This provides the highest possible product certification,please contact CFS for advice if this is a requirementfor your application. All our sockets are designed in

accordance with best practice, providing our customerswith the highest quality standards available on the market.

MachineryDirective

2006/42/EC

Associationof GermanEngineersGuidance

VDI/BV-BS-6205

Best Practice

Page 5: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 5/274

www.cfsfixings.com  0-3

The CE ProcessOur CE certified products follows a best-in-class processto provide safe products. Our high quality products arecoupled with complete and well considered technicalinformation and support to ensure that the right liftingand fixing attachments and accessories are used in the

right situation.

Initial Type Testing - Steel and Concrete

Determination of load capacity

Verified by Independent Technical Bodies

Manufacturing under Certified FactoryProduction Control (FPC) - EN 1090

Manufacturing using Certified Raw Materialsbased on European Standards

Fixing and Lifting Instructions

Product Marking

Declaration of Conformity

Factory Production Control Certificate

The following is evidence of or socket manufacturer,Friedrich Schroeder GmbH & Co’s conformity to EN 1090.We can provide certificates for each of our manufacturersevidencing that our products meet BS EN 1090.

Page 6: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 6/274

www.cfsfixings.com0-4

How do you know if the CE mark is genuine?

Unfortunately even where products are marked with a CEmarking, further checks should be carried out as it maynot be genuine. There is a similar CE mark that denotes

“China Export” for example, which will provide you withnone of the assurance of safety that a genuine EuropeanCE mark provides.Products should be provided with a CEmark which refers back to a Declaration of Performancefrom the manufacturer and to a Factory ProductionControl (FPC) certificate and a welding certificate fromapproved bodies. Please also check that the ExecutionClass is adequate for your application.

Product Marking

Product marking is required by the Machinery Directiveand the Construction Products Regulation. This isstamped onto our products unless the product is too

small, when it is provided as a certificate or tag.

It is difficult in the case of lifting equipment such as thisas the loading that the product can take is dependentalso on the element it is cast into.

Old marking used “load steps” where the same diameterof socket had the same load step, independent of type.The new “load class” is now a category symbol and doesnot include “kg” or “t” and is the same figure as the old“load step”. Users should use the load tables published inthis catalogue and the safe lifting load may be greater orless than the “load step” value.

M20 Socket with load class 2.0

Declaration of Conformity

This is a formal declaration by our manufacturers that theproducts meet all relevant requirements of all productsafety directives applicable. It is a sign that a producthas been designed and constructed for compliance withrelevant essential requirements, and has been through

the appropriate conformity assessment processes.Declarations of Conformity are available for all ourproducts where CE markings apply.

What are your responsibilities?

The CE mark is a passport that allows accurate descriptionof a product’s properties. It does not cover its fitness forpurpose in a particular application. The designer of theelement is responsible for considering all relevant loadconditions.

This information must be passed onto the personresponsible for the unit. Contractors and precasters mustonly use CE certified products and should ensure thatthey have copies of the Declarations of Conformity. Theprecaster has to pass on all necessary information in awritten installation instruction to the contractor on site

Page 7: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 7/274

www.cfsfixings.com  0-5

Page 8: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 8/274

www.cfsfixings.com1-1

Lifting SystemsDesign Criteria

Page 9: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 9/274

www.cfsfixings.com  1-2

L I  F T I  N G S Y  S T E M S DE  S I   GN C R I  T E R I  A 

10

Contents

Lifting Systems Design Criteria 1-3

Applied Load on Each Anchor 1-5

Page 10: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 10/274

www.cfsfixings.com1-3

Lifting SystemsDesign CriteriaWe have four main systems available for the lifting ofprecast concrete units. The reasons for selection maybe technical, economic, or may be due to the liftingequipment already owned.

CFS can supply all the accessories you need includinglifting loops, clutches and recess formers for each ofthese systems.

Threaded Sockets

These are usually used for light to medium-weight units.They are easy to install in the concrete element and maybe recessed if required.

Wavy tail anchors are particularly easy to fix as they mayrequire no further reinforcement. Tube and flat platesockets are also available, which depend on separatereinforcement.

Spherical Head Anchors

These anchors may be used for any lift, up to very heavyunits. They are recessed into the concrete and mayrequire no additional reinforcement, depending on theapplication.

Quick Lift System

This is an economic optionavailable for lifting light tomedium-weight precast concrete.

Cast-in Loops

These anchors require no furtheraccessories as the loop is attacheddirectly to the crane hook.

They are economic where smallernumbers are required, as you donot have to buy a lifting clutch.

They can be used for units wherethe area around the lifting pointis not visible in their permanentcondition, as the loop is cast intothe top of the concrete.

Page 11: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 11/274

www.cfsfixings.com  1-4

L I  F T I  N G S Y  S T E M S DE  S I   GN C R I  T E R I  A 

Selection of type within an anchor system

 You must consider if the anchor is to be used in the edge ofwalls as (1), in slabs (2) or in beams (3), and also whether theunit will need to be tilted using the anchor, or simply be used

for vertical lifting.

With these factors in mind, review the different types ofanchors within this catalogue to decide which is mostsuitable for your application. If in doubt contact us for advice.

Load Cases

 You must consider the unit over its life until it reaches itspermanent destination. The loadcases may have differentdirection of action which must be considered as the anchorshave different capacities in axial, angled and shear lifting.

Axial Lift Angled Lift up to a spread of 90°, or 45°from the vertical

Shear Lift

Typically there are six possible load cases that may be critical:

1. Demoulding by vertical lift from formwork at precast yard2. Demoulding by tilting to vertical from formwork at precast yard3. Handling vertically at precast yard4. Tilting onto transport or storage at precast yard5. Tilting from transport or storage on site6. Handling vertically on site

Typically handling at the precaster is with young concrete, but in a morecontrolled manner. On site the concrete is more mature, but may receive

rougher treatment.

(1)

(2)

(3)

Page 12: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 12/274

www.cfsfixings.com1-5

Applied Loadon Each AnchorThe way in which a unit is lifted influences the load thatis applied to the anchors. For each load case that appliesto your unit, the following factors must be considered:

Weight of the Unit, Fv

This should be the unfactored weight.

Typically:

  FG = V x γ  F

G = self weight [kN]

  V = Volume [m³]

  γ = specific weight of theprecast element [kN/m³]

  Typically γ =25 kN/m³

Number of lifting points, N

Two legged slings are statically determinate. N=2

Three legged slings are statically determinate providedthe anchors are not in one line. N=3

Four legged slings are statically indeterminate. It must beassumed that only two anchors are holding the load atany one time. N=2

A spreader beam of tri-plate can make a four legged sling

statically determinate. N=4

The use of two anchors is usual for beams and upright panels, and four anchors installed symmetrically to the loadcentre is recommended for horizontal slabs.

Position of the Anchors

If the anchors cannot be placed symmetrically to the centre of gravity, the load on the anchors must to be calculatedaccording to simple static analysis.

Page 13: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 13/274

www.cfsfixings.com  1-6

L I  F T I  N G S Y  S T E M S DE  S I   GN C R I  T E R I  A 

Chain Angles

If no spreader beam is used, the spread angle a dependson the length of the suspending cable.

The spread angle, α depends on the arrangement andlength of the suspending cables.

The resulting horizontal component increases the tensile

force on the anchor.

Spread Angle SpreadCoefficient

α β z

0° 0° 1

15° 7.5° 1.01

30° 15° 1.04

45° 22.5° 1.08

60° 30° 1.16

75° 37.5° 1.26

90° 45° 1.41

Dynamic Factors

The dynamic process of lifting a unit adds load to the anchors. The magnitude of this dynamic effect is determined by thechoice of lifting equipment, the length and type of cable or chain, and the hoisting speed.

Cables made of steel or synthetic fibre have a damping effect that increases with cable length. The table below provides

typical values that you can use. If you are unsure as to which factor to apply please consult CFS.

Lifting Equipment Typical Dynamic Impact Factor, ψ

Stationary Crane, Mobile Crane, Rail-Mounted Crane 1.3

Lifting and transporting on even ground 2.5

Lifting and transporting on uneven ground   ≥4

Page 14: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 14/274

www.cfsfixings.com1-7

Demoulding Adhesion to Formwork

Adhesion forces between the formwork and the concrete vary according to the type of formwork used.

The following may be taken as guide:

Formwork Type Adhesion coefficient, qadh

(kN/m2)

Oiled steel formwork 1

Varnished timber formwork 2

Rough formwork 3

Fadh

 = qadh

 x A Fadh

 = Adhesion Force [kN]

  qadh

 = Adhesion forces [kN/m2]

  A = Surface area in contact with the formwork prior to lifting [m2]

Ribbed and waffle panels cause more adhesion. Please contact CFS for advice if required.

Page 15: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 15/274

www.cfsfixings.com  1-8

L I  F T I  N G S Y  S T E M S DE  S I   GN C R I  T E R I  A 

Calculation of the Action for Each Load Case

Demoulding Vertically (Loadcase 1) – Axial or Angled Lift

E1=(F

G + F

adh) x z E = Action (kN)

  N FG = Weight of Unit (kN)

  Fadh

 = Adhesion Force (kN)

  z = Spread Coefficient

  N = Number of Lifting Points

Demoulding by Tilting (Loadcase 2) – Shear Lift

E2=(F

G + F

adh) x z E = Action (kN)

  2N FG = Weight of Unit (kN)

  Fadh

 = Adhesion Force (kN)

  z = Spread Coefficient

  N = Number of Lifting Points

In this situation half the weight is resting on the formwork.

Handling Vertically (Loadcases 3 and 6) – Axial or Angled Lift

E3 or E

6 = F

G x ψ x z E = Action (kN)

  N FG = Weight of Unit (kN)

  ψ = Dynamic Impact Factor

  z = Spread Coefficient

  N = Number of Lifting Points

Tilting (Loadcases 4 and 5) – Shear Lift

E4 or E

5 = F

G x ψ x z E = Action (kN)

  2N FG = Weight of Unit (kN)

  ψ = Dynamic Impact Factor

  z = Spread Coefficient

  N = Number of Lifting Points

In this situation half the weight is resting on the formwork.

Capacity of anchors

The capacity of each anchor (R) is determined by several factors. These include concrete strength, anchor distance toedges and available reinforcement.

The capacities under commonly occurring situations are found in the tables, found in each section of this catalogue.

For panels that are to be tilted from the horizontal to the vertical additional reinforcement must be applied to theanchor to achieve the capacities quoted. The tables provided within this catalogue provide the capacity, or loadresistance of each anchor in most conditions encountered.

If you have a situation outside the conditions in this catalogue, please contact CFS with a drawing and description ofyour circumstances and we will provide advice.

For each load case, ensure that R ≥ E R = Capacity (kN)

  E = Action (kN)

Page 16: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 16/274

www.cfsfixings.com2-1

Lifting Sockets

Page 17: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 17/274

www.cfsfixings.com  2-2

L I  F T I  N G  S  O C K E T  S 

10

Contents

Socket Systems 2-3

Tube Cross-Hole Sockets 2-4

Solid Cross-Hole Sockets 2-5

Economy Cross-Hole Sockets 2-6

Lifting Capacities for Cross-Hole Sockets 2-7

Anchorage Reinforcement for Cross-Hole Sockets 2-8

Angled Pull Reinforcement for Cross-Hole Sockets 2-9

Shear Reinforcement for Cross-Hole Socket Anchors 2-10

Wavy Tail Socket Anchors 2-11

Lifting Capacities for Wavy Tail Socket Anchors 2-12

Angled Pull Reinforcement for Wavy Tail Socket Anchors 2-14

Shear Reinforcement for Wavy Tail Socket Anchors 2-15

Flat Steel Socket Anchors 2-16

Lifting Capacities for Flat Steel Socket Anchors 2-17

Anchorage Reinforcement for Flat Steel Socket Anchors 2-18

Angled Pull Reinforcement for Flat Steel Socket Anchors 2-19

Crown Foot Socket Anchors 2-20

Lifting Capacities for Crown Foot Socket Anchors 2-21

Anchor Reinforcement for Crown Foot Socket Anchors 2-22

Shear Reinforcement for Crown Foot Anchors 2-23

Crosspin Socket Anchors 2-24

Lifting Capacities for Crosspin Socket Anchors 2-25

Shear Reinforcement for Crosspin Socket Anchors 2-26

Lifting Loops 2-27

Rotating Eyes 2-28

Identification 2-29

Retro Eye 2-30

Accessories 2-31

Accessories 2-32

Page 18: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 18/274

www.cfsfixings.com2-3

Socket Systems

Cross Hole Sockets

Flat Plate Socket Anchors

Tube Sockets Solid Sockets Economy Sockets

Crown Foot Socket Anchors Solid Crosspin Sockets

Wavy Tail Anchors

Short Long

Page 19: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 19/274

www.cfsfixings.com  2-4

L I  F T I  N G  S  O C K E T  S 

Tube Cross-Hole Sockets• Electroplated or stainless steel

• Precision steel tube (S355)

• Rd thread

• The socket is anchored into the concrete unit using areinforcement bar threaded through the cross-hole.

• A pressed-plastic stopper prevents the penetration ofthe concrete from below into the thread.

• Sockets can be used in a wide range of applicationsdue to the flexible way in which the reinforcement canbe applied; pipes, walls, slabs

d

        L

      e

      g

Essential Steps:Check Lifting Load Capacity Table page 2-7

Axial Pull – Include Anchorage Reinforcement page 2-8

Angled Pull – Include Anchorage Reinforcement page 2-8 and Angled Reinforcement page 2-10

Shear Pull – include Anchorage Reinforcement page 2-8 and Shear Reinforcement page 2-9

Part NoZinc Plated

Part NoStainless Steel

Load Group Dimensions of socket

d L g e

mm

CFS-LS-12 CFS-LSS-12 0.5 Rd 12 40 22 8

CFS-LS-16 CFS-LSS-16 1.2 Rd 16 54 27 13

CFS-LS-20 CFS-LSS-20 2 Rd 20 69 35 15

CFS-LS-24 CFS-LSS-24 2.5 Rd 24 78 43 18

CFS-LS-30 CFS-LSS-30 4 Rd 30 103 56 22

CFS-LS-36 CFS-LSS-36 6.3 Rd 36 125 68 27

CFS-LS-42 CFS-LSS-42 8 Rd 42 145 80 32

CFS-LS-52 CFS-LSS-52 12.5 Rd 52 195 97 40

Page 20: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 20/274

www.cfsfixings.com2-5

Solid Cross-Hole Sockets• Precision Electroplated or Stainless Steel Solid Rod

• M thread

• The socket is anchored into the concrete unit using areinforcement bar threaded through the cross-hole.

• This socket provides the highest corrosion resistance asthere is protection by solid stainless steel

• Sockets can be used in a wide range of applicationsdue to the flexible way in which the reinforcement canbe applied; pipes, walls, slabs

• These sockets may also be used as fixing sockets

        L

      e

      g

d

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-7

Fixing – Check Fixing Load Capacity Table page 3-4Axial Pull – Include Anchorage Reinforcement page 2-8

Angled Pull – Include Anchorage Reinforcement page 2-8 and Angled Reinforcement page 2-9

Shear Pull – include Anchorage Reinforcement page 2-8 and Shear Reinforcement page 2-10

Part NoZinc Plated

Part NoStainless Steel

Load Group Dimensions of socket OutsideDiameter

d L g e d

mm

CFS-LSRH-10 CFS-LSRHS-10 0.4 M 10 50 21 9 16

CFS-LSRH-12 CFS-LSRHS-12 0.5 M 12 50 23 11 16

CFS-LSRH-16 CFS-LSRHS-16 1.2 M 16 75 26 14 22

CFS-LSRH-20 CFS-LSRHS-20 2 M 20 75 33 16 27

CFS-LSRH-24 CFS-LSRHS-24 2.5 M 24 100 42 18 32

CFS-LSRH-30 CFS-LSRHS-30 4 M 30 125 54 22 40

Page 21: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 21/274

www.cfsfixings.com  2-6

L I  F T I  N G  S  O C K E T  S 

Economy Cross-Hole Sockets• An economical range of flat end lifting sockets

• Zinc plated or Stainless Steel

• M thread

• The socket is anchored into the concrete unit using areinforcement bar threaded through the cross-hole.

• Sockets can be used in a wide range of applicationsdue to the flexible way in which the reinforcement canbe applied; pipes, walls, slabs

Essential Steps:

Check Lifting Load Capacity Table page 2-7

Axial Pull – Include Anchorage Reinforcement page 2-8

Angled Pull – Include Anchorage Reinforcement page 2-8 and Angled Reinforcement page 2-9

Shear Pull – include Anchorage Reinforcement page 2-8 and Shear Reinforcement page 2-10

      g

      e

        L

d

Part No.Zinc Plated

Part No.Stainless Steel

Load Group Dimensions of socket

d L g e

mm

CFS-LSE-12 CFS-LSES-12 0.5 M 12 60 25 10.3

CFS-LSE-16 CFS-LSES-16 1.2 M 16 79 27 13.3

CFS-LSE-20 CFS-LSES-20 2 M 20 99 37 15.3

CFS-LSE-24 CFS-LSES-24 2.5 M24 112 43 17.3

Page 22: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 22/274

www.cfsfixings.com2-7

Lifting Capacities forCross-Hole SocketsPart No Load Group Typical Installation Conditions Axial Load Shear Load

Edge Distance Element

thickness

Fv

FQ

Ccr

hcr

Min Concrete Strength (N/mm2)

15 25 15 25

mm kN

CFS-LS*-10 0.4 140 80 8 9 3.7 4.8

CFS-LS*-12 0.5 140 80 11 12 4.1 5.3

CFS-LS*-16 1.2 180 100 17 18 6.2 8

CFS-LS*-20 2 250 120 30 36 12 15.6

CFS-LS*-24 2.5 300 120 37 40 12.8 16.6

CFS-LS*-30 4 350 160 48 52 20.8 26.8

CFS-LS*-36 6.3 400 160 63 76 20.8 26.8

CFS-LS*-42 8 500 200 80 102 20.8 26.8

CFS-LS*-52 12.5 600 200 125 140 35 45

LS* - LS, LSRH or LSE

These tables are for these sockets to be used as lifting devices. They should be compared the loads calculated using themethod outlined in section 1 of this catalogue and include consideration of dynamic factors, formwork adhesion etc.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS for bespoke advice and calculations.

Where two or more sockets are in use, they should be spaced at a minimum of 2xCcr apart.

Minimum reinforcement of two layers of 131mm2 /m mesh.

Axial Pull – Include Anchorage Reinforcementpage 2-8

Angled Pull – Include AnchorageReinforcement page 2-8 and AngledReinforcement page 2-9

Shear Pull – include Anchorage Reinforcementpage 2-8 and Shear Reinforcement page 2-10

hcr 

Ccr 

Fs

hcr 

Ccr 

 

FQhcr 

Ccr 

Fv

Page 23: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 23/274

www.cfsfixings.com  2-8

L I  F T I  N G  S  O C K E T  S 

      G

  D  m  i n

d s

Anchorage Reinforcement forCross-Hole SocketsCross-hole sockets must be used with anchorage reinforcement.

The legs of the reinforcement should be verticalas shown here, or may be angled up to 60° fromthe vertical depending on the application.

Part No Load Group Reinforcement B500B (min)d

sG D

min

mm

CFS-LS*-10 0.4 6 250 60

CFS-LS*-12 0.5 6 300 60

CFS-LS*-16 1.2 12 350 70

CFS-LS*-20 2 12 400 80

CFS-LS*-24 2.5 16 500 116

CFS-LS*-30 4 16 600 135

CFS-LS*-36 6.3 20 600 150

CFS-LS*-42 8 25 650 200

CFS-LS*-52 12.5 32 900 300

Page 24: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 24/274

www.cfsfixings.com2-9

Angled Pull Reinforcement forCross-Hole SocketsWhere the lifting chains are angled greater than 15° fromthe vertical, the additional reinforcement must be usedand placed on the opposite side of the socket, opposingthe pull force. This reinforcing bar should touch thesocket where it wraps around and be located as close tothe concrete surface as cover allows.

Part No Load Group Reinforcement B500B (min)

ds

L Dmin

mm

CFS-LS*-10 0.4 8 130 32

CFS-LS*-12 0.5 8 130 32

CFS-LS*-16 1.2 8 170 32

CFS-LS*-20 2 10 220 40

CFS-LS*-24 2.5 10 240 40

CFS-LS*-30 4 16 265 56

CFS-LS*-36 6.3 16 285 56

CFS-LS*-42 8 20 350 140

CFS-LS*-52 12.5 20 370 140

LS* - LS, LSRH or LSE

Page 25: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 25/274

www.cfsfixings.com  2-10

L I  F T I  N G  S  O C K E T  S 

Shear Reinforcement forCross-Hole Socket AnchorsWhere the unit is being tilted, or the lift is in the edge ofthe element resulting in a shear pull on the socket, thereinforcement shown here must be used. This reinforcingbar should touch the socket where it wraps around and belocated as close to the concrete surface as cover allows.

LS* - LS, LSRH or LSE

Part No Load Group Reinforcement B500B (min)

ds

L1

Dmin

mm

CFS-LS*-10 0.4 8 95 24

CFS-LS*-12 0.5 8 95 24

CFS-LS*-16 1.2 8 130 32

CFS-LS*-20 2 10 170 40

CFS-LS*-24 2.5 10 185 48

CFS-LS*-30 4 16 195 48

CFS-LS*-36 6.3 16 200 64

CFS-LS*-42 8 16 215 64

CFS-LS*-52 12.5 20 220 140

Page 26: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 26/274

www.cfsfixings.com-11

Wavy Tail Socket Anchors• Zinc plated or Stainless Steel

• Rd thread

• The socket is anchored into the concrete unit usingits integral reinforcement bar. No need for anchoragereinforcement

• Quick and easy to fix into unit

• Wavy Tail Short Anchors are typically used in beams

• Wavy Tail Long Anchors are typically used in panelsand walls

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-12 and 2-13

Angled Pull – Include Angled Reinforcement page 2-14

Shear Pull – include Shear Reinforcement page 2-15

Part NoZinc Plated

Part NoStainless Steel

Load Group Dimensions of socket

d L ds

g

mm

Wavy Tail Short Types

CFS-WAS-12-108 CFS-WASS-12-108 0.5 Rd 12 108 8 22

CFS-WAS-16-167 CFS-WASS-16-167 1.2 Rd 16 167 12 27

CFS-WAS-20-187 CFS-WASS-20-187 2 Rd 20 187 16 35

CFS-WAS-24-240 CFS-WASS-24-240 2.5 Rd 24 240 20 43

CFS-WAS-30-300 CFS-WASS-30-300 4 Rd 30 300 20 56

CFS-WAS-36-380 CFS-WASS-36-380 6.3 Rd 36 380 25 69CFS-WAS-42-450 CFS-WASS-42-450 8 Rd 42 450 28 80

Wavy Tail Long Types

CFS-WAL-12-137 CFS-WALS-12-137 0.5 Rd 12 137 8 22

CFS-WAL-16-216 CFS-WALS-16-216 1.2 Rd 16 216 12 27

CFS-WAL-20-257 CFS-WALS-20-257 2 Rd 20 257 16 35

CFS-WAL-24-360 CFS-WALS-24-360 2.5 Rd 24 360 20 43

CFS-WAL-30-450 CFS-WALS-30-450 4 Rd 30 450 20 56

CFS-WAL-36-570 CFS-WALS-36-570 6.3 Rd 36 570 25 69

CFS-WAL-42-620 CFS-WALS-42-620 8 Rd 42 620 28 80

CFS-WAL-52-880 CFS-WALS-52-880 12.5 Rd 52 880 28 90

 

g

L

sd

d

 

Page 27: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 27/274

www.cfsfixings.com  2-12

L I  F T I  N G  S  O C K E T  S 

Lifting Capacities for WavyTail Socket AnchorsThese tables are for these sockets to be used as lifting devices. They should be compared the loads calculated using themethod outlined in section 1 of this catalogue and include consideration of dynamic factors, formwork adhesion etc.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS for bespoke advice and calculations. The capacities are the same forboth electroplated and stainless steel anchors.

Where two or more sockets are in use, they should be spaced at a minimum of 2xCcr apart.

Minimum reinforcement of two layers of 131mm2 /m mesh.

Part No LoadGroup

Typical InstallationConditions

Axial Load Angled Load Shear Load

EdgeDistance

Elementthickness

Min Concrete Strength (N/mm2)

Ccr

hcr

15 25 15 25 15 25

mm kN

Wavy Tail Short Types

CFS-WAS-12-118 0.5 95 140 5 7 5 7 4.3 5.6

CFS-WAS-16-167 1.2 135 195 14.4 18.5 12 15.5 13.4 14

CFS-WAS-20-187 2 170 215 20 26 20 26 15.8 20.3

CFS-WAS-24-240 2.5 220 270 27.6 36 25 32.2 18 23.2

CFS-WAS-30-300 4 275 330 40 50.4 40 50.4 35.7 46.1

CFS-WAS-36-380 6.3 300 415 63 81.3 63 81.3 35.7 46.1

CFS-WAS-42-450 8 400 480 80 103.3 80 103.3 45 58.1

Axial Pull Angled Pull – Angled Reinforcementpage 2-14

Shear Pull – Shear Reinforcement page 2-15

Wavy Tail Short Types Table

hcr 

Ccr 

Fs

Page 28: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 28/274

www.cfsfixings.com-13

Part No LoadGroup

Typical InstallationConditions

Axial Load Angled Load Shear Load

EdgeDistance

Elementthickness

Min Concrete Strength (N/mm2)

Ccr

hcr

15 25 15 25 15 25

mm kN

Wavy Tail Long Types

CFS-WAL-12-137 0.5 150 60 5 7 5 7 2.5 2.6

80 6.7 8.6 6.7 9.3 2.7 3.5

100 8.3 10.9 8.3 10.9 3.3 4.3

130 10.9 10.9 10.9 10.9 4.3 5.6

CFS-WAL-16-216 1.2 200 80 14.4 18.5 12 15.5 7.4 9.6

100 18 23.2 15 19.4 8 10.3

120 21.6 25.4 18 23.2 11.1 14

145 25.4 25.4 21.8 25.4 13.4 14

CFS-WAL-20-257 2 250 100 20 26 20 25.8 9 11.5

120 24 30.9 24 30.9 11.6 13.9

140 28 34.1 28 34.1 12.6 16.3

175 34.1 34.1 34.1 34.1 15.8 20.3CFS-WAL-24-360 2.5 300 100 27.6 35.6 25 32.2 9 11.6

120 33.1 42.7 27 34.9 10.8 13.9

140 38.6 45.7 31.6 37.6 12.6 16.2

200 45.7 45.7 45.7 45.7 18 23.2

CFS-WAL-30-450 4 350 120 34.2 44.2 34.2 44.2 17.1 22.1

140 40 51.6 40 51.6 20 25.8

160 45.6 58.9 45.6 58.9 22.8 29.4

250 69.1 69.1 69.1 69.1 35.7 46.1

CFS-WAL-36-570 6.3 500 140 55.9 72.2 55.1 71.1 18.8 24.2

160 63.9 82.6 63 81.3 21.5 27.8

180 71.9 92.8 70.8 91.5 25.6 33.1

220 100.4 113 86.6 111 .8 31.5 40.6

250 113 113 98.4 113 35.7 45.1CFS-WAL-42-620 8 500 160 86.8 112 80 103.3 22.4 29

180 97.6 126 90 116.2 25.2 35.5

200 108.5 138.5 100 129 28 36.1

240 130.2 138.5 106.7 137.7 40 51.6

300 138.5 138.5 133.3 138.5 45 58.1

CFS-WAL-52-880 12.5 600 200 146.6 180 125 161.4 38 49

240 175.2 180 150 180 45.6 58.8

280 180 180 175 180 62.5 62.5

300 180 180 180 180 62.5 62.5

Where two or more sockets are in use, they should be spaced at a minimum of 2xCcr apart.

Minimum reinforcement of two layers of 131mm2 /m mesh.

Wavy Tail Long Types Table

Axial Pull Angled Pull – Angled Reinforcementpage 2-14

Shear Pull – Shear Reinforcement page 2-15

hcr 

Ccr 

Fs

Page 29: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 29/274

www.cfsfixings.com  2-14

L I  F T I  N G  S  O C K E T  S 

WA* - WAL or WAS

Angled Pull Reinforcement forWavy Tail Socket AnchorsWhere the lifting chains are angled greater than 15° fromthe vertical, the additional reinforcement must be usedand placed on the opposite side of the socket, opposingthe pull force. This reinforcing bar should touch thesocket where it wraps around and be located as close tothe concrete surface as cover allows.

Part No Load Group Reinforcement B500B (min)

ds

L Dmin

mm

CFS-WA*-12 0.5 8 130 32

CFS-WA*-16 1.2 8 170 32

CFS-WA*-20 2 10 220 40

CFS-WA*-24 2.5 10 240 40

CFS-WA*-30 4 16 265 56

CFS-WA*-36 6.3 16 285 56

CFS-WA*-42 8 20 350 140

CFS-WA*-52 12.5 20 370 140

15°

ds

   D

  m   i  n

L

hcr 

Ccr 

Fs

Page 30: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 30/274

www.cfsfixings.com-15

Shear Reinforcement forWavy Tail Socket AnchorsWhere the unit is being tilted, or the lift is in the edge ofthe element resulting in a shear pull on the socket, thereinforcement shown here must be used. This reinforcingbar should touch the socket where it wraps around and belocated as close to the concrete surface as cover allows.

Part No Load Group Reinforcement B500B (min)

ds

L1

Dmin

mm

CFS-WA*-12 0.5 8 95 24

CFS-WA*-16 1.2 8 130 32

CFS-WA*-20 2 10 170 40

CFS-WA*-24 2.5 10 185 48

CFS-WA*-30 4 16 195 48

CFS-WA*-36 6.3 16 200 64

CFS-WA*-42 8 16 215 64

CFS-WA*-52 12.5 20 220 140

    D

  m   i  n

     6     0     °

L1D min

ds

hcr 

Ccr 

 

FQ

WA* - WAL or WAS

Page 31: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 31/274

www.cfsfixings.com  2-16

L I  F T I  N G  S  O C K E T  S 

Flat Steel Socket Anchors• Zinc plated or Stainless Steel

• Rd thread

• The flattest profile lifting socket available

• The socket is anchored into the concrete unit usingreinforcement over its flat plate.

• Sockets are typically used in slabs

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-7

Axial Pull - include Anchorage Reinforcement page 2-18

Angled Pull - include Anchorage Reinforcement page 2-18 and Angled Reinforcement page 2-19

Shear Pull - include Anchorage Reinforcement page 2-18 and Angled Reinforcement page 2-20

Part No Load Group Dimensions of socket

d h e a b t

mm

CFS-FA-12 0.5 Rd 12 30 22 35 25 3

CFS-FA-16 1.2 Rd 16 35 27 50 35 3

CFS-FA-20 2 Rd 20 47 35 60 60 5

CFS-FA-24 2.5 Rd 24 54 43 80 60 5

CFS-FA-30 4 Rd 30 72 56 100 80 6CFS-FA-36 6.3 Rd 36 84 68 130 100 6

CFS-FA-42 8 Rd 42 100 80 130 130 8

CFS-FA-52 12.5 Rd 52 120 100 150 130 8

Page 32: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 32/274

www.cfsfixings.com-17

Lifting Capacities for FlatSteel Socket AnchorsThese tables are for these sockets to be used as lifting devices. They should be compared the loads calculated using themethod outlined in section 1 of this catalogue and include consideration of dynamic factors, formwork adhesion etc.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS for bespoke advice and calculations.

Where two or more sockets are in use, they should be spaced at a minimum of 2xCcr apart.

Include minimum slab reinforcement in slab as shown in the table on page 2-18

Axial Pull – Include Anchorage Reinforcementpage 2-18

Angled Pull – Include AnchorageReinforcement page 2-18 and AngledReinforcement page 2-19

Shear Pull – include AnchorageReinforcement page 2-18 and ShearReinforcement page 2-19

Part No Load Group Edge Distance Element Thickness Axial or Angled Load ≤ 45º

Min Concrete Strength (N/mm2)

Ccr hcr 15 25

mm mm kN

CFS-FA-12 0.5 180 80 5 6.5

CFS-FA-16 1.2 250 90 12 15.5

CFS-FA-20 2 300 110 20 25.8

CFS-FA-24 2.5 400 125 25 32.3

CFS-FA-30 4 500 150 40 51.6CFS-FA-36 6.3 650 165 63 81.3

CFS-FA-42 8 650 180 80 103.3

CFS-FA-52 12.5 750 215 125 161.4

Page 33: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 33/274

www.cfsfixings.com  2-18

L I  F T I  N G  S  O C K E T  S 

Anchorage Reinforcement forFlat Steel Socket AnchorsIf you have used the capacities described as “withanchorage reinforcement” then the followingreinforcement must be included in the element you arelifting. Please ensure that the reinforcement touches theend plate of the socket.

Part No Reinforcement B500B (min) for Axial Load Min SlabReinforcement

n x ds

Ls

L0

Lges

B500M

mm

CFS-FA-12 2 x 6 60 60 250 Q188A

CFS-FA-16 2 x 8 70 90 420 Q188A

CFS-FA-20 4 x 10 80 90 640 Q188A

CFS-FA-24 4 x 10 100 90 640 Q188A

CFS-FA-30 4 x 12 110 110 830 Q257ACFS-FA-36 4 x 16 120 140 1140 Q335A

CFS-FA-42 4 x 16 120 140 1250 Q424A

CFS-FA-52 4 x 20 150 160 1530 Q524A

Page 34: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 34/274

www.cfsfixings.com-19

Angled Pull Reinforcement forFlat Steel Socket AnchorsWhere the lifting chains are angled greater than 15° fromthe vertical, the additional reinforcement must be usedand placed on the opposite side of the socket, opposingthe pull force. This reinforcing bar should touch thesocket where it wraps around and be located as close tothe concrete surface as cover allows.

Part No Load Group Reinforcement B500B (min)

ds

L Dmin

mm

CFS-FA-12 0.5 8 130 32

CFS-FA-16 1.2 8 170 32

CFS-FA-20 2 10 220 40

CFS-FA-24 2.5 10 240 40

CFS-FA-30 4 16 265 56

CFS-FA-36 6.3 16 285 56

CFS-FA-42 8 20 350 140

CFS-FA-52 12.5 20 370 140

Page 35: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 35/274

www.cfsfixings.com  2-20

L I  F T I  N G  S  O C K E T  S 

Crown Foot Socket Anchors• Zinc plated

• Rd thread

• Easy to install requiring no anchorage reinforcement

• Economical solution• Sockets are typically used in light to medium weight

beam applications

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-22

For most applications no additional reinforcement will be required. Enhanced capacities may be achieved by usingadditional reinforcement as guided by the capacity tables.

Part No Load Group Dimensions of socket

d L

mm

CFS-CRA-16-80 1.2 Rd 16 80

CFS-CRA-20-100 2 Rd 20 100

CFS-CRA-24-115 2.5 Rd 24 115

CFS-CRA-30-120 4 Rd 30 120CFS-CRA-30-150 4 Rd 30 150

Page 36: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 36/274

www.cfsfixings.com-21

Lifting Capacities forCrown Foot Socket AnchorsThese tables are for these sockets to be used as lifting devices. They should be compared the loads calculated using themethod outlined in section 1 of this catalogue and include consideration of dynamic factors, formwork adhesion etc.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS for bespoke advice and calculations.

Where there is axial load and shear load at the same time, please ensure that the each of the axial and shearcomponents are less than the capacities and also that:

Axial Component+

Shear Component≤ 1.2

Axial Capacity Shear Capacity

Where two or more sockets are in use, they should be spaced at a minimum of 2xC apart.

Crown Foot Axial Reinforcement – See page 2-23

Crown Foot Shear Reinforcement – include hear Reinforcement page 2-24

Part No LoadGroup

Typical Installation Conditions Axial Load Shear Load

without rebar with rebar without rebar with rebar

EdgeDistance

Elementthickness

Min Concrete Strength (N/mm2)

C1, C2, C3,C4

d 15 25 15 25 15 25 15 25

mm kN

CFS-CRA-16-80 1.2 110 110 8.2 11.9 5.2 6.8 13.1 14.4

CFS-CRA-20-100 2 140 130 12.9 16.7 14.1 22.5 7.5 9.7 14.4 14.4

CFS-CRA-24-115 2.5 160 150 16.2 20.9 18.8 31.3 9.5 12.3 17.2 20.7CFS-CRA-30-120 4 170 150 17.3 22.3 28.4 40.8 10.5 13.6 19 20.7

CFS-CRA-30-150 4 210 180 24.3 31.4 33.4 50.2 14.3 18.5 28.7 36.9

V

V

C1 C2 C3

b

C4

      C

      2

      C      1

      d

N

Page 37: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 37/274

www.cfsfixings.com  2-22

L I  F T I  N G  S  O C K E T  S 

Anchor Reinforcement forCrown Foot Socket AnchorsWhere the values with reinforcement have beenused from the load capacities table, the followingreinforcement must be included.

If your element does not allow the inclusion of this reinforcement, please discuss with CFS as alternative solutions can

be designed for your particular problem.

Part No Load Group n d Lb

e

mm

CFS-CRA-20-100 2 4 10 120 50

CFS-CRA-24-115 2.5 4 10 140 50

CFS-CRA-30-120 4 4 12 150 50

CFS-CRA-30-150 4 4 12 180 75

 

      e

 

0,5 x e

        L        h

Page 38: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 38/274

www.cfsfixings.com-23

Shear Reinforcement forCrown Foot AnchorsWhere the values with reinforcement have beenused from the load capacities table, the followingreinforcement must be included.

If your element does not allow the inclusion of this reinforcement, please discuss with CFS as alternative solutions canbe designed for your particular problem.

 

      e

 

Lb

 

Part No Load Group U-Bars Standard Edge Bars

d Lb

d e

mm

CFS-CRA-16-80 1.2 10 200 8   ≤ 100

CFS-CRA-20-100 2 10 200 10   ≤ 100

CFS-CRA-24-115 2.5 12 200 10   ≤ 100

CFS-CRA-30-120 4 12 220 10   ≤ 100

CFS-CRA-30-150 4 16 250 10   ≤ 100

U-Bar Edge Bars

Page 39: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 39/274

www.cfsfixings.com  2-24

L I  F T I  N G  S  O C K E T  S 

Crosspin Socket Anchors• Zinc Plated or Stainless Steel Solid Rod and Crosspin

• M thread

• The socket is anchored into the concrete unit using acrosspin provided through the cross-hole.

• In stainless steel, this socket provides the highest corrosionresistance as there is protection by solid stainless steel

• Sockets used in axially require no further reinforcement

• These sockets may also be used as fixing sockets

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-26

Fixing – Check Fixing Load Capacity Table page 3-9

For most applications no additional reinforcement will be required. Enhanced capacities may be achieved by usingadditional reinforcement as guided by the capacity tables.

Part No Zinc Plated Part No Stainless Steel Load Group Dimensions of socket

d L F

mm

CFS-LSRB-10-50 CFS-LSRBS-10-50 0.4 M10 50 50

CFS-LSRB-12-50 CFS-LSRBS-12-50 0.5 M12 50 75

CFS-LSRB-12-75 CFS-LSRBS-12-75 0.5 M12 75 75

CFS-LSRB-16-75 CFS-LSRBS-16-75 1.2 M16 75 75

CFS-LSRB-20-75 CFS-LSRBS-20-75 2 M20 75 90

CFS-LSRB-24-100 CFS-LSRBS-24-100 2.5 M24 100 100

         L

d

Page 40: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 40/274

www.cfsfixings.com-25

Lifting Capacities forCrosspin Socket Anchors

Where there is axial load and shear load at the same time, please ensure that the each of the axial and shearcomponents are less than the capacities and also that:

Axial Component+

Shear Component≤ 1.2

Axial Capacity Shear Capacity

Where two or more sockets are in use, they should be spaced at a minimum of 2xC3 apart.

Crosspin Shear Reinforcement – where required, please see page 2-27

These tables are for these sockets to be used as lifting devices. They should be compared the loads calculated using themethod outlined in section 1 of this catalogue and include consideration of dynamic factors, formwork adhesion etc.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS for bespoke advice and calculations. If you wish to uses these socketsfor permanent fixing, please consult the table on page 3-9.

Part NoZinc Plated

Part NoStainless Steel

LoadGroup

Typical Installation Conditions Axial Load Shear Load

without rebar with rebar

Edge Distance Elementthickness

Min Concrete Strength (N/mm2)

C1, C2 C3, C4 d 15 25 15 25 15 25

mm kN

CFS-LSRB-12-50 CFS-LSRBS-12-50 0.5 90 55 80 5 6.4 1.8 2.3 4.3 5.2

CFS-LSRB-12-75 CFS-LSRBS-12-75 0.5 125 90 100 9.4 12.2 3.7 4.8 7.5 9.2

CFS-LSRB-16-75 CFS-LSRBS-16-75 1.2 120 80 100 8.4 10.9 3.3 4.3 7.5 9.2

CFS-LSRB-20-75 CFS-LSRBS-20-75 2 120 75 100 8.3 10.7 3.1 4 7.5 9.2

CFS-LSRB-24-100 CFS-LSRBS-24-100 2.5 160 100 130 12 15.5 4.9 6.3 17.2 20.7

Page 41: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 41/274

www.cfsfixings.com  2-26

L I  F T I  N G  S  O C K E T  S 

Shear Reinforcement forCrosspin Socket AnchorsWhere the values with reinforcement have beenused from the load capacities table, the following

reinforcement must be included. This U-Bar should betouching the socket and placed as close to the surface asconcrete cover allows.

Part No Zinc Plated Part No Stainless Steel Load Group U-Bars

d Lb

mm

CFS-LSRB-10-50 CFS-LSRBS-10-50 0.4 8 100

CFS-LSRB-12-50 CFS-LSRBS-12-50 0.5 8 100

CFS-LSRB-12-75 CFS-LSRBS-12-75 0.5 8 130

CFS-LSRB-16-75 CFS-LSRBS-16-75 1.2 8 130

CFS-LSRB-20-75 CFS-LSRBS-20-75 2 8 130

CFS-LSRB-24-100 CFS-LSRBS-24-100 2.5 12 200

Page 42: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 42/274

www.cfsfixings.com-27

Lifting LoopsThe CFS lifting loop is designed for use with CFS threadedsocket systems. Loops are available from 12 to 52 mmsizes in both Rd & M thread types. The load capacity foreach application is to be taken from the correspondingtables. The CFS loops can be subjected to a diagonal

lift up to 45°. If a transverse loading is to be applied, arotating eye should be used.

Loops should be discarded immediately if a wire strandhas broken. Loops carry an individual number identifiableto a certificate. The loops also have a tag indicating theload group of the loop. The tag is colour coded showingwhich load category threaded anchor the loop should beused with. All tags are CE marked.

M and Rd Thread Compatibility

Rd thread loops should only be used in Rd sockets. M

thread loops can be used in either Rd or M thread socketswith no reduction in load capacity.

The lifting capacities of the loops exceed those of the sockets they fit, so please refer to the load capacity table for thesockets to make selections for your application.

Part No Load Group Dimensions of socket Colour Tag

d L g s

mm

CFS-LL-12 0.5 M/Rd 12 130 22 6 Orange

CFS-LL-16 1.2 M/Rd 16 170 27 8 Red

CFS-LL-20 2 M/Rd 20 210 35 10 Light Green

CFS-LL-24 2.5 M/Rd 24 260 43 12 Black  

CFS-LL-30 4 M/Rd 30 340 56 16 Dark Green

CFS-LL-36 6.3 M/Rd 36 380 68 18 Blue

CFS-LL-42 8 M/Rd 42 420 80 20 Grey

CFS-LL-52 12.5 M/Rd 52 550 97 26 Yellow

45° minimum anglefor lifting

Page 43: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 43/274

www.cfsfixings.com  2-28

L I  F T I  N G  S  O C K E T  S 

Rotating EyesThe CFS Rotating Eye is used to transport precastelements with socket anchors. It is designed for inclinedlifting operations up to 90° and thus is used for tiltingand shear lifting operations. It is also our most durableoption for lifting operations.

The rotating eye is easy to attach or remove due to theforged hexagon shaped body of the swivel. There is also acrimp on the link to prevent it from kinking. Both externaland internal surfaces are protected against corrosion by atough galvanized coating. The link can swing more than180° and rotate 360° and it can rotate under load whichalso means that it is not possible to loosen the baseplateunder load.

Rotating eyes carry an individual number identifiable toa certificate. The eyes have a marking indicating the loadgroup of the loop. All eyes are CE marked.

M

e

D1

Part No Load Group Dimensions of socket

M D1

e

mm

CFS-RE-10 0.4 M10 36.5 18

CFS-RE-12 0.5 M12 36.5 18

CFS-RE-16 1.2 M16 36.5 20

CFS-RE-20 2 M20 52 30

CFS-RE-24 2.5 M24 57 30

CFS-RE-30 4 M30 70 35

CFS-RE-36 6.3 M36 81 50

CFS-RE-42 8 M42 81 60

CFS-RE-52 12.5 M52 104 60

 

Page 44: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 44/274

www.cfsfixings.com-29

Safe working load

Size = Type

Flat side for tightening by hand

 

IdentificationThe following identification information data is stencilledin every rotating eye (figure):

Use and Operation

The rotating eye is screwed into the lifting anchor. Insert

threaded bolt deep enough to achieve a close fit betweenthe concrete and the base plate. If the unit is lifted thewide base plate is supported by the concrete, and anundesirable bending of the threaded bolt is prevented.

For correct installation of the rotating eye it is essentialthat: The contact surface of the base plate is absolutely atright angles to the longitudinal axis of the lifting anchor.

If precast concrete units are being lifted with rotatingeyes, it is recommended to install the lifting anchorwith large plastic nailing plate. The rotating eye body istightened by hand against the concrete surface. Do not

use smaller recesses then the eye diameter.The rotating eye can turn in any direction against thebase plate thus ensuring the correct direction of theinclined force. The rotating eye is not to be used torotate precast elements.

 

Max.clearance between upper

and lowerpart >S<

Maintenance

Rotating eyes are filled with grease during productionwhen first used. The compact design preventspenetration of dirt. However should dirt have collected inthe interior of the rotating eye impairing an easy turning

operation, the turning mechanism can be oiled.

Attention

Before attaching put link in the correct position.

Normal Size Max. Clearance S

0,5 – 1,4t

2,0 – 2,5t

3,0 – 6,7t

8,0 – 10,0t

15,0t20,0 – 30,0t

1,5mm

1,5mm

2,4mm

3,2mm

4,0mm4,5mm

 

Page 45: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 45/274

www.cfsfixings.com  2-30

L I  F T I  N G  S  O C K E T  S 

Retro EyeThe CFS Retro Eye is used to lift existing concrete slabswhere lifting anchors are not cast in. It is used with theCFS Female Bar Coupler Fixings and either Fisher FISV-360 Resin or bolted through the element. It is availableto suit a range of slab thicknesses with load capacities

from 0.3t to 20t.

Please consult CFS for your individual application.

CFS bar coupler in resin CFS bar coupler drilled through slab

Part No Max Load Capacity

kN

CFS-VLBG-8 3

CFS-VLBG-10 6.3

CFS-VLBG-12 10

CFS-VLBG-16 15

CFS-VLBG-20 25

CFS-VLBG-24 40

CFS-VLBG-30 50CFS-VLBG-42 100

CFS-VLBG-48 200

 

Page 46: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 46/274

www.cfsfixings.com-31

AccessoriesPlastic Recess Plate

The nail plate is used to attach the socket anchors tothe formwork. The plastic nail plates are available forthread sizes M/Rd12 to M/Rd52. The plastic recess plate

produces a recess into which a lifting loop or a rotatingeye can be threaded.

Part No Dimensions

Rd

D1

h

mm

CFS-NPL-12 M/Rd 12 58 10

CFS-NPL-16 M/Rd 16 58 10

CFS-NPL-20 M/Rd 20 58 10

CFS-NPL-24 M/Rd 24 70 10

CFS-NPL-30 M/Rd 30 70 10

CFS-NPL-36 M/Rd 36 100 12

CFS-NPL-42 M/Rd 42 100 12CFS-NPL-52 M/Rd 52 95 15

Magnetic Recess Plate

The magnetic nail plate attaches socket anchors to steelformwork by magnets. They are available for thread sizesM/Rd12 to M/Rd52. The magnetic recessl plate producesa recess into which a lifting loop or a rotating eye can bethreaded.

Part No Thread Adhesion D1 D2 h

mm kPa mm

CFS-MAG-12 12 100 165 60 12

CFS-MAG-16 16 100 165 60 12

CFS-MAG-20 20 100 165 60 12

CFS-MAG-24 24 100 178.2 74 12

CFS-MAG-30 30 120 194.2 90 12

CFS-MAG-36 36 120 105.2 101 12

CFS-MAG-42 42 180 115.3 110 15

CFS-MAG-52 52 180 135.3 130 15

Page 47: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 47/274

www.cfsfixings.com  2-32

L I  F T I  N G  S  O C K E T  S 

AccessoriesMarking recess disc with fixing

These provide additional safety by marking the concretesurface with an imprint of the thread size and loadcapacity. The disc diameter is sufficient to allow rotating

eyes to be used with the cast in socket.

(1) Marking Recess Disc – composite material

(2) Fixing Screw Pin – Steel

Part No d l Internal thread depth

mm

CFS-FSP-12 M12 23.5 8

CFS-FSP-16 M16 30.5 8

CFS-FSP-20 M20 37 8

CFS-FSP-24 M24 41 9.5

CFS-FSP-30 M30 50 9.5

CFS-FSP-36 M36 59 9.5

CFS-FSP-42 M42 67.5 12

CFS-FSP-52 M52 81 16

Part No For fixing screwpin size

L d D g

mm

CFS-MPP-12 M12 150.5 12 23.5 10

CFS-MPP-16 M16 159.2 16 30.5 10

CFS-MPP-20 M20 173.5 20 37 10

CFS-MPP-24 M24 178.2 24 41 12

CFS-MPP-30 M30 194.2 30 50 12

CFS-MPP-36 M36 105.2 36 59 12

CFS-MPP-42 M42 115.3 42 67.5 15

CFS-MPP-52 M52 135.3 52 81 15

Page 48: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 48/274

www.cfsfixings.com-33

Seal Caps

For using directly in sockets and other threaded productswithout outer disc.

For Lifting

Part No. Anchor  

  Dimensions

18.5

25.5

31.5

35.5

44.0

52.5

55.9

69.5

CFS-CAPG-12 Rd 12 12

CFS-CAPG-16 Rd 16 16

CFS-CAPG-20 Rd 20 20

CFS-CAPG-24 Rd 24 24

CFS-CAPG-30 Rd 30 30

CFS-CAPG-36 Rd 36 36

CFS-CAPG-42 Rd 42 42

CFS-CAPG-52 Rd 52 52

ØL Ød

Architectural Socket Caps

We can provide architectural socket caps to use directlyin sockets and other threaded products to cover up theexposed thread and provide an architecturally pleasingappearance.

These are available in all sizes and produced to order tosuit your concrete recess dimension. Please contact CFS todiscuss your requirement.

Page 49: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 49/274

www.cfsfixings.com  2-34

L I  F T I  N G  S  O C K E T  S 

Page 50: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 50/274

www.cfsfixings.com3-1

Fixing Sockets

Page 51: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 51/274

www.cfsfixings.com  3-2

F I  X I  N G  S  O C K 

E T  S 

10

Contents

Socket Systems 3-3

Solid Cross-Hole Sockets 3-4

Fixing Design Capacities for Solid Cross-Hole Sockets 3-5

Anchorage Reinforcement for Solid Cross-Hole Sockets 3-6

Shear Reinforcement for Cross-Hole Sockets 3-7

Crosspin Sockets 3-8

Fixing Design Capacities for Solid Crosspin Sockets 3-9

Shear Reinforcement for Crosspin Sockets 3-10

Flat End Fixing Sockets 3-11

Design Capacities for Flat End Fixing Sockets 3-12

Anchorage Reinforcement for Flat End Fixing Sockets 3-13

Bent End Fixing Socket 3-14

Design Fixing Capacities for Flat End Fixing Sockets 3-15

Propping Sockets 3-16

Design Capacities for Propping Sockets 3-17

Anchorage and Shear Reinforcement for Propping Sockets 3-18

Accessories 3-19

Accessories 3-20

Seal Caps 3-21

Page 52: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 52/274

www.cfsfixings.com3-3

Socket Systems

Solid Crosshole Sockets Crosspin Sockets Flat End Sockets

Bent End Sockets Prop Sockets

 

Page 53: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 53/274

www.cfsfixings.com  3-4

F I  X I  N G  S  O C K 

E T  S 

Solid Cross-Hole Sockets• Precision Elecroplated or Stainless Steel Solid Rod

• M thread

• The socket is anchored into the concrete unit using areinforcement bar threaded through the cross-hole.

• This socket provides the highest corrosion resistance asthere is protection by solid stainless steel

• Sockets can be used in a wide range of applicationsdue to the flexible way in which the reinforcement canbe applied; pipes, walls, slabs

• These sockets may also be used as lifting sockets

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-7

Fixing – Check Fixing Load Capacity Table page 3-5

Axial Pull – Include Anchorage Reinforcement page 3-6

Shear Pull – include Anchorage Reinforcement page 3-6 and Shear Reinforcement page 3-7

Part NoElectroplated

Part NoStainless Steel

Load Group Dimensions of socket

d L g e

mm

CFS-LSRH-10 CFS-LSRHS-10 0.4 M 10 50 21 9

CFS-LSRH-12 CFS-LSRHS-12 0.5 M 12 50 23 11

CFS-LSRH-16 CFS-LSRHS-16 1.2 M 16 75 26 14

CFS-LSRH-20 CFS-LSRHS-20 2 M 20 75 33 16

CFS-LSRH-24 CFS-LSRHS-24 2.5 M 24 100 42 18

CFS-LSRH-30 CFS-LSRHS-30 4 M 30 125 54 22

        L

      e

      g

d

Page 54: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 54/274

www.cfsfixings.com3-5

Fixing Design Capacities forSolid Cross-Hole SocketsThese tables are for these sockets to be used as fixingdevices. They should be compared to the design loads onthe socket.

These tables show a typical situation and you shouldcheck your situation is within these parameters. If yoursituation falls out of these parameters, please ContactCFS for bespoke advice and calculations

Part No Typical Installation Conditions Axial Load Shear Load

Edge Distance Element thickness FV

FQ

Ccr

hcr

mm kN

CFS-LSRH-10 140 80 10 4.6

CFS-LSRH-12 140 80 15.0 6.6

CFS-LSRH-16 180 100 22.5 10.0CFS-LSRH-20 250 120 45.0 19.5

CFS-LSRH-24 300 120 50.0 20.8

CFS-LSRH-30 350 160 65.0 33.5

Where two or more sockets are in use, they should be spaced at a minimum of 2xCcr apart.

Minimum reinforcement of two layers of 131mm2 /m mesh.

Minimum concrete strength = 25N/mm2

Axial Pull – Include Anchorage Reinforcementpage 3-5

Shear Pull – include Anchorage Reinforcementpage 3-5 and Shear Reinforcement page 3-6

hcr 

Ccr 

 

FQhcr 

Ccr 

Fv

Page 55: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 55/274

www.cfsfixings.com  3-6

F I  X I  N G  S  O C K 

E T  S 

Anchorage Reinforcement forSolid Cross-Hole SocketsCross-hole sockets must be used with anchoragereinforcement. Without this they are ineffective and unsafe.

Part No Reinforcement B500B (min)

ds

G Dmin

mm

CFS-LSRH-10 8 250 60

CFS-LSRH-12 8 300 60

CFS-LSRH-16 10 350 70

CFS-LSRH-20 12 400 80

CFS-LSRH-24 16 500 116

CFS-LSRH-30 16 600 135

The legs of the reinforcement should be vertical as

shown above, or may be angled up to 60° from thevertical depending on the application.

      G

  D  m  i n

d s

Page 56: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 56/274

www.cfsfixings.com3-7

Shear Reinforcement forCross-Hole SocketsWhere the unit is being tilted, or the lift is in the edge ofthe element resulting in a shear pull on the socket, thereinforcement shown here must be used. It is important

that the bar is place as close to the surface of the elementas concrete cover requirements allow.

Part No Reinforcement B500B (min)

ds

L1

Dmin

Total Length

CFS-LSRH-10 8 95 24 295

CFS-LSRH-12 8 95 24 295

CFS-LSRH-16 8 130 32 370

CFS-LSRH-20 10 170 40 480

CFS-LSRH-24 10 185 48 520

CFS-LSRH-30 16 195 48 590

Page 57: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 57/274

www.cfsfixings.com  3-8

F I  X I  N G  S  O C K 

E T  S 

Crosspin Sockets• Zinc Plated or Stainless Steel Solid Rod and Crosspin

• M thread

• The socket is anchored into the concrete unit using acrosspin provided through the cross-hole.

• In stainless steel, this socket provides the highestcorrosion resistance as there is protection by solidstainless steel

• Sockets used in axially require no further reinforcement

• These sockets may also be used as lifting sockets

Essential Steps:

Lifting – Check Lifting Load Capacity Table page 2-26

Fixing – Check Fixing Load Capacity Table page 3-9

Shear Pull – Include Shear Reinforcement page 3-9

Part NoZinc Plated

Part NoStainless Steel

Dimensions of socket

d L F

mm

CFS-LSRB-10-50 CFS-LSRBS-10-50 M10 50 75

CFS-LSRB-12-50 CFS-LSRBS-12-50 M12 50 75CFS-LSRB-12-75 CFS-LSRBS-12-75 M12 75 75

CFS-LSRB-16-75 CFS-LSRBS-16-75 M16 75 75

CFS-LSRB-20-75 CFS-LSRBS-20-75 M20 75 90

CFS-LSRB-24-100 CFS-LSRBS-24-100 M24 100 100

         L

d

Page 58: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 58/274

www.cfsfixings.com3-9

Fixing Design Capacities for Solid Crosspin SocketsThese tables are for these sockets to be used as fixing devices. They should be compared to the design loads on asocket.

These tables show a typical situation and you should check your situation is within these parameters. If your situationfalls out of these parameters, please contact CFS of bespoke advice and calculations.

Where there is axial load and shear load at the same time, please ensure that each of the axial and shear componentsare less than the capacities and also that:

Axial Component+

Shear Component≤ 1.2

Axial Capacity Shear Capacity

Whre two or more sockets are in use, they should be spaced at a minimum of 2 x C3 apart.

Crosspin Shear Reinforcement if required, include reinforcement shown on page 3-10

C1 = Edge distance towards the freeedge where the shear force acts

C2 = Edge distance in the directionaway from the force

C3 and C4 = Edge distancesperpendicular to the shear force action

Please note that the socket should beorientated with the pin parralel to theshear force action as shown here.

Part No Zinc Plated Part No StainlessSteel

Typical Installation Conditions Axial Load Shear Load

Edge Distances ElementThickness

without rebar with rebar

Min Concrete Strength (N/mm2)

C1, C2 C3, C4 d 30 45 60 30 45 60 30 45 60

mm kN

Uncracked Concrete

CFS-LSRB-10-50 CFS-LSRBS-10-50 80 55 80 13.1 16.1 18.6 5 6.1 7 10.2 12.3 12.3

CFS-LSRB-12-50 CFS-LSRBS-12-50 90 55 80 13.8 17 19.6 5 6.1 7 10.2 12.3 12.3

CFS-LSRB-12-75 CFS-LSRBS-12-75 125 90 100 23.1 23.1 23.1 10.5 12.8 14.8 17.6 19.4 19.4

CFS-LSRB-16-75 CFS-LSRBS-16-75 120 80 100 23.3 28.6 33 9.2 11.3 13 17.6 21.9 21.9

CFS-LSRB-20-75 CFS-LSRBS-20-75 120 75 100 22.9 28 32.3 8.6 10.5 12.1 17.6 21.9 21.9

CFS-LSRB-24-100 CFS-LSRBS-24-100 160 100 130 33.2 40.7 46.9 13.7 16.8 19.4 40.7 48.3 48.3

Cracked Concrete

CFS-LSRB-10-50 CFS-LSRBS-10-50 80 55 80 9.4 10 10 3.5 4.3 5 9.4 11.5 12.3

CFS-LSRB-12-50 CFS-LSRBS-12-50 90 55 80 9.9 12.1 14 3.5 4.3 5 9.9 12.1 12.3

CFS-LSRB-12-75 CFS-LSRBS-12-75 125 90 100 18.6 22.8 23.1 7.4 9.1 10.5 17.6 21.9 21.9

CFS-LSRB-16-75 CFS-LSRBS-16-75 120 80 100 16.7 20.4 23.6 6.5 8 9.2 16.7 20.4 21.9

CFS-LSRB-20-75 CFS-LSRBS-20-75 120 75 100 16.3 20 23.1 6.1 7.4 8.6 16.3 20 21.9

CFS-LSRB-24-100 CFS-LSRBS-24-100 160 100 130 23.7 29 33.5 9.7 11.9 13.7 37.9 46.4 48.3

Page 59: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 59/274

www.cfsfixings.com  3-10

F I  X I  N G  S  O C K 

E T  S 

Shear Reinforcementfor Crosspin SocketsWhere the values with reinforcement have beenused from the load capacities table, the followingreinforcement must be included.

Part No Zinc Plated Part No Zinc Plated U-Bars

d Lb

mm

CFS-LSRBS-10-42 8 100

CFS-LSRB-10-50 CFS-LSRBS-10-50 8 100

CFS-LSRB-12-50 CFS-LSRBS-12-50 8 100

CFS-LSRB-12-75 CFS-LSRBS-12-75 8 130

CFS-LSRB-16-75 CFS-LSRBS-16-75 8 130

CFS-LSRB-16-100 CFS-LSRBS-16-100 10 200

CFS-LSRB-20-75 CFS-LSRBS-20-75 8 130

CFS-LSRB-20-100 CFS-LSRBS-20-100 12 200

CFS-LSRB-24-100 CFS-LSRBS-24-100 12 200

Grade B500B reinforcement.

Page 60: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 60/274

www.cfsfixings.com-11

Flat End Fixing Sockets• Zinc Plated or Stainless Steel Socket with Crosshole

• M thread

• The socket is anchored into the concrete unit using areinforcement bar threaded through the cross-hole.

• Stainless steel

• Sockets used in axially require no further reinforcement

• Sockets can be used in a wide range of applicationsdue to the flexible way in which the reinforcement canbe applied; pipes, walls, slabs

Part No Zinc Plated Part No StainlessSteel

Dimensions of socket

d L e g s

mmCFS-FSH-8-40 CFS-FSHS-8-40 M8 40 8.3 8 15 (12)

CFS-FSH-10-45 CFS-FSHS-10-45 M10 45 10.3 10 15

CFS-FSH-12-60 CFS-FSHS-12-60 M12 55 12.3 12 20

CFS-FSH-16-80 CFS-FSHS-16-80 M16 80 12.3 15 30

CFS-FSH-16-100 CFS-FSHS-16-100 M16 100 12.3 15 50

CFS-FSH-16-120 CFS-FSHS-16-120 M16 120 12.3 15 70

CFS-FSH-20-95 CFS-FSHS-20-95 M20 95 14.3 18 35 (28)

CFS-FSH-20-115 CFS-FSHS-20-115 M20 115 14.3 18 55 (50)

d

      g

      s

        L

      e

 

Essential Steps:Fixing – Check Fixing Load Capacity Table page 3-12

Anchorage – Include the Anchorage Reinforcement on Page 3-13

Numbers in brackets are for stainless steel

Page 61: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 61/274

www.cfsfixings.com  3-12

F I  X I  N G  S  O C K 

E T  S 

Design Capacities forFlat End Fixing SocketsThese tables are for these sockets to be used as fixingdevices. They should be compared to the design loads onthe socket.

These tables show a typical situation and you shouldcheck your situation is within these parameters. If yoursituation falls out of these parameters, please ContactCFS for bespoke advice and calculations

Concrete strength should be a minimum of 25N/mm2.

Where there is axial load and shear load at the same time, please ensure that the each of the axial and shearcomponents are less than the capacities and also that:

Axial Component+

Shear Component≤ 1.2

Axial Capacity Shear Capacity

Part No Zinc Plated Part No Stainless Steel Wall thickness Minimum edgedistance

Design Loads

Axial Shear

mm kN

CFS-FSH-8-40 CFS-FSHS-8-40 120 80 3.8 1.6

CFS-FSH-10-45 CFS-FSHS-10-45 135 90 4.6 1.6

CFS-FSH-12-60 CFS-FSHS-12-60 180 120 7 2.4

CFS-FSH-16-80 CFS-FSHS-16-80 240 160 20.8 12.8CFS-FSH-16-100 CFS-FSHS-16-100 300 200 20.8 12.8

CFS-FSH-16-120 CFS-FSHS-16-120 360 240 20.8 12.8

CFS-FSH-20-100 CFS-FSHS-20-100 300 200 27.2 14.4

CFS-FSH-20-120 CFS-FSHS-20-120 360 240 27.2 14.4

Page 62: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 62/274

www.cfsfixings.com-13

Anchorage Reinforcementfor Flat End Fixing SocketsThe anchorage reinforcement below must be used withthese sockets.

Part No Zinc Plated Part No Stainless Steel Anchorage Reinforcement B500B minimum

ds

Dmin

G

kN

CFS-FSH-8-40 CFS-FSHS-8-40 8 60 250

CFS-FSH-10-45 CFS-FSHS-10-45 8 60 250

CFS-FSH-12-60 CFS-FSHS-12-60 10 60 300

CFS-FSH-16-80 CFS-FSHS-16-80 10 70 350

CFS-FSH-16-100 CFS-FSHS-16-100 10 70 350

CFS-FSH-16-120 CFS-FSHS-16-120 10 70 350

CFS-FSH-20-100 CFS-FSHS-20-100 12 80 400

CFS-FSH-20-120 CFS-FSHS-20-120 12 80 400

 G

  D   m i   n

  d  s

Page 63: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 63/274

www.cfsfixings.com  3-14

F I  X I  N G  S  O C K 

E T  S 

Bent End Fixing Socket• Zinc Plated or Stainless Steel Socket with Bent End

• M thread

• The socket is anchored into the concrete unit by itsbent end.

• Additional reinforcement is not required.

• Sockets can be used in a wide range of applications

Part No Zinc Plated Part No StainlessSteel

Dimensions of socket

d L h g s

mm

CFS-FSB-8-30 CFS-FSBS-8-30 M8 30 20 8 12

CFS-FSB-10-35 CFS-FSBS-10-35 M10 35 21 10 18

CFS-FSB-12-45 CFS-FSBS-12-45 M12 45 25 12 20

CFS-FSB-16-60 CFS-FSBS-16-60 M16 60 30 15 22

CFS-FSB-20-70 CFS-FSBS-20-70 M20 70 30 18 24

CFS-FSB-24-80 CFS-FSBS-24-80 M24 80 37 21 30

 

Page 64: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 64/274

www.cfsfixings.com-15

Design Fixing Capacitiesfor Flat End Fixing SocketsThese tables are for these sockets to be used as fixingdevices. They should be compared to the design loads onthe socket.

These tables show a typical situation and you shouldcheck your situation is within these parameters. If yoursituation falls out of these parameters, please ContactCFS for bespoke advice and calculations

Concrete strength should be a minimum of 25N/mm2.

Part No Zinc Plated Part No Stainless Steel Wall thickness Minimum edge distance Axial Load

mm kN

CFS-FSB-8-30 CFS-FSBS-8-30 90 60 1.8

CFS-FSB-10-35 CFS-FSBS-10-35 105 70 2.4

CFS-FSB-12-45 CFS-FSBS-12-45 135 90 4

CFS-FSB-16-60 CFS-FSBS-16-60 180 120 9.5

CFS-FSB-20-70 CFS-FSBS-20-70 210 140 12.5CFS-FSB-24-80 CFS-FSBS-24-80 240 160 14.5

Page 65: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 65/274

www.cfsfixings.com  3-16

F I  X I  N G  S  O C K 

E T  S 

Propping Sockets• Zinc Plated sockets for use in propping and other

applications

• M thread

• Socket with welded round plate

• Plastic adhesive cap plate available

• May be used for both fixing and lifting operations

Part No Zinc Plated Dimensions of socket

d L e t D

mm

CFS-FAR-16-50 M16 45 42 3 50

CFS-FAR-16-70 M16 43 38 5 70

Plastic Ashesive Cap

CFS-FAP 3 50

Page 66: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 66/274

www.cfsfixings.com-17

Design Capacities forPropping SocketsThese tables are for these sockets to be used as fixingdevices. They should be compared to the design loads onthe socket.

These tables show a typical situation and you shouldcheck your situation is within these parameters. If yoursituation falls out of these parameters, please ContactCFS for bespoke advice and calculations

Part No Wall thickness Minimum edgedistance

Without Anchorage reinforcement With Anchorage reinforcement

C1, C2, C3, C4 Axial Shear Axial Shear

mm kN kN

CFS-FAR-16-50 55 400 13.4 13 17.5 15.4

CFS-FAR-16-70 55 400 15.5 13 17.5 15.5

The loads here are for use in fixing and propping applications. These anchors may be also used as lifting anchors. Pleasecontact CFS for load capacities in lifting.

Concrete strength should be a minimum of 25N/mm2

For propping applications with an angled load, ensure that

Axial Design Load+

  Shear Design Load≤  1.2

Axial Capacity Shear Capacity

 

C C3 4

N

VC1

C2

 

Page 67: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 67/274

www.cfsfixings.com  3-18

F I  X I  N G  S  O C K 

E T  S 

 

30°

  o  d  e  r

es

ouu

s   sL

L   L   LL

L

  o   r

Anchorage and ShearReinforcement for Propping SocketsPart No Anchorage Reinforcement B500B minimum Shear Reinforcement B500B

minimum

ds Lu Ls Lo Lges ds L1

mm mm

CFS-FAR-16-50 8 195 70 90 420 8 130

CFS-FAR-16-70 8 195 70 90 420 8 130

Anchorage Reinforcement

Shear Reinforcement

Page 68: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 68/274

www.cfsfixings.com-19

AccessoriesPlastic Recess Plate

The nail plate is used to attach the socket anchors tothe formwork. The plastic nail plates are available forthread sizes M/Rd12 to M/Rd52. The plastic recess plate

produces a recess into which a lifting loop or a rotatingeye can be threaded.

Part No Dimensions

Rd

D1

e

mm

CFS-NPL-12 M/Rd 12 58 10

CFS-NPL-16 M/Rd 16 58 10

CFS-NPL-20 M/Rd 20 58 10

CFS-NPL-24 M/Rd 24 70 10

CFS-NPL-30 M/Rd 30 70 10

CFS-NPL-36 M/Rd 36 100 12

CFS-NPL-42 M/Rd 42 100 12CFS-NPL-52 M/Rd 52 95 15

Magnetic Recess Plate

The magnetic nail plate attaches socket anchors to steelformwork by magnets. They are available for thread sizesM/Rd12 to M/Rd52. The magnetic recessl plate producesa recess into which a lifting loop or a rotating eye can bethreaded.

Part No Thread Adhesion D1 D2 h

mm kPa mm

CFS-MAG-12 12 100 165 60 12

CFS-MAG-16 16 100 165 60 12

CFS-MAG-20 20 100 165 60 12

CFS-MAG-24 24 100 178.2 74 12

CFS-MAG-30 30 120 194.2 90 12

CFS-MAG-36 36 120 105.2 101 12

CFS-MAG-42 42 180 115.3 110 15

CFS-MAG-52 52 180 135.3 130 15

Page 69: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 69/274

www.cfsfixings.com  3-20

F I  X I  N G  S  O C K 

E T  S 

AccessoriesMarking recess disc with fixing

These provide additional safety by marking the concretesurface with an imprint of the thread size and loadcapacity. The disc diameter is sufficient to allow rotating

eyes to be used with the cast in socket.

(1) Making Recess Disc – composite material

(2) Fixing Screw Pin – Steel

Part No d l Internal thread depth

mm

CFS-FSP-12 M12 23.5 8

CFS-FSP-16 M16 30.5 8

CFS-FSP-20 M20 37 8

CFS-FSP-24 M24 41 9.5

CFS-FSP-30 M30 50 9.5CFS-FSP-36 M36 59 9.5

CFS-FSP-42 M42 67.5 12

CFS-FSP-52 M52 81 12

Part No For fixing screwpin size

L d D g

mm

CFS-MPP-12 M12 150.5 12 23.5 10

CFS-MPP-16 M16 159.2 16 30.5 10

CFS-MPP-20 M20 173.5 20 37 10

CFS-MPP-24 M24 178.2 24 41 12

CFS-MPP-30 M30 194.2 30 50 12

CFS-MPP-36 M36 105.2 36 59 12

CFS-MPP-42 M42 115.3 42 67.5 15

CFS-MPP-52 M52 135.3 52 81 15

Page 70: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 70/274

www.cfsfixings.com-21

Seal CapsFor using directly in sockets and other threaded productswithout outer disc.

For Lifting

Part No. Anchor  

  Dimensions

18.5

25.5

31.5

35.5

44.0

52.5

55.9

69.5

CFS-CAPG-12 Rd 12 12

CFS-CAPG-16 Rd 16 16

CFS-CAPG-20 Rd 20 20

CFS-CAPG-24 Rd 24 24

CFS-CAPG-30 Rd 30 30

CFS-CAPG-36 Rd 36 36

CFS-CAPG-42 Rd 42 42

CFS-CAPG-52 Rd 52 52

ØL Ød

Architectural Socket Caps

We can provide architectural socket caps to use directlyin sockets and other threaded products to cover up theexposed thread and provide an architecturally pleasingappearance.

These are available in all sizes and produced to order tosuit your concrete recess dimension. Please contact CFS todiscuss your requirement.

Page 71: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 71/274

www.cfsfixings.com  3-22

F I  X I  N G  S  O C K 

E T  S 

Page 72: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 72/274

www.cfsfixings.com4-1

Spherical Head Anchors

Page 73: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 73/274

www.cfsfixings.com  4-2

 S P HE R I   C A L HE A D A N C H OR  S 

10

Contents

Product Summary 4-3

Recess Formers and Accessories 4-4

Accessories 4-5

Other CFS Products for use in Construction with SphericalAnchor Systems 4-5

Type T - Spherical Head T Anchors 4-6

Type T - Axial Lifting of Beams and Walls 4-7

Type T - Additional Reinforcement for Axial Lifting ofBeams and Walls 4-8

Type T - Angled Lifting of Beams and Walls 4-9

Type T - Additional Reinforcement for Angled Lifting ofBeams and Walls 4-10

Type T - Axial or Angled Lifting of Slabs 4-11

Type T - Additional Reinforcement for Angled Lifting of Slabs 4-12

Type TPA - Spherical Head Plate Anchors 4-13

Type TSG - Spherical Head Cranked Anchor 4-14

Type TKS - Rod Lifting Anchor 4-15

Type O - Eye Lifting Anchor 4-16

Type TKS - Additional Reinforcement 4-17

Type TKA - Tilt Anchor 4-18

Type TKA - Additional Reinforcement for Shear Liftingof Beams and Walls 4-19

Type TKA - Recess Formers 4-19

Recess Formers for Spherical Head Anchors 4-20

Recess Formers for Spherical Head Anchors 4-21

Spherical Head Anchor Lifting Devices 4-22

Lifting Clutches - Type H2 4-22

Anchor Lifting and Turning Devices 4-23

Page 74: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 74/274

www.cfsfixings.com4-3

Product SummaryT - Spherical Head T Anchor

Forged from round steel St 52-3with load groups 1.3–32 (higherload groups on request). Suitable forlarge precast elements such as slabs,beams, walls and pipes.

TPA - Spherical Head Plate Anchor

Spherical-Head Lifting Anchor with awelded-on plate. Load groups 2.5–10t. or use in thin large-sized heavy slabswhich are to be lifted or assembled ina horizontal position.

TSG - Spherical HeadCranked Anchor

Replace paragraph with “Speciallycranked anchor to enable sandwichpanel lifting to take place.”

TKS - Spherical Head Rod Anchor

Forged from ribbed steel St 52-3,with load groups 2–15. For use invery thin concrete sections.

O - Spherical Head O Anchor

This anchor has a bar passed throughthe hole. For use in thin sections.

TKA - Spherical Head Tilt Anchor

Designed for tilting pre-cast elementfrom the horizontal to vertical.

Anchor identification

Anchors head are always marked withthe load group e.g. 5.0.

Material

Anchors are available in steel ST 52-3or stainless steel 304 or hot dip spungalvanized.

5.0.

Page 75: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 75/274

www.cfsfixings.com  4-4

 S P HE R I   C A L HE A D A N C H OR  S 

Safety and qualityFactors safety

Anchors and lifting eyes have a minimum factor of safetyof 3:1. Load data provides in the tables is based upon afactor of safety of 2.5:1 against concrete failure.

Quality

All anchors and clutches are produced by state of the artproduction equipment in accordance with ISO 9001. Allanchors are batch checked and tested by a recognised

research institute.

Recess Formers and AccessoriesRubber recess former

To attach the spherical head lifting anchor to the mould.forms a semi-circular recess to accept the lifting clutch

Narrow rubber recess former

To attach the spherical head lifting anchot to the mouldand to produce the narrow recess in slender precastconcrete units.

Magnetic recess former

A former for use with spherical head anchors.Incorporates high power magnets to fix to the steelformwork. Use insert RRM.

Page 76: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 76/274

www.cfsfixings.com4-5

Accessories

Lifting eye

Lifting clutch in 7 different load groups 1.3–45 tto suit the load carrying range of all Lifting Anchors

of the Spherical-Head Anchor System.

Turning and lifting device

For easy lifting and turning of heavy, large concrete pipes.Load groups 1.3–32 t. The Turning and Lifting Link is

attached to an installed Spherical-Head Lifting Anchor.Please contact CFS for specific application details.

Other CFS Products for use in Construction

with Spherical Anchor SystemsChain sets for lifting precast planks and slabs Pipe joining chains type BCH

Page 77: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 77/274

www.cfsfixings.com  4-6

 S P HE R I   C A L HE A D A N C H OR  S 

T Anchors are the most commonly used spherical headanchor and can be used in most situations. They are idealfor beam or wall elements.

The load on the anchor is transmitted to the concrete

through the anchor foot. In the same load group,anchors are available with different lengths. Longeranchors are installed for reduced edge spacing or for lowconcrete strengths.

The anchors must be fixed in the mould using recessformers. The recess former retains the anchor securely inposition during the concrete pour.

The recess former creates a void around the head which

corresponds to the shackle. The incorrect coupling ofparts from different load groups is impossible. Anotheradvantage is that the shackle rests agains the concreteduring an angled lift and therefore the horizontal load istransferred into the concrete directly.

Part No Standard Load Group

CFS-T-013-0035 1.3

CFS-T-013-0040 1.3

CFS-T-013-0050 1.3

CFS-T-013-0055 1.3

CFS-T-013-0065 1.3

CFS-T-013-0085 1.3

CFS-T-013-0120 1.3

CFS-T-013-0240 1.3

CFS-T-025-0045 2.5

CFS-T-025-0055 2.5CFS-T-025-0065 2.5

CFS-T-025-0070 2.5

CFS-T-025-0085 2.5

CFS-T-025-0100 2.5

CFS-T-025-0120 2.5

CFS-T-025-0140 2.5

CFS-T-025-0170 ** 2.5

CFS-T-025-0210 2.5

CFS-T-025-0240 2.5

CFS-T-025-0280 2.5

CFS-T-050-0055 5

CFS-T-050-0065 * 5

CFS-T-050-0075 * 5CFS-T-050-0080 5

CFS-T-050-0085 5

CFS-T-050-0095 * 5

CFS-T-050-0110 5

CFS-T-050-0120 * 5

CFS-T-050-0140 5

CFS-T-050-0150 5

CFS-T-050-0160 5

CFS-T-050-0170 5

CFS-T-050-0180 * 5

Part No Standard Load Group

CFS-T-050-0210 5

CFS-T-050-0240 ** 5

CFS-T-050-0340 5

CFS-T-050-0480 5

CFS-T-050-0680 5

CFS-T-075-0085 * 7.5

CFS-T-075-0095 * 7.5

CFS-T-075-0100 7.5

CFS-T-075-0120 7.5

CFS-T-075-0140 7.5CFS-T-075-0150 7.5

CFS-T-075-0160 7.5

CFS-T-075-0165 7.5

CFS-T-075-0170 7.5

CFS-T-075-0200 7.5

CFS-T-075-0240 7.5

CFS-T-075-0280 7.5

CFS-T-075-0300 * 7.5

CFS-T-075-0540 7.5

CFS-T-075-0680 7.5

CFS-T-100-0085 10

CFS-T-100-0090 10

CFS-T-100-0100 10CFS-T-100-0115 10

CFS-T-100-0120 10

CFS-T-100-0135 * 10

CFS-T-100-0140 10

CFS-T-100-0150 10

CFS-T-100-0170 10

CFS-T-100-0200 10

CFS-T-100-0220 10

CFS-T-100-0250 10

CFS-T-100-0340 * 10

Part No Standard Load Group

CFS-T-100-0500 10

CFS-T-100-0540 10

CFS-T-100-0650 10

CFS-T-100-0680 10

CFS-T-100-1300 10

CFS-T-150-0140 15

CFS-T-150-0150 15

CFS-T-150-0165 15

CFS-T-150-0170 15

CFS-T-150-0200 15CFS-T-150-0210 15

CFS-T-150-0300 15

CFS-T-150-0400 15

CFS-T-150-0840 15

CFS-T-200-0100 20

CFS-T-200-0165 20

CFS-T-200-0170 20

CFS-T-200-0200 20

CFS-T-200-0240 20

CFS-T-200-0250 20

CFS-T-200-0340 20

CFS-T-200-0500 20

CFS-T-200-1000 20CFS-T-320-0175 32

CFS-T-320-0280 32

CFS-T-320-0320 32

CFS-T-320-0500 32

CFS-T-320-0700 32

CFS-T-320-1200 32

CFS-T-450-0280 45

CFS-T-450-0500 45

CFS-T-450-0700 45

CFS-T-450-1200 45

Type T - Spherical Head T Anchors

Anchors are available in black carbon steel (standard), hot dip galvanised steel, electro-galvanised steel and stainless steel.

Sizes highlighted in green are held standard in stock.

* Standard and hot dipped galvanized anchors held in stock. ** Standard, hot dipped galvanised and stainless steel held in stock.

All other anchors will take a few days longer and any bespoke length may be provided on request.

Page 78: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 78/274

www.cfsfixings.com4-7

Type T - Axial Lifting of Beamsand WallsLoad capacity under vertical axial lift using the CFS Lifting Clutch for walls andbeams.

The values in this table are valid when using the additional reinforcementshown on the next page.

Part NoLoadGroup

Length ofanchor

Cover toanchor head

Recessradius

Min edgedistance

Minimumelementthickness

Permissible axial load

Concrete strength in N/mm2

L e R amin

s 15 25 35

mm mm mm mm mm kN kN kN

CFS-T-013-0120 1.3 120 10 30 390

60 9.9 12.8 13

80 13 13 13

100 13 13 13

CFS-T-025-0170 2.5 170 11 37 54080 18.4 23.8 25100 23 25 25

120 25 25 25

CFS-T-050-0340 5 340 15 47 765

120 39.5 50 50

140 46 50 50

160 50 50 50

CFS-T-050-0480 5 480 15 47 765

100 32.8 42 50

120 39.5 50 50

140 46 50 50

CFS-T-075-0300 7.5 300 15 59 945

160 63.2 75 75

180 71 75 75

200 75 75 75

CFS-T-075-0540 7.5 540 15 59 945

140 55.2 71.3 75

160 63.2 75 75

180 71 75 75

CFS-T-100-0340 10 340 15 59 1100

200 89.5 100 100

240 98 100 100

280 100 100 100

CFS-T-100-0680 10 680 15 59 1100

160 73.6 95.2 100

180 83 100 100

200 92 100 100

CFS-T-150-0400 15 400 15 80 1250

300 129 150 150

400 149 150 150

500 150 150 150

CFS-T-200-0500 20 500 15 80 1550

300 162 200 200

400 175 200 200

500 187 200 200

CFS-T-320-0700 32 700 23 102 2150

450 282 320 320

550 312 320 320

680 320 320 320

CFS-T-320-1200 32 1200 23 102 2150

300 266 320 320

350 311 320 320

400 320 320 320

CFS-T-450-1200 45 1200 23 102 2400

400 355 450 450

500 444 450 450

600 450 450 450

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Page 79: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 79/274

www.cfsfixings.com  4-8

 S P HE R I   C A L HE A D A N C H OR  S 

Type T - Additional Reinforcement for AxialLifting of Beams and WallsFor elements such as walls or beams where the liftingoccurs axially, the reinforcement below must be includedin addition to the mesh or other reinforcement specfifiedby the engineer.

L = Anchor length

The stirrups adjacent to the anchor should be installed as close as possible to the recess former.

Part No. Load Group

Stirrups Edge reinforcement

BSt 500s BSt 500s

n x d Ls d

mm mm mm

CFS-T-013 1.3 4 x Ø6 L+300 Ø10

CFS-T-025 2.5 4 x Ø6 L+600 Ø10CFS-T-050 5 6 x Ø8 L+750 Ø12

CFS-T-075 7.5 6 x Ø10 L+750 Ø12

CFS-T-100 10 6 x Ø10 L+750 Ø16

CFS-T-150 15 8 x Ø10 L+800 Ø16

CFS-T-200 20 8 x Ø10 L+800 Ø16

CFS-T-320 32 8 x Ø12 L+1000 Ø16

CFS-T-450 45 12 x Ø12 L+1000 Ø16

Page 80: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 80/274

www.cfsfixings.com4-9

Type T - Angled Liftingof Beams and WallsLoad capacity under angled lifting up to 45° from verticalusing CFS Lifting Clutch for walls and beams

The values in this table are valid when using additionalreinforcement shown on the next page.

Part NoLoadGroup

Length ofanchor

Cover toanchor head

Recessradius

Min edgedistance

Minimumelementthickness

Permissible angel load up to 45°

Concrete strength in N/mm2

L e R amin

s 15 25 35

mm mm mm mm mm kN kN kN

CFS-T-013-0120 1.3 120 10 30 390

60 9.9 12.8 13

80 13 13 13

100 13 13 13

CFS-T-025-0170 2.5 170 11 37 54080 18.4 23.8 25100 23 25 25

120 25 25 25

CFS-T-050-0340 5 340 15 47 765

120 39.5 50 50

140 46 50 50

160 50 50 50

CFS-T-050-0480 5 480 15 47 765

100 32.8 42 50

120 39.5 50 50

140 46 50 50

CFS-T-075-0300 7.5 300 15 59 945

160 63.2 75 75

180 71 75 75

200 75 75 75

CFS-T-075-0540 7.5 540 15 59 945

140 55.2 71.3 75

160 63.2 75 75

180 71 75 75

CFS-T-100-0340 10 340 15 59 1100

200 89.5 100 100

240 98 100 100

280 100 100 100

CFS-T-100-0680 10 680 15 59 1100

160 73.6 95.2 100

180 83 100 100

200 92 100 100

CFS-T-150-0400 15 400 15 80 1250

300 129 150 150

400 149 150 150

500 150 150 150

CFS-T-200-0500 20 500 15 80 1550

300 162 200 200

400 175 200 200

500 187 200 200

CFS-T-320-0700 32 700 23 102 2150

450 282 320 320

550 312 320 320

650 320 320 320

CFS-T-320-1200 32 1200 23 102 2150

300 266 320 320

350 311 320 320

400 320 320 320

CFS-T-450-1200 45 1200 23 102 2400

400 355 450 450

500 444 450 450

600 450 450 450

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Page 81: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 81/274

www.cfsfixings.com  4-10

 S P HE R I   C A L HE A D A N C H OR  S 

Type T - Additional Reinforcement forAngled Lifting of Beams and WallsLoad capacity under angled lifting up to 45° from vertical using CFS Lifting Clutch forwalls and beams

The values in theis table are valid when using additional reinforcement shown on thenext page.

The stirrups adjacent to the anchorshould be installed as close aspossible to the recess former andthen at a spacing of 125mm.

The angle lift reinforcement shouldalso be placed as close as possibleto the recess former and with

full contact to the anchor in theopposite direction to the load.

Stirrups Edge Reinforcement Angle Lift Reinforcement

Part No Load Group

Stirrups Edgereinforcement

Angled Lift Reinforcement

BSt 500s BSt 500s BSt 500s

n x d Ls

d da

c La

mm mm mm mm mm mm

CFS-T-013 1.3 4 x Ø6 L+450 Ø10 Ø8 25 400

CFS-T-025 2.5 6 x Ø10 L+600 Ø10 Ø10 25 750

CFS-T-050 5 6 x Ø10 L+750 Ø12 Ø16 35 1000

CFS-T-075 7.5 8 x Ø10 L+750 Ø12 Ø16 40 1150

CFS-T-100 10 8 x Ø10 L+750 Ø16 Ø20 50 1300CFS-T-150 15 8 x Ø10 L+1000 Ø16 2xØ20 80 1500

CFS-T-200 20 10 x Ø12 L+1000 Ø16 2xØ25 80 1500

CFS-T-320 32 10 x Ø16 L+1100 Ø16 2xØ25 80 1500

L = Anchor length

Page 82: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 82/274

www.cfsfixings.com-11

Type T - Axial or AngledLifting of SlabsLoad capacity under axial or angled lifting up to 45° fromvertical using CFS Lifting Clutch for slabs.

The values in this table are valid when using additionalreinforcement shown on the next page.

Part NoLoadGroup

Length ofanchor

Cover toanchorhead

Recessradius

MinimumSlab thickness

Edgedistance

Permissible forces

Axial Angle up to45°

Axial or angle up to 45°

min Concrete strength in N/mm2

L e R s amin

15 15 25 35

mm mm mm mm mm kN kN kN kN

CFS-T-013-0040

1.3

40

10 30

75 150 7.8 6.2 10 11.8

CFS-T-013-0050 50 85 180 10 8 13 13

CFS-T-013-0065 65 100 225 13 10.4 13 13

CFS-T-013-0085 85 120 285 13 10.4 13 13

CFS-T-025-0055

2.5

55

11 37

95 200 11.2 9 14.5 17.1

CFS-T-025-0065 65 105 230 13.8 11 17.8 21.1

CFS-T-025-0085 85 125 290 19.5 15.6 25 25

CFS-T-025-0120 120 160 395 25 20 25 25

CFS-T-025-0140 140 180 455 25 20 25 25

CFS-T-050-0085

5

85

15 47

125 300 20 16 26 30.8

CFS-T-050-0095 95 135 330 23.3 18.6 30 35.5

CFS-T-050-0120 120 160 405 31.7 25.4 41 48.5

CFS-T-050-0180 180 220 585 50 40 50 50

CFS-T-050-0240 240 280 765 50 40 50 50

CFS-T-075-0095

7.5

95

15 59

135 330 24.5 19.6 31.6 37.4

CFS-T-075-0120 120 160 405 31.3 25 40.4 47.8

CFS-T-075-0140 140 180 465 38.5 30.8 49.9 59

CFS-T-075-0170 170 210 555 49.6 39.7 63.7 75

CFS-T-075-0200 200 240 645 63.8 51 75 75

CFS-T-075-0300 300 340 945 75 60 75 75

CFS-T-100-0115

10

115

15 59

155 390 29 23.2 37.5 44.4

CFS-T-100-0150 150 190 495 42 33.6 54.3 64.2

CFS-T-100-0170 170 210 555 50.2 40.2 64.8 76.5

CFS-T-100-0200 200 240 645 63.2 50.6 81.7 96.5

CFS-T-100-0250 250 290 795 87.3 69.8 100 100

CFS-T-100-0340 340 380 1065 100 80 100 100

CFS-T-0150-0140

15

140

15 80

180 465 37.5 30 48.4 57.2

CFS-T-0150-0170 170 210 555 47.3 37.8 61 72.3

CFS-T-0150-0200 200 240 645 62.4 49.9 80.6 95.3

CFS-T-0150-0300 300 340 945 113 90.4 145 150

CFS-T-0150-0400 400 440 1245 150 120 150 150

CFS-T-0200-0200

20

200

15 80

240 645 61.6 49.3 79.5 94

CFS-T-0200-0240 240 280 765 80.5 64.4 103 122

CFS-T-0200-0250 250 290 795 85.5 68.4 110 130

CFS-T-0200-0340 340 380 1065 134 107 174 200

CFS-T-0200-0500 500 540 1545 200 160 200 200

CFS-T-0320-028032

28023 102

330 910 102 81.7 131 155

CFS-T-0320-0320 320 370 1030 124 99.5 160 190

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin apart.

Page 83: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 83/274

www.cfsfixings.com  4-12

 S P HE R I   C A L HE A D A N C H OR  S 

Type T - Additional Reinforcementfor Angled Lifting of SlabsFor slab-type elements where lifting occurs at an angle greater than 30° fromthe vertical, the reinforcement below must be included in addition to themesh or other reinforcement specified by the engineer.

Part No Load Group

Angled Lift Reinforcement

BSt 500s

da

c La

mm

CFS-T-013 1.3 Ø8 25 400

CFS-T-025 2.5 Ø10 25 750

CFS-T-050 5 Ø16 35 1000

CFS-T-075 7.5 Ø16 40 1150

CFS-T-100 10 Ø20 50 1300

CFS-T-150 15 2xØ20 80 1500

CFS-T-200 20 2xØ25 80 1500

CFS-T-320 32 2xØ25 80 1500

The angle lift reinforcement should also be placed as close as possibleto the recess former and with full contact to the anchor in the oppositedirection to the load.

This angled reinforcement may be omitted if the edge distance isincreased to the following:

  At Edge distance

  fcu

 = 15N/mm2  3 x amin

  fcu

 = 25N/mm2  2.5 x amin

  fcu

 = 35N/mm2  2 x amin

Angle Lift Reinforcement

≤45º

Reinforcementrequired

Use a Type TKATilt Anchor

Additional reinforcementnot required

Page 84: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 84/274

www.cfsfixings.com-13

Type TPA - SphericalHead Plate AnchorsThe Spherical Head Plate Anchor is recommended for alllarge thin precast slabs, when the standard short anchorcannot be adequately anchored.

The minimum element thickness results from the anchorlength, the head cover dimension and the requiredconcrete cover.

Appropriate measures must be taken to ensure concretecover requirements for corrosion protection and alsoallow the concrete to flow under the anchor plate.

Part NoLoadGroup

Min Slabthickness

Height ofanchor

Min edgedistancea

min

Cover toanchorhead

Recessradius

AdditionalReinforcement

Permissible forces

Axial Angle up to 45°

Concrete strength in N/mm2

s H e R ds

Ls

15 25 15 25

mm mm mm mm mm mm mm kN kN kN kN

CFS-TPA-025-055

2.5

85 55 280

11 37

8 200 10 25 10.8 14

CFS-TPA-025-085 115 85 770 10 250 15 25 17 21

CFS-TPA-025-120 150 120 1000 10 300 25 25 25 25

CFS-TPA-050-055

5

90 55 1000

15 47

12

450

12 50 14 18.6

CFS-TPA-050-065 100 65 1000 12 16 50 16 20.8

CFS-TPA-050-095 125 95 1000 12 33 50 28 35

CFS-TPA-050-110 145 110 1000 12 50 50 34 43.8

CFS-TPA-100-115 10 150 115 1280 15 59 16 600 80 100 34.5 44.5

Anchors are available in black carbon steel (standard), hot dip galvanised steel.

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Page 85: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 85/274

www.cfsfixings.com  4-14

 S P HE R I   C A L HE A D A N C H OR  S 

Type TSG - SphericalHead Cranked AnchorThe cranked lifting anchor differs from the standardspherical head lifting anchor only by its cranked shape.This special shape permits installation of this anchor in,for example, sandwich panels.

The foot of the anchor is installed within the middle ofthe loadbearing layer of the panel, whilst the anchor headis positioned at the centroid. This allows the panel to belifted vertically. Spalling of the concrete during erecting,lifting and assembly operations is avoided.

If the element is produced with the front layer on top, theelement may only be lifted with a tilting table. Please consultwith CFS for pitching capacities. The positioning of severalconnector pins in the vicinity of the anchor is beneficial.

Diagonal/Angled Pull lifts are not permitted, therefore aspreader beam or other provision must be made to ensureonly axial lifting is applied.Anchors are available in blackcarbon steel (standard) and hot dip galvanised steel.

Anchors are available in black carbon steel (standard) and hot dip galvanised steel.

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Part No Load Group

Min Edgedistance a

min

Element thickness Length of anchor Offset Permissible axial forcesConcrete strength 25N/mm2d L a

mm mm mm mm kN

CFS-TSG-013-227 1.3 130 80 227 50 13

CFS-TSG-025-268 2.5 185 100 268 50 25

CFS-TSG-040-406 4 320 100 406 60 40

CFS-TSG-050-466 5 410 100 466 60 50

CFS-TSG-075-664 7.5 605 120 664 70 75

CFS-TSG-100-667 10 610 140 667 70 100

CFS-TSG-150-825 15 750 180 825 90 150

CFS-TSG-200-986 20 1015 200 986 90 200

CFS-TSG-320-1150 32 1500 240 1150 150 320

Page 86: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 86/274

www.cfsfixings.com-15

Type TKS - Rod Lifting AnchorThe rod lifting anchor is used in very thin walls and thewebs of precast beams. Brick faced precast panels canalso be lifted using this anchor.

This anchor consists of a ribbed round steel bar with

a forged head. The anchor forces are tranferred solelyvia the ribs of the steel bar into the concrete of theprefabricated element.

Anchors are available in black carbon steel (standard)and hot dip galvanised steel.

Part No Load Group StirrupsBSt 500s

EdgereinforcementBSt 500s

Angled Lift ReinforcementBSt 500s

n x d Ls

d da

c La

CFS-TKS-025-0400 2.5 8 x Ø8 550 Ø10 Ø10 25 600

CFS-TKS-025-0520 2.5 10 x Ø8 670 Ø10 Ø10 25 600

CFS-TKS-050-0580 5 10 x Ø10 700 Ø12 Ø12 35 1000

CFS-TKS-050-0900 5 16 x Ø10 800 Ø12 Ø12 35 1000

CFS-TKS-075-0750 7.5 14 x Ø10 750 Ø16 Ø20 40 1000

CFS-TKS-075-1150 7.5 20 x Ø10 900 Ø16 Ø20 40 1000

CFS-TKS-100-0870 10 16 x Ø10 800 Ø16 Ø20 50 1150

CFS-TKS-100-1300 10 22 x Ø10 950 Ø16 Ø20 50 1150

CFS-TKS-150-1080 15 18 x Ø12 1050 Ø16 Ø25 80 1200

CFS-TKS-150-1550 15 26 x Ø12 1200 Ø16 Ø25 80 1200

The stirrups adjacent to the anchorshould be installed as close aspossible to the recess former andthen at a spacing of 150mm.

The angle lift reinforcement shouldalso be placed as close as possibleto the recess former and withfull contact to the anchor in theopposite direction to the load.

Stirrups Edge Reinforcement Angle Lift Reinforcement

Page 87: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 87/274

www.cfsfixings.com  4-16

 S P HE R I   C A L HE A D A N C H OR  S 

Type O - Eye Lifting AnchorThe Eye Lifting Anchor is used whenever, due to specialcircumstances, the load transfer through an anchor footis not possible. It is mainly designed for the use in slenderreinforced concrete elements, e.g. beams. It is alsosuitable for lightweight concrete elements.

The Eye Lifting Anchor is designed so that the totalanchor force is transferred into the concrete via areinforcement bar. This reinforcement bar is installed sothat it is firmly fixed in the anchor hole and in contactwith it. The additional reinforcement should be asdescribed in the table below.

The reinforcement bars of ribbed steelmust be bent to an angle of 30°. End hooks are notrequired. The length E can be reduced with the endhooks (see EN 1045).

For an angled lift it is necessary to use additionalreinforcement similar to that installed with a T-Typeanchor.

Anchors are available in black carbon steel (standard)and hot dip galvanised steel

Part NoLoadGroup

Length ofanchor

Diameterof hole

Minimumelementthickness

Minimumedgedistance a

min

Permissibleaxial load

Permissible angledload up to 45°

Reinforcement dimensions

E Øe

Concrete strength in N/mm2

L ØC s 15 15 25 15 25 35 15

mm mm mm mm kN kN kN mm mm mm mm

CFS-O-013-065 1.3 65 9 80 250 13 10.4 13 700 600 450 8

CFS-O-025-090 2.5 90 13 80 300 25 20 25 1100 800 650 10

CFS-O-050-120 5 120 18 100 375 50 40 50 1700 1400 1100 16

CFS-O-100-180 10 180 25 140 600 100 80 100 2000 1600 1300 20

CFS-O-200-250 20 250 37 180 750 200 160 200 3000 2400 2000 32

CFS-O-320-300 32 300 47 260 1000 320 256 320 3800 2700 2200 40

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Page 88: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 88/274

www.cfsfixings.com-17

Type TKS - AdditionalReinforcementPart No Load Group Length of

anchorEdge distance Minimum

elementthickness

Permissible axial load Permissible angled loadup to 45°

min Concrete strength in N/mm2

L amin

s 15 25 15 25

mm mm mm kN kN kN kN

CFS-TKS-025-04002.5

400460

90 25 25 20 25

100 25 25 20 25

120 25 25 20 25

CFS-TKS-025-0520 520 100 25 25 20 25

CFS-TKS-050-05805

580675

120 44.2 50 35.3 50

140 47 50 37.6 50

160 50 50 40 50

CFS-TKS-050-0900 900 120 50 50 40 50

CFS-TKS-075-07507.5

750875

140 70 75 56 75

160 75 75 60 75

CFS-TKS-075-1150 1150 140 75 75 60 75

CFS-TKS-100-087010

8701025

160 95 100 76 100

CFS-TKS-100-1300 1300 160 100 100 80 100

CFS-TKS-150-108015

10801250

200 144 150 115 150

CFS-TKS-150-1550 1550 200 150 150 150 150

Page 89: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 89/274

www.cfsfixings.com  4-18

 S P HE R I   C A L HE A D A N C H OR  S 

Type TKA - Tilt AnchorThe CFS Tilt-up anchor is used for the erection andtransport of thin precast concrete elements (walls,beams). It is especially suitable for production without atilting table. Special care must be taken when installingthe anchor to ensure that the tilt-up anchor is installed in

the direction of tilt.

The anchor is cast in the concrete by means of a specialrecess formers (RBK) and should be used with a CFSLifting Clutch. Care should be taken that the tongue ofthe CFS Lifting Clutch points in the direction of lift. Dueto the special geometry of the tilt-up anchor, the CFSLifting Eye bears on the anchor and not the concrete.Additional reinforcement must be used around theanchor to allow pitching.

Shear or Angled Lifting of Slabs

Part NoLoadGroup

Lengthof anchor

Minimumelementthickness

MinimumEdgeDistancea

min

Permissible shear load Permissible angled load Permissible angled load

up to 45° up to 15°

Concrete strength in N/mm2

L s 15 25 35 15 25 35 15 25 35

mm mm mm kN kN kN kN kN kN kN kN kN

CFS-TKA-013-120 1.3 120

80 765 2.4 3 3.6 8 10 12 9 11 13

100 765 3.4 4 4.6 10 12 13 11 12 13

120 765 4.4 5 5.6 12 13 13 12.5 13 13

CFS-TKA-025-170 2.5 170

100 765 6.4 7.8 10.1 18 24 25 17.7 25 25

110 765 7.4 9 11.6 18 24 25 19.4 25 25

120 765 8.4 10.3 12.5 19 25 25 22.6 25 25

130 765 9.5 11.6 12.5 19 25 25 23.5 25 25

CFS-TKA-050-240 5 240

140 765 12.7 15.6 20.1 31 42 50 32 44 50

150 765 14.1 17.3 22.3 33 44 50 35 46 50

160 765 15.6 19.1 24.6 35 46 50 38 48 50

Shear Load Angled Load

Where using two or more anchors, they should be spaced at a minimum distance of 2xamin

 apart.

Page 90: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 90/274

www.cfsfixings.com-19

Type TKA - AdditionalReinforcement for ShearLifting of Beams and Walls

Type TKA - RecessFormersThe TKA must be fixed in the mould using a specificRBK recess former. This retains the anchor securely inposition during the concrete pour. The IPK is mounted inthe RBK in order to stabilise the RBK druing pouring andhardening

Reinforcement 1 Reinforcement 2

Part No Load Group

Meshreinforcement

Reinforcement 1 Reinforcement 2

da1

L (straight) L (bent) da1

L1

mm2 /m mm

CFS-TKA-013-120 1.3 131 10 1035 500 10 500

CFS-TKA-025-170 2.5 131 10 1635 800 10 500

CFS-TKA-050-240 5 2 x 131 12 2240 1100 12 750

RBK PartNo

IPK PartNo

LoadGroup

L H B

mm

CFS-RBK-13 CFS-IPK-13 1.3 70 32 49

CFS-RBK-25 CFS-IPK-25 2.5 86 38 60

CFS-RBK-50 CFS-IPK-50 5 110 53 78

Page 91: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 91/274

www.cfsfixings.com  4-20

 S P HE R I   C A L HE A D A N C H OR  S 

Recess Formers forSpherical Head AnchorsThe installation of the Spherical-Head Lifting Anchor isachieved with the help of a semispherical recess former.This enables the simple and secure positioning, as wellas the recessed setting of the lifting anchor. Additionallythe dimensions of the recess former ensure that only thecorrect lifting clutch can be used.

The load group is also marked on the top of the former.The recess former is fixed to the formwork by meansof either a bolt (timber) or a magnet (steel). The recessformers are produced from reusable materials e.g. rubberor steel.

Standard recess former - type RB

The Rubber Recess formers are produced from stableshape, oil and temperature (120 °C) resistant rubber andcan be used repeatedly.

The CFS-RB recess former is used with the T anchor,O anchor, TPA anchor, TKS anchor and TSG anchor.

Narrow recess former - type NRB

The Rubber Recess Formers are produced from stableshape, oil and temperature (120 °C) resistant rubber andcan be used repeatedly.

The CFS-SRB recess former is used with the T anchor,O anchor, TPA anchor, TKS anchor and TSG anchor.Is often used for thin elements such as panels.

Part No Load Group

R

mm

CFS-RB-013 1.3 30

CFS-RB-025 2.5 37

CFS-RB-040/050 5 47

CFS-RB-075 7.5 60

CFS-RB-100 10 60CFS-RB-150 15 80

CFS-RB-200 20 80

CFS-RB-320/450 32/45 108

Part No Load Group

R n o

mm

CFS-NRB-013 1.3 30 47 37

CFS-NRB-025 2.5 37 59 44

CFS-NRB-050 5 47 78 60

CFS-NRB-075 7.5 60 97 77

CFS-NRB-100 10 60 97 77

Page 92: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 92/274

www.cfsfixings.com-21

Recess Formers forSpherical Head AnchorsFixing accessories for mould formers - IP and IPDV

There are two types of fixing accessories.

Use either a projecting stud with a wing nut (IPDV) or aninternal plate with a threaded hole (IP).

IP type

IPDV type

H = 100mm

Recess former with magnet type MPS and securing rings type RRM

The MPS recess former is made from stainless steel and used with the T anchor, O anchor, TPA anchor, TKS anchor andTSG anchor. When these anchors are used a rubber ring RRM must be used to secure the anchor head firmly in themagnetic former.

MPS – Round Magnet Recess Former RRM – Rubber Rings

Fixing PlateFixing Plate with Threaded Rodand Wing Nut

Load Group Thread

IP Part No IPDV Part No mm

CFS-IP-013 CFS-IPDV-13 1.3 M8

CFS-IP-025 CFS-IPDV-025 2.5 M10

CFS-IP-050 CFS-IPDV-050 5 M10

CFS-IP-075/100 CFS-IPDV-075/100 7.5/10 M12

CFS-IP-150/200 CFS-IPDV-150/200 15/20 M12

CFS-IP-320 CFS-IPDV-320 32 M16

Magnetic Recess Former Rubber Ring

Load Group

Magnetic Recess Former Rubber RingØD B ØM ØC D d t

Part No Part No mm

CFS-MPS-13 CFS-RRM-13 1.3 66.5 11 M12 20 21 10 11

CFS-MPS-25 CFS-RRM-25 2.5 80 11 M12 30 31 14 12

CFS-MPS-50 CFS-RRM-50 5 100 13 M12 37 38 20 14

CFS-MPS-100 CFS-RRM-100 100 129 16 M16 48 49 28 20

M

Page 93: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 93/274

www.cfsfixings.com  4-22

 S P HE R I   C A L HE A D A N C H OR  S 

Spherical Head AnchorLifting DevicesThe spherical head lifting anchor system has long beenin use for hoisting, transporting and assembling concreteelements.

The anchor is secured in the concrete by means of a rubberformer. Once the concrete has cured, the former can beremoved from the element mould. The design of the clutchensures safe and tight connection to the anchor.

F

Permitted load

BA 

C

F

G

DE

Lifting Clutches - Type H2Electrolytically zinc-plated, with test certificate.The universal lifting clutch is made of wearresistant andage-resistant steel. This hook can also be used for tilting.

The spherical ball fits exactly in the concrete cavity.Thanks to the weight distribution, it is impossible for theball on the lifting clutch to come loose from the anchorwhen under load. This means that no separate locking

mechanism is necessary.The lifting clutch hook is delivered standard with anindividual certificate in accordance with Europeanstandards, so that for each year the user need only carryout a regular visual inspection.

After the lifting clutch has been tested with a test load ofthree times the authorised load, it is given an individualnumber which corresponds to the number on the testcertificate.

Part No Load Group

A B C D E F G

mm

CFS-H2-013 1.3 48 77 60 55 40 32 165

CFS-H2-025 2.5 5 92 75 68 55 42 205

CFS-H2-050 5 68 121 86 88 64 57 240

CFS-H2-075/100 10 84 170 110 108 90 77 346

CFS-H2-150/200 20 124 230 140 146 118 115 520

CFS-H2-320 32 155 303 175 195 160 155 590

CFS-H2-450 45 155 303 175 195 160 155 590

Page 94: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 94/274

www.cfsfixings.com-23

Anchor Liftingand Turning DevicesThis is designed so that large elements can be rotatedabout their centre of gravity making handling of the unitssimplified. Ideal for products such as pipes or culvertsavailable in the weight range 1.3 t to 32 t.

For anchor selection and applied reinforcement, pleaseconsult CFS for your particular application.

A. Before Installation B. After Installation

Pipe Culvert

Turning on C.O.G. point

Page 95: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 95/274

www.cfsfixings.com  4-24

 S P HE R I   C A L HE A D A N C H OR  S 

Page 96: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 96/274

www.cfsfixings.com5-1

Quick Lift Anchors

Page 97: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 97/274

www.cfsfixings.com  5-2

 Q UI   C K 

L I  F T A N C H OR  S 

10

Contents

Anchor Types 5-3

Type FSA - Spread Anchor 5-4

Type FSA - Load Capacities for Slabs andThick Walled Products 5-5

Type FSA - Load Capacities for Thin Walled Products 5-6

Type FTH - Two Hole Anchor 5-8

Type FTH - Load Capacity and AdditionalReinforcement Requirements 5-9

Type FE - Tilting Anchor 5-11

Tilting Anchor Load Capacity and AdditionalReinforcement Requirements 5-12

Type FFA - Flat Foot Anchor 5-13

Type FFA - Capacity and Additional ReinforcementRequirements 5-14

Type FPA - Plate Anchor 5-15

Flat Plate Anchor Capacity and Additional

Reinforcement Requirements 5-16

Quick Lift Clutch 5-17

Rubber Recess Former Bayonet 5-18

Holding Plate 5-19

Holding Screw 5-19

Page 98: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 98/274

www.cfsfixings.com5-3

Anchor TypesSpread anchor type FSA

Suitable for load ranges 0.7 t to 22.0 t for use in boththin panels and slabs. The additional hole in the anchoris for additional reinforcement which is used in certain

special applications.

Flat foot anchor type FFA

This anchor is intended for use in slabs.Additional reinforcement is placed over thefoot of the anchor.

Two hole anchor type FTH

Suitable for load ranges 0.7 t to 22.0 t similar to thespread anchor, except this anchor utilises additionalreinforcement passed through the hole for anchorage.

Plate anchor type FPA

This anchor is suitable for use in the thinnest of slabs.Additional reinforcement is placed over the flat plateof the anchor.

Erection anchor type FE

This anchor is designed for tilting panels from thehorizontal to the vertical. The anchor head is designedso that loads are not transferred to the upper part of

the concrete surface. This avoiding spalling.

Page 99: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 99/274

www.cfsfixings.com  5-4

 Q UI   C K 

L I  F T A N C H OR  S 

Type FSA - Spread AnchorThe lifting anchor is made of St 52-3 steel with an additionalhole. The stress transfer to the concrete occurs through thelower spead of the flat steel. It provides optimum anchoringwhether used in thin walls or large concrete units.

b

a   c

d

Part No Load Group Dimensions

a b c d

mm

CFS-FSA-0.7-110

2.5 30

110 5

14

CFS-FSA-1.4-110 110 6

CFS-FSA-1.4-160 160 6

CFS-FSA-2.0-130 130 8

CFS-FSA-2.0-160 160 8

CFS-FSA-2.0-210 210 8

CFS-FSA-2.5-120 120 10

CFS-FSA-2.5-150 150 10

CFS-FSA-2.5-200 200 10

CFS-FSA-2.5-250 250 10

CFS-FSA-3.0-160

5 40

160 10

18

CFS-FSA-3.0-220 220 10

CFS-FSA-3.0-280 280 10

CFS-FSA-4.0-140 140 10

CFS-FSA-4.0-180 180 10

CFS-FSA-4.0-240 240 12

CFS-FSA-4.0-320 320 12

CFS-FSA-5.0-180 180 15

CFS-FSA-5.0-240 240 15

CFS-FSA-5.0-400 400 15

CFS-FSA-7.5-260

10 60

260 16

27

CFS-FSA-7.5-300 300 16

CFS-FSA-7.5-420 420 16

CFS-FSA-10-300 300 20

CFS-FSA-10-370 370 20

CFS-FSA-10-520 520 20

CFS-FSA-14-370

26 60

370 20

35CFS-FSA-14-460 460 20

CFS-FSA-22-500 500 20

CFS-FSA-22-620 620 20

Page 100: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 100/274

www.cfsfixings.com5-5

Type FSA - Load Capacities forSlabs and Thick Walled ProductsLoad capacity and installation dimensions for large-area precast elements or concrete beams

Part No Permissible axialload kN

Minimumthickness ofprecast unit

Minimum Spacing Minimum thickness of beam

c b 2 x a

Concrete strength in N/mm2 Concrete strength in N/mm2

15 25 15 25 35

mm mm mm

CFS-FSA-0.7-110 7 145 390 280 70 70 70

CFS-FSA-1.4-110 14 145 390 380 110 80 70

CFS-FSA-2.0-130 20 165 460 460 150 110 90

CFS-FSA-2.0-160 20 195 660 660 120 80 80

CFS-FSA-2.5-150 25 185 530 530 180 130 100

CFS-FSA-2.5-200 25 235 730 700 130 90 70

CFS-FSA-3.0-160 30 195 560 560 210 150 120

CFS-FSA-3.0-220 30 255 700 700 160 120 100

CFS-FSA-4.0-180 40 215 630 630 280 200 160

CFS-FSA-4.0-240 40 275 840 840 200 140 110

CFS-FSA-5.0-180 50 215 630 630 380 270 220

CFS-FSA-5.0-240 50 275 840 840 270 190 150

CFS-FSA-7.5-260 75 300 910 910 420 300 240

CFS-FSA-7.5-300 75 340 1050 1050 360 250 200

CFS-FSA-10-300 100 340 1050 1050 540 380 300

CFS-FSA-10-370 100 410 1300 1300 420 300 240

CFS-FSA-14-370 140 410 1300 1300 700 500 400

CFS-FSA-14-460 140 500 1610 1610 530 380 300

CFS-FSA-22-500 220 540 1750 1750 900 640 520

CFS-FSA-22-620 220 660 2170 2170 700 500 400 

Minimum edge distance = b/2

If the lift is an angled pull β≥30° in a panel or wall, additional reinforcement will be required. Please also include the“Angled Pull” reinforcement as directed on page 6-7 for thin panels.

 

Page 101: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 101/274

www.cfsfixings.com  5-6

 Q UI   C K 

L I  F T A N C H OR  S 

Type FSA - Load Capacitiesfor Thin Walled ProductsLoad capacity and installation dimensions for thin panels and walls

 

Axial or angled load up to β=30° Angled load 45° ≤ β ≤ 30°

For thin-walled precast elements, additional edge reinforcement and link reinforcement is required. For angled lift

where β > 30°, angled pull reinforcement bar is also used. The angled pull reinforcement is inserted in an oppositedirection to the load. The type of mesh present is determined by the permanent works engineer.

Part No Permissibleaxial load

MinimumSpacing

b

Minimum thickness ofunit

2 x a

Link reinforcementn x Ø x L

Edgereinforcement

Concrete strengthin N/mm2

mm mm

15 25 35

kN mm mm

CFS-FSA-0.7-110 7 330 70 60 60 2 x Ø6 x 400 Ø 6

CFS-FSA-1.4-110 14 330 80 70 70 2 x Ø6 x 400 Ø 6

CFS-FSA-1.4-160 14 480 80 70 70 2 x Ø6 x 400 Ø 6

CFS-FSA-2.0-130 20 390 110 90 80 2 x Ø6 x 500 Ø 6

CFS-FSA-2.0-160 20 480 110 90 80 2 x Ø6 x 500 Ø 6

CFS-FSA-2.0-210 20 630 110 90 80 2 x Ø6 x 500 Ø 6

CFS-FSA-2.5-150 25 450 120 90 80 2 x Ø8 x 600 Ø 8

CFS-FSA-2.5-200 25 600 120 90 80 2 x Ø8 x 600 Ø 8

CFS-FSA-2.5-250 25 750 120 90 80 2 x Ø8 x 600 Ø 8

CFS-FSA-3.0-160 30 480 160 100 90 2 x Ø8 x 700 Ø 8

CFS-FSA-3.0-220 30 600 120 100 90 2 x Ø8 x 700 Ø 8

CFS-FSA-3.0-280 30 840 120 100 90 2 x Ø8 x 700 Ø 8

CFS-FSA-4.0-180 40 540 210 130 100 2 x Ø8 x 800 Ø 8

CFS-FSA-4.0-240 40 720 150 120 100 2 x Ø8 x 800 Ø 8

CFS-FSA-4.0-320 40 960 150 120 100 2 x Ø8 x 800 Ø 8

CFS-FSA-5.0-180 50 540 350 210 150 2 x Ø10 x 800 Ø 10

CFS-FSA-5.0-240 50 720 180 150 120 2 x Ø10 x 800 Ø 10

CFS-FSA-5.0-400 50 1200 180 150 120 2 x Ø10 x 800 Ø 10

CFS-FSA-7.5-260 75 780 340 200 150 4 x Ø10 x 800 Ø 10

CFS-FSA-7.5-300 75 900 240 160 140 4 x Ø10 x 800 Ø 10

CFS-FSA-7.5-420 75 1260 200 160 140 4 x Ø10 x 800 Ø 10

CFS-FSA-10-300 100 900 450 270 190 6 x Ø10 x 1000 Ø 12

CFS-FSA-10-370 100 1110 270 190 160 6 x Ø10 x 1000 Ø 12

CFS-FSA-10-520 100 1560 250 190 160 6 x Ø10 x 1000 Ø 12

CFS-FSA-14-370 140 1110 610 360 260 6 x Ø10 x 1000 Ø 16

CFS-FSA-14-460 140 1380 350 210 170 6 x Ø10 x 1000 Ø 16

CFS-FSA-22-500 220 1500 760 460 340 8 x Ø10 x 1200 Ø 16

CFS-FSA-22-620 220 1860 450 280 240 8 x Ø10 x 1200 Ø 16

Lifting with Axial Pull

Minimum edge distance = b/2Please see next page for arrangement of additional reinforcement and also angled pull capacities.

Page 102: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 102/274

www.cfsfixings.com5-7

Part No Permissible axial load MinimumSpacing

b

Minimum thickness of unit

2a

Linkreinforcement

Edgereinforcement

Angled pullreinforcementØ x L

s

Concrete strength in N/mm2 mm mm mm

15 25 35

kN mm mm

CFS-FSA-0.7-110 5.6 330 70 60 60 4 x Ø6 x 400 Ø 8 Ø 6 x 450

CFS-FSA-1.4-110 11.2 330 80 70 70 4 x Ø6 x 400 Ø 8 Ø 6 x 900

CFS-FSA-1.4-160 11.2 480 80 70 70 4 x Ø6 x 400 Ø 8 Ø 6 x 900

CFS-FSA-2.0-130 16 390 110 90 80 4 x Ø6 x 500 Ø 8 Ø 8 x 950

CFS-FSA-2.0-160 16 480 110 90 80 4 x Ø6 x 500 Ø 8 Ø 8 x 950

CFS-FSA-2.0-210 16 630 110 90 80 4 x Ø6 x 500 Ø 8 Ø 8 x 950

CFS-FSA-2.5-150 20 450 120 90 80 4 x Ø8 x 600 Ø 10 Ø 8 x 1200

CFS-FSA-2.5-200 20 600 120 90 80 4 x Ø8 x 600 Ø 10 Ø 8 x 1200

CFS-FSA-2.5-250 20 750 120 90 80 4 x Ø8 x 600 Ø 10 Ø 8 x 1200

CFS-FSA-3.0-160 24 480 160 100 90 4 x Ø8 x 700 Ø 10 Ø 10 x 1150

CFS-FSA-3.0-220 24 600 120 100 90 4 x Ø8 x 700 Ø 10 Ø 10 x 1150

CFS-FSA-3.0-280 24 840 120 100 90 4 x Ø8 x 700 Ø 10 Ø 10 x 1150

CFS-FSA-4.0-180 32 540 210 130 100 4 x Ø8 x 800 Ø 12 Ø 10 x 1500

CFS-FSA-4.0-240 32 720 150 120 100 4 x Ø8 x 800 Ø 12 Ø 10 x 1500

CFS-FSA-4.0-320 32 960 150 120 100 4 x Ø8 x 800 Ø 12 Ø 10 x 1500

CFS-FSA-5.0-180 40 540 350 210 150 4 x Ø10 x 800 Ø 12 Ø 12 x 1550

CFS-FSA-5.0-240 40 720 180 150 120 4 x Ø10 x 800 Ø 12 Ø 12 x 1550

CFS-FSA-5.0-400 40 1200 180 150 120 4 x Ø10 x 800 Ø 12 Ø 12 x 1550

CFS-FSA-7.5-260 60 780 340 200 150 4 x Ø10 x 800 Ø 12 Ø 16 x 2000

CFS-FSA-7.5-300 60 900 240 160 140 4 x Ø10 x 800 Ø 12 Ø 16 x 2000

CFS-FSA-7.5-420 60 1260 200 160 140 4 x Ø10 x 800 Ø 12 Ø 16 x 2000

CFS-FSA-10-300 80 900 450 270 190 6 x Ø10 x 1000 Ø 16 Ø 16 x 2300

CFS-FSA-10-370 80 1110 270 190 160 6 x Ø10 x 1000 Ø 16 Ø 16 x 2300

CFS-FSA-10-520 80 1560 250 190 160 6 x Ø10 x 1000 Ø 16 Ø 16 x 2300

CFS-FSA-14-370 112 1110 610 360 260 8 x Ø10 x 1000 Ø 16 Ø 20 x 2600

CFS-FSA-14-460 112 1380 350 210 170 8 x Ø10 x 1000 Ø 16 Ø 20 x 2600

CFS-FSA-22-500 176 1500 760 460 340 8 x Ø10 x 1200 Ø 16 Ø 28 x 3550

CFS-FSA-22-620 176 1860 450 280 240 8 x Ø10 x 1200 Ø 16 Ø 28 x 3550

Link and Edge Reinforcement Angled Pull Reinforcement

The edge and link reinforcement should be installed on both sides of the anchor in an area equal to 3 x length of theanchor. The two links in the vicinity of the anchor should be installed as close as possible to the recess former.

Type FSA - Load Capacitiesfor Thin Walled Products

Required forangled pull≥30°

Lifting with Angled Pull

Minimum edge distance = b/2

Page 103: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 103/274

www.cfsfixings.com  5-8

 Q UI   C K 

L I  F T A N C H OR  S 

Type FTH - Two Hole AnchorThe lifting anchor is made of St 52-3 steel.The stress transfer to the concrete occurs throughthe reinforcement bar.

b

ac

d

Part No Load Group Dimensionsa b c d

mm

CFS-FTH-07-90 0.7 30 90 5 14

CFS-FTH-14-90 1.4 30 90 6 14

CFS-FTH-20-90 2 30 90 8 14

CFS-FTH-25-90 2.5 30 90 10 14

CFS-FTH-30-120 3 40 120 10 18

CFS-FTH-40-120 4 40 120 12 18

CFS-FTH-50-120 5 40 120 15 18

CFS-FTH-75-160 7.5 60 160 15 26

CFS-FTH-100-170 10 60 170 20 27

CFS-FTH-140-240 14 80 240 20 35CFS-FTH-220-300 22 80 300 25 35

Page 104: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 104/274

www.cfsfixings.com5-9

Type FTH - Load Capacity and AdditionalReinforcement Requirements

 

Minimum edge distance = b/2Concrete strength assumed to be 15N/mm2 The type of mesh present is determined by the permanent works engineer.

Part No Minimum Spacing

b

Minimum thicknessof beam

2 x a

Axial and angled lift, β ≤ 30°

Permissible axialload

Reinforcement tailn x Ø x L

a

Link reinforcementn x Ø x L

Edgereinforcement

mm mm kN mm mm mm

CFS-FTH-07-90 400 80 7 1 x Ø10 x 650 2 x Ø6 x 400 Ø 6

CFS-FTH-14-90 500 80 14 1 x Ø10 x 650 2 x Ø6 x 400 Ø 6

CFS-FTH-20-90 600 90 20 1 x Ø12 x 800 2 x Ø6 x 500 Ø 6

CFS-FTH-25-90 600 100 25 1 x Ø12 x 1000 2 x Ø8 x 600 Ø 6

CFS-FTH-30-120 650 100 30 1 x Ø16 x 1000 2 x Ø8 x 700 Ø 8

CFS-FTH-40-120 700 110 40 1 x Ø16 x 1200 2 x Ø8 x 700 Ø 8

CFS-FTH-50-120 750 120 50 1 x Ø16 x 1500 2 x Ø8 x 800 Ø 8

CFS-FTH-75-160 1200 130 75 1 x Ø20 x 1750 2 x Ø10 x 800 Ø 10

CFS-FTH-100-170 1200 140 100 1 x Ø25 x 1850 4 x Ø10 x 800 Ø 12

CFS-FTH-140-240 1500 160 140 1 x Ø28 x 2350 4 x Ø10 x 1000 Ø 16

CFS-FTH-220-300 1500 180 220 1 x Ø28 x 3000 4 x Ø12 x 1200 Ø 16

Part No Minimum Spacing

b

Minimumthickness ofbeam

2 x a

Angled lift, 45° ≤ β ≤ 30°

Permissible axialload

Reinforcementtail n x Ø x L

a

Link reinforcementn x Ø x L

Edgereinforcement

Angled pullreinforcementØ x L

s

mm mm kN mm mm mm mm

CFS-FTH-07-90 400 80 5.6 1 x Ø10 x 650 4 x Ø6 x 400 Ø 8 Ø6 x 900

CFS-FTH-14-90 500 80 11.2 1 x Ø10 x 650 4 x Ø6 x 400 Ø 8 Ø6 x 900

CFS-FTH-20-90 600 90 16 1 x Ø12 x 800 4 x Ø6 x 500 Ø 8 Ø8 x 950CFS-FTH-25-90 600 100 20 1 x Ø12 x 1000 4 x Ø8 x 600 Ø 10 Ø8 x 1200

CFS-FTH-30-120 650 100 24 1 x Ø16 x 1000 4 x Ø8 x 700 Ø 10 Ø10 x 1150

CFS-FTH-40-120 700 110 32 1 x Ø16 x 1200 4 x Ø8 x 800 Ø 12 Ø10 x 1500

CFS-FTH-50-120 750 120 40 1 x Ø16 x 1500 4 x Ø10 x 800 Ø 12 Ø12 x 1550

CFS-FTH-75-160 1200 130 60 1 x Ø20 x 1750 4 x Ø10 x 800 Ø 12 Ø16 x 2000

CFS-FTH-100-170 1200 140 80 1 x Ø25 x 1850 6 x Ø10 x 1000 Ø 12 Ø16 x 2300

CFS-FTH-140-240 1500 160 112 1 x Ø32 x 2350 8 x Ø10 x 1000 Ø 16 Ø20 x 2600

CFS-FTH-220-300 1500 180 176 1 x Ø32 x 3000 8 x Ø10 x 1200 Ø 16 Ø25 x 3000

Page 105: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 105/274

www.cfsfixings.com  5-10

 Q UI   C K 

L I  F T A N C H OR  S 

 

Two Hole Anchor Load Capacity andAdditional Reinforcement Requirements

The edge and link reinforcement should be installed on both sides of the anchor in an area equal to 3 x length of theanchor. The two links in the vicinity of the anchor should be installed as close as possible to the recess former.

Link and Edge ReinforcementReinforcement tail Angled Pull Reinforcement

Required forangled pull≥30°

The ends of the bar may be straightinstead of turned in.

 

Page 106: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 106/274

www.cfsfixings.com-11

Type FE - Tilting AnchorThe lifting anchor is made of St 52-3 steel and is usedfor erecting and turning thin walled precast units in bothdirections. The stress transfer to the concrete occursthrough the reinforcement bar, which is laid over bothsides of the anchor.

a

b

d

c

Part No Load Group Dimensions

a b c d

mm

CFS-FE-14-200 1.4 55 200 6 14

CFS-FE-25-150 2.5 55 150 10 14

CFS-FE-25-230 2.5 55 230 10 14

CFS-FE-40-270 4 70 270 12 18

CFS-FE-50-290 5 70 290 15 18

CFS-FE-75-320 7.5 95 320 18 26

CFS-FE-100-390 10 95 390 20 26

Page 107: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 107/274

www.cfsfixings.com  5-12

 Q UI   C K 

L I  F T A N C H OR  S 

Tilting Anchor Load Capacity andAdditional Reinforcement Requirements

 

Part No Minimum Spacing Minimum thicknessof beam

Load Capacities AdditionalReinforcement

without tailreinforcement

Axial or angledload 45>β≤30°

Angled load β>30° Tilting load Erecting andpitchingreinforcement

b 2 x a

mm mm kN kN kN mm

CFS-FE-14-200 700 100 14 11.2 7 Ø 10 x 700

CFS-FE-25-150 550 120 25 20 12.5 Ø 12 x 800

CFS-FE-25-230 800 120 25 20 12.5 Ø 12 x 800

CFS-FE-40-270 950 150 40 32 20 Ø 16 x 1000

CFS-FE-50-290 1000 160 50 40 25 Ø 16 x 1000

CFS-FE-75-320 1200 250 75 60 37.5 Ø 20 x 1200

CFS-FE-100-390 1500 300 100 80 50 Ø 20 x 1500

Minimum edge distance = b/2Concrete strength assumed to be 15N/mm2 The type of mesh present is determined by the permanent works engineer.

Erecting and Pitching Reinforcement

2 No erecting and pitching bars required for each anchor

Lv = length before bendingThe height of the bend depends on the element thickness

No angled pull reinforcement is required as the erecting and pitching reinforcement provides the resistance required.

Page 108: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 108/274

www.cfsfixings.com-13

Type FFA - Flat Foot AnchorThe lifting anchor is made of St 52-3 steel.The stress transfer to the concrete occurs through thereinforcement bar, which is laid over the spread foot.

b

a   c

d

w

Part No Load Group Dimensions

a b c d w

mm

CFS-FFA-07-065 0.7 30 65 5 14 100

CFS-FFA-14-068 1.4 30 68 6 14 100

CFS-FFA-20-070 2 30 70 8 14 100

CFS-FFA-25-075 2.5 30 75 10 14 100

CFS-FFA-30-090 3 40 90 10 18 120

CFS-FFA-40-110 4 40 110 12 18 120

CFS-FFA-50-125 5 40 125 15 18 120

Page 109: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 109/274

www.cfsfixings.com  5-14

 Q UI   C K 

L I  F T A N C H OR  S 

Type FFA - Capacity and AdditionalReinforcement Requirements

 

Part No Minimum thicknessof precast unit

Minimum Spacing Permitted load Reinforcement bars

Axial, angled and transverse pull Ø L

Concrete strength in N/mm2

c b 15 25

mm mm kN mm

CFS-FFA-07-065 80 280 7 7 8 200

CFS-FFA-14-068 80 280 14 14 8 250

CFS-FFA-20-070 90 300 18 20 8 300CFS-FFA-25-075 100 320 20 25 8 300

CFS-FFA-30-090 120 380 28 30 10 400

CFS-FFA-40-110 140 460 37 40 12 450

CFS-FFA-50-125 160 520 44 50 12 500

Minimum edge distance = b/2

1

2

1

3

1

2

3

1

Page 110: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 110/274

www.cfsfixings.com-15

Type FPA - Plate AnchorThe lifting anchor is made of St 52-3 steel. The stresstransfer to the concrete occurs through the reinforcementbar, which is laid over the plate crosswise.

b

d

a

c

c

Part No Load Group Dimensions

a b c d

mm mm mm mm

CFS-FPA-14-50 1.4 30 50 80 8

CFS-FPA-25-80 2.5 30 80 100 8

CFS-FPA-50-120 5 40 120 100 10

CFS-FPA-100-160 10 60 160 100 12

Page 111: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 111/274

www.cfsfixings.com  5-16

 Q UI   C K 

L I  F T A N C H OR  S 

Flat Plate Anchor Capacity and AdditionalReinforcement Requirements

 

Part No Minimum thicknessof precast unit

Minimum Spacing Permitted load Reinforcement bars

c b Axial or angledload 45>β≤30°

Angled load β>30° Ø L

mm mm kN kN mm

CFS-FPA-14-50 80 230 14 11.2 8 200

CFS-FPA-25-80 110 330 25 20 10 300

CFS-FPA-50-120 150 480 50 40 12 450

CFS-FPA-100-160 200 660 100 80 16 600

 

Page 112: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 112/274

www.cfsfixings.com-17

Quick Lift ClutchThe lifting clutch is made of special steel casting.The lifting bolt is inserted into the hole of thelifting anchor and can be removed afterwards.

Use of Quick Lift ClutchEngagement

Simply insert the lift clutch into the recess formed in the

concrete and close the locking bolt manually, ensure thatit is fully engaged & flush with the concrete surface.

Lifting

The quick lift clutch system can be subjected to loads inany direction and no extra or special part is required forangled lifts and turning. It is therefore essential to followthe instructions regarding rebars in the concrete.Once the ring clutch has been engaged in the anchor, theshackle can move in any direction, even under load.

Release

To release, shift the locking bolt back by hand, this willrelease the lifting clutch.

Marking

Every ring clutch is marked with the load capacity anda serial number. Clutches should be examined regularlyand re-tested annually.

Part No Load Group

CFS-F2-15 1.5

CFS-F2-25 2.5

CFS-F2-50 5

CFS-F2-100 10

CFS-F2-260 26

Page 113: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 113/274

www.cfsfixings.com  5-18

 Q UI   C K 

L I  F T A N C H OR  S 

Rubber RecessFormer BayonetRecess former for fixing with holding screw for mountingplate or bayonet fixing

a

c

b

Part No LoadGroup

a b c Thread

CFS-FRBI-15 1.5 29 62 35 M8

CFS-FRBI-25 2.5 43 104 45 M8

CFS-FRBI-50 5 49 126 59 M8

CFS-FRBI-100 10 67 188 85 M12

CFS-FRBI-260 26 112 233 121 M16

Page 114: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 114/274

www.cfsfixings.com-19

Holding PlateFor fastening of the recess former onto the formwork 

a

c

b

m

l

Holding ScrewFor fastening of the recess former through the formwork.

Part No Load Group a b c

CFS-FIP-15 1.5 45 15 3

CFS-FIP-25 2.5 73 15 4

CFS-FIP-50 5 85 30 4

CFS-FIP-100 10 128 40 6

CFS-FIP-260 26 178 65 8

Part No Load Group l m

CFS-FDV-25 2.5 160 M8

CFS-FDV-50 5 160 M8

CFS-FDV-100 10 160 M12

CFS-FDV-260 26 180 M16

Page 115: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 115/274

www.cfsfixings.com  5-20

 Q UI   C K 

L I  F T A N C H OR  S 

Page 116: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 116/274

www.cfsfixings.com6-1

Cast-in Lifting Loops

Page 117: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 117/274

www.cfsfixings.com  6-2

 C A  S T -I  N L I  F T I  N G

 L  O OP  S 

10

Contents

Cast-in Loop 6-3

Additional Reinforcement 6-4

Cast-in Loop Over 25t Capacity 6-4

Angled Wire Loops 6-5

Neowire Loops 6-5

Handling Instructions – Neowire for Erecting Panels from Tilt Tables 6-6

Handling Instructions – Neowire for Erecting Panels Cast Flat 6-7

Cast-in Polypropylene Loops 6-8

Page 118: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 118/274

www.cfsfixings.com6-3

Cast-in LoopThe cast-in loop is used to lift reinforced concrete elements. The cast-in loopsare marked with a coloured tag with the manufacturer, year of manufactureand load group. The cast-in loop is situated in the concrete element at the openside of the mould.

The thimble is situated in the mould. The marking must be visible afterplacing the concrete. Hoisting hooks of appropriate diameter can be inserteddirectly into the protruding cast-in loop. Care must be taken when storing theprefabricated element that the cables do not kink.

The withdrawal from use of the lifting loops is to be determined in accordancewith the regulations for hoisting cables of the country of use. The installationand application of lifting anchor systems must be available in plant and on site.The national safety regulations for lifting anchors and sytems must be obeyed.

L1

L2L12

 

 3 0   °3  0 °   

L2

t

e s e  3 0   °3  0 °   e s e

L2

t

 

* Rope diameters are for design guidance purposes only. The rope diameter may vary from those quoted above. Changeof the rope diameter will not affect the load capacity. For technical advice regarding edge distance and other setting outissues please contact CFS.

Installed parallel to surface Installed perpendicular to surface

Part No. LoadGroup

Capacity Loop dimensions Minimum concrete element dimensions

Length Embedment Rope Edge Dist Spacing Panel width, t

Installed parallel to

surface

Installed perpendicular

to surfaceConcrete strength N/mm2

L1

L2

Ø * e s 15 25 15 25

kN mm mm mm mm mm mm mm mm mm

CFS-CL-08 0.8 8 200 140 6 270 540 70 50 135 135

CFS-CL-12 1.2 12 220 160 7 310 620 90 60 140 140

CFS-CL-16 1.6 16 240 170 8 350 700 120 80 170 170

CFS-CL-20 2 20 270 190 9 430 860 150 100 180 180

CFS-CL-25 2.5 25 300 220 10 450 900 160 110 180 180

CFS-CL-40 4 40 350 250 12 500 1000 220 150 220 220

CFS-CL-52 5.2 52 370 270 14 530 1060 290 200 300 220

CFS-CL-63 6.3 63 400 290 16 570 1140 320 220 320 280

CFS-CL-80 8 80 470 330 18 650 1300 400 280 400 280

CFS-CL-100 10 100 5200 370 20 730 1460 440 310 440 310

CFS-CL-125 12.5 125 570 420 22 800 1600 560 390 550 400

CFS-CL-160 16 160 650 480 26 930 1860 620 430 620 430

CFS-CL-200 20 200 730 550 28 1050 2100 680 480 680 480

CFS-CL-250 25 250 830 630 32 1200 2400 750 530 750 530

Page 119: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 119/274

www.cfsfixings.com  6-4

 C A  S T -I  N L I  F T I  N G

 L  O OP  S 

 

L1

L2L12

 

B

T

 Part No. Load Group Capacity Length Embedment Rope

L1 L2 Ø *

kN mm mm mm

CFS-CL-280 28 280 680 460 36

CFS-CL-320 32 320 770 520 36

CFS-CL-370 37 370 950 640 40

CFS-CL-420 42 420 1000 660 44

CFS-CL-470 47 470 1100 740 44

CFS-CL-520 52 520 1200 800 48

CFS-CL-570 57 570 1350 900 48

CFS-CL-650 65 650 1430 960 46

CFS-CL-750 75 750 1530 1020 50

CFS-CL-850 85 850 1680 1120 52

CFS-CL-990 99 990 1800 1200 56

Cast-in Loop Over 25t CapacitySizes are available up to 99 t capacity.

Additional Reinforcement

*Please send CFS a drawing of your concrete element for advice on edge

distances when using these high capacity loops.

Part No. Load Group B T ReinforcementBSt 500 M

mm mm mm2/m

CFS-CL-08 0.8 450 300 188

CFS-CL-12 1.2 500 350 188

CFS-CL-16 1.6 550 350 188

CFS-CL-20 2 650 450 188

CFS-CL-25 2.5 700 500 188

CFS-CL-40 4 800 550 188

CFS-CL-52 5.2 850 550 188

CFS-CL-63 6.3 950 600 188

CFS-CL-80 8 1050 700 257

CFS-CL-100 10 1200 800 257

CFS-CL-125 12.5 1300 900 257

CFS-CL-160 16 1500 1000 257

CFS-CL-200 20 1700 1150 377

CFS-CL-250 25 1950 1300 377

Page 120: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 120/274

www.cfsfixings.com6-5

Neowire LoopsCast-in loops designed for tilt up of flat cast panels

Manufactured from galvanised steel wire for loadcapacities please see handling instructions.

For this product, please do not use the method outlinedin Section A1. These factors have already been includedin the tables found within the Handling Instructions.The element weight to apply to the table is the actualunfactored weight of the unit.

Part No Load Group Ø l

mm

CFS-NEO-25-200 2.5 10 200

CFS-NEO-35-400 3.5 12 400

CFS-NEO-35-200 3.5 12 200

CFS-NEO-50-400 5 16 400

CFS-NEO-50-200 5 16 200

CFS-NEO-75-400 7.5 18 400

CFS-NEO-75-200 7.5 18 200

Angled Wire LoopsDesigned for edge lifting of concrete slabs.

Available in load groups up to 5.2 T.

Part No. LoadGroup CapacitykN

RopeØ

mm

hmm

dmm

lmm

CFS-AL-16 1.6 16 8 150 8 330

CFS-AL-25 2.5 25 10 150 10 330

CFS-AL-40 4.0 40 12 230 12 380

CFS-AL-52 5.2 52 14 230 14 380

Angled loops with specific dimensions can be producedto can be produced to order. Bar A –Ø 20 mm length 300mm to be placed centrally over the clip as close as possibleto the outside.

Page 121: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 121/274

www.cfsfixings.com  6-6

 C A  S T -I  N L I  F T I  N G

 L  O OP  S 

Ø10 100 1+1Ø12 1+1Ø8 3.5 4.3 5.0

Ø12 120 1+1Ø12 1+1Ø8 4.9 6.0 7.0

Ø16 150 1+1Ø12 1+1Ø8 7.1 8.6 10.0

Ø18 150 1+1Ø16 1+1Ø8 9.1 11.1 12.6

Element weight [ton]Reinforcement

Dimension

NEOWIREmin

[mm]   =45°   =60°   =90°t

Handling Instructions – Neowire forErecting Panels from Tilt TablesLifting of elements

Conditions

1) Min concrete strength at first time of lifting 16 MPa

2) Min concrete strength at worksite 28 MPa

3) Reinforcement quality B500BT or Nps500

4) Lifting with stationary crane, mobile crane or truck crane

5) Well greased steel form (adhesion force 1 kN/m²)

min hook diameter 32mm

*wire lock is to be place centrally in the wall

2x # min 65 mm2 /m, max mesh size 300

Dimensioning values

The drawing above refers to lifting element above an

opening tmin=140mm

#Basket = N-ties min Ø6s150 fyk =500MPaThe reinforcement shown is intended only for lifting.The designer is responsible for the remaining staticreinforcement and the distribution of forces in the element.

b ≥ 400

SF3 First time of lifting (Method R21) SF4 Installation (Method S2)

Max element weight in the table above refers to installation, first time of lifting (SF3, R21) according to the drawing above is assumed.

Page 122: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 122/274

www.cfsfixings.com6-7

Handling Instructions – Neowire for ErectingPanels Cast FlatLifting of elements

Conditions

1) Min concrete strength at first time of lifting 16 MPa2) Min concrete strength at worksite 28 MPa

3) Reinforcement quality B500BT or Nps500

4) Lifting with stationary crane, mobile crane or truck crane

5) Well greased steel form (adhesion force 1 kN/m²)min hook diameter 32mm

Reinforcement

Dimension

NEOWIREtmin

[mm]

Max elementweight [ton]

Ø12 150 1+1Ø12 1+1Ø8 8.4–F

Ø16 150 1+1Ø12 1+1Ø8 12.0–F

Ø18 170 1+1Ø16 1+1Ø8 14.2–F

Ø10 120 1+1Ø12 1+1Ø8 6.0–F

F=Adheision to form work 

OBS! Max element weight must not exceed values stated in N33-H1

*wire lock is to be place centrally in the wall

2x # min 65 mm2 /m, max mesh size 300

Dimensioning values

The drawing above refers to lifting element above an

opening tmin=140mm

#Basket = N-ties min Ø6s150 fyk =500MPa

The reinforcement shown is intended only for lifting.The designer is responsible for the remaining staticreinforcement and the distribution of forces in the element.

Page 123: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 123/274

www.cfsfixings.com  6-8

 C A  S T -I  N L I  F T I  N G

 L  O OP  S 

Cast-in PolypropyleneLoopsCFS polypropylene loops are ideal for applications wherethe corrosion of a mild steel loop could be critical. Forexample in architectural cast stone, where rust stainingwould not be acceptable.

After use these loops can be cut off with a knife. For thinsections the loops can be passed around the reinforcementas shown in the drawing. Ensure the loop does not passover any sharp edges that may cut the rope.

Loop tied aroundreinforcement

in thin section

Part No. LoadGroup

Capacity

kN

Rope

Ø

mm

Height

mm

d

CFS-POLY-150 0.15 1.5 6 200

2/3 of theheight to becast into theconcrete.

CFS-POLY-250 0.25 2.5 8 220

CFS-POLY-360 0.36 3.6 10 235

CFS-POLY-500 0.5 5.0 12 255

CFS-POLY-875 0.875 8.75 14 280

CFS-POLY-1000 1.0 10 16 330

CFS-POLY-1200 1.2 12 16 330

Page 124: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 124/274

www.cfsfixings.com7-1

 Double WallLifting Anchors

Page 125: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 125/274

www.cfsfixings.com  7-2

 

D O UB L E WA L L L I  F T I  N GA N C H OR  S 

10

Contents

Double Wall Anchors 7-3

Installation 7-5

Hoisting, Transportation and Relocation 7-6

Page 126: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 126/274

www.cfsfixings.com7-3

Double Wall AnchorsDouble Wall anchors are used for transporting andrelocating precast concrete sandwich panels.

About Double Walls

Double walls consist of two thin precast concreteformwork layers which are joined by lattice girders. Theseform permanent shuttering and after installation on site,the core is concrete-filled.

Maximum Wall Weights

Dimensions of Double Wall Anchors

ConcreteStrength

Minconcretethickness

Minconcretecover

Min Edgedistance

Allowable loads Maximum wall weights

Axial Angled

≤ 45°

Shear Loadcase 1 Loadcase 2 Loadcase 3 Loadcase 4

2anchors

4anchors

2anchors

4anchors

2anchors

4anchors

2anchors

4anchorsh ci c F

VF

VSF

Q

N/mm2 mm kN tonnes

15 50 10 300 25.2 23.1 7.9 4 7.9 2.5 5

20 50 10 300 29.1 26.7 9.1 4.6 9.1 2.9 5.7 4.2 8.4 2.9 5.7

25 50 10 300 32.5 29.8 10.2 5.1 10.2 3.2 6.4 4.7 9.3 3.2 6.4

30 50 10 300 35.6 32.6 11.2 5.1 10.2 3.5 7.0

35 50 10 300 36.5 35.3 12.1 5.5 11.1 3.8 7.6

15 65 15 300 35.5 35.5 11 5.6 11.1 3.5 6.9

20 65 15 300 36.5 36.5 12.7 5.7 11.4 4 8 5.7 11.4 4 8

25 65 15 300 36.5 36.5 14.2 5.7 11.4 4.5 8.9 5.7 11.4 4.5 8.9

30 65 15 300 36.5 36.5 15.6 5.7 11.4 4.9 9.8

35 65 15 300 36.5 36.5 16.8 5.7 11.4 5.3 10.5

The minimum edge distances given in this table are for the loadings given in this here. Please contact CFS if you havedifferent conditions and we can provide a bespoke calculation.

Anchor width Leg bar diameter Crossbar diameter Length

Smooth steel S235

L1 d D2 H1

mm

≤ 200 14 20 450

200 - 310 14 22 450

310 - 360 14 25 500

Page 127: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 127/274

www.cfsfixings.com  7-4

 

D O UB L E WA L L L I  F T I  N GA N C H OR  S 

Loadcase 1 – Factory – Axial loading only

• Rotate to vertical using tilting table and then axiallifting with a lifting beam

• Concrete strength 15 to 25 N/mm2

• Dynamic factor = 1.3 (tower crane, mobile crane)

• No demoulding

• All axial load, no angled and no shear lifting

Loadcase 2 – Factory – Axial, angled and shearloading

• Stripping without tilting table. Tilting the walls in shearfrom the horizontal to the vertical using the anchors

• Concrete strength 15 to 25 N/mm2

• Dynamic factor = 1.3 (tower crane, mobile crane)

• Lifting chains at an angle ≤ 45°

Loadcase 3 – Site – Axial and angled loading

• Delivery of double wall standing vertically

• Concrete strength 20 to 35 N/mm2

• Dynamic factor = 1.3 (tower crane, mobile crane)• Lifting chains at an angle ≤ 45°

Loadcase 4 – Site – Axial, angled and shear loading

• Delivery of double wall lying flat on the bed of the truck 

• Concrete strength 20 to 35 N/mm2

• Tilting of the walls in shear to the vertical using theanchors

• Dynamic factor = 1.3 (tower crane, mobile crane)

• Lifting chains at an angle ≤ 45°

Page 128: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 128/274

www.cfsfixings.com7-5

InstallationEdge Distances and Spacing

The minimum distance from the edge of a panel andfrom recesses is 300mm and the minimum distancebetween anchors is 600mm. To use the load tables

shown here, the minimum distance from the edge of apanel and from any recesses is 300mm and the minimumdistance between anchors is 600mm. If you have adifferent situation contact CFS for a bespoke calculation.

Concrete Cover

The concrete cover towards the outside of the panel mustbe determined by the engineer according to the durabilityrequirements of the wall. To the inside, the concretecover should be as stated in the table. If the contours ofthe stirrup are visible on the inside surface of the wall, thecapacity of the anchor is not guaranteed and the anchor

should not be used.

Reinforcement

Minimum reinforcement should be determined by theengineer. The manufacturer’s data has been generatedfrom tests with 1 layer of A252 mesh, please provide atleast this level of reinforcement.

Insert Depth

The anchors should be installed so that the upper end ofthe stirrup does not project out of the end of the wall.

Anchor Arrangement

If using more than two double wall anchors, suspensionwill be structurally indeterminate unless a compensationequaliser or similar is used. This is due to possible unevenrope lengths or different heights of the installed doublewall anchors. Without this aid it is impossible to calculatethe load on each anchor.

Allowable Load Under Angle

In the load table our load values FVS(**VS IN SUBSCIPT)

is the vertical component of the load, no angled loadreduction necessary.

Double wall anchor cover

Page 129: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 129/274

www.cfsfixings.com  7-6

 

D O UB L E WA L L L I  F T I  N GA N C H OR  S 

Hoisting, Transportationand RelocationVisual Check

A visual check on the anchors should be carried out for

obvious damage before installation. Do not use damagedanchors.

Transport cases

Shear loading is not generally permitted during transport.A shear lift may only be used when lifting the slabsfrom horizontal to upright from the formwork platformor from the transport truck on site. Please refer to theengineer’s instructions for correct transportation position.

Modes of transport, hoisting and use of equalisers

There are different hoisting load factors to take intoaccount in the calculations depending on the transportand lifting device. Each loadcase in the table covers adifferent lifting situation.

Tilting up from horizontal

Axial and angled loading

Statically determinate suspension withcompensation mounting

Shear Load

Axial or angled load

Page 130: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 130/274

www.cfsfixings.com8-1

ReinforcementContinuity Systems

Page 131: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 131/274

www.cfsfixings.com  8-2

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

10

Contents

Full Strength Continuity Connection for Reinforcement 8-3

Configuration and Advantages of the Patent System 8-4

Friction Welding of Stainless Steel Anchors 8-5

Standard Lengths Reinforcement Steel 8-6

TSK – Position Coupler 8-8

PSAD Double Rebar Coupler 8-9

Accessories and Appliances 8-10

Page 132: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 132/274

www.cfsfixings.com8-3

Full Strength Continuity Connectionfor Reinforcement

The patent system

Produced by means of male and female couplerswith a metric thread allowing connection of thereinforcement steel.

A simple, efficient and more effective methodof connecting reinforcement, which overcomes

the disadvantages of the traditional method.

Shear wall Column Column

Beam Future extension Beam-Column

Page 133: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 133/274

www.cfsfixings.com  8-4

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

Configuration and Advantagesof the Patent System• For reinforcement steel with a diameter from

10 mm to 40 mm.

• The full diameter or cross-section of the bar can be used.

• The strength of the connection is equivalent to thereinforcement steel (Bar-break).

• Suitable for dynamic loads.

• Slip below 0.1 mm at 70% of the yield strength.

• Reinforcement steel does not require anyspecial preparation.

• Couplers are designed for reinforcement steel with anominal yield strength of 550 N/mm2 and a tensilestrength of 750 N/mm2.

• The shape, height and the type of ribs of thereinforcement steel have no influence on the connection.

• The minimal dimensions of the outside diameterof the coupling ensure that a better concrete cover

is generatied and a heavy concentration of reinforcementcan be avoided.

• Lock nuts are not required.

• Every diameter and length of reinforcement steel,straight or bent, can be fitted with a coupler andeasily connected.

• Due the metric thread, no special tools are required toassemble the Patent System or tighten the coupling.

• No special training of personnel is needed.

• The Patent System allows fast and easy to control

of the connection.• Crane time is reduced to a minimum.

• Tested and approved according to international andEuropean standards and regulations.

Page 134: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 134/274

www.cfsfixings.com8-5

Quality Solution for connectingStainless Steel

Where a stainless steel product isrequired, our sockets are producedusing the friction welding process.This results in what we believe tobe a superior product to what isgenerally on the market.

How does friction welding work?

Commonly used in industrial

applications, friction welding is the

process of generating heat through

mechanical friction between amoving work piece and a stationary

component. Our approach is to

distinguish between the friction

phase and the forging phase. During

the friction phase a rotating work

piece is pressed against a fixed one,

then once both have been heated to

a sufficient temperature the forging

phase begins whereby the rotating

work piece is stopped and a force is

applied to continue pressing the two

pieces together.

What are the advantages?

In addition to super fast joining

times, friction welding techniques are

generally melt-free thereby offering

an optimum welding method for

modern production operations. In

fact, for many types of assembly

friction welding is recommended over

other methods for both metallurgical

and commercial reasons.

Another key advantage of friction

welding is the ability to securely join

dissimilar metals – often impossible

with other welding methods due to

the different melting points of the

metals.

Welded connections between

stainless steel, reinforcing bars or

other steel components are essentialin civil and structural engineering

works; friction welding provides a

cost-effective and fast solution for

such jobs.

A friction-welded joint is a butt-type,

full-contact welded joint that achieves

a fusion between the two materials

at the joint interface with no gaps.

Only a very weak electrochemical

reaction is possible at this point,

which virtually eliminates the risk ofgalvanic corrosion, in turn providing

cost benefits over time by eliminating

the need for expensive repair work.

Furthermore, the heating of the two

materials is uniform over the entire

contact face, ensuring the same

strength properties can be assumed

throughout the plane of the joint.

Dealing with dynamic stresses

Friction-welded joints between

stainless steel and ribbed reinforcing

bars are subject to dynamic

stresses. Following extensive testing

and countless years of practical

experience, particularly in transport

infrastructure projects, it has been

proven that friction welding is

the ideal method for dealing with

dynamic stresses.

For further proof of this, we have

carried out fatigue tests with 2.5,

5 and 10 million load cycles. In the

subsequent tensile tests it was always

the ribbed reinforcing bar that failed.

If any further evidence was required,

thanks to its great versatility and

many advantages friction weldinghas been specified in the framework

development planning of Deutsche

Bahn AG and confirmed as a

production method for the Federal

Ministry of Transport’s building and

urban development for transport

infrastructure projects.

Friction Welding of Stainless Steel AnchorsThe fast and versatile welding solution

Page 135: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 135/274

www.cfsfixings.com  8-6

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

Standard LengthsReinforcement Steel

L

L1

Ø DØ M

Ø d

Diam. Length Thread Coupling

Part No. d mm L mm M Length A mm Diam. D mm L1 mm

CFS-PSA-12-400 12 400 16 25 22 62

CFS-PSA-12-600 12 600 16 25 22 62

CFS-PSA-12-800 12 800 16 25 22 62

CFS-PSA-12-1000 12 1000 16 25 22 62

CFS-PSA-12-1500 12 1500 16 25 22 62

CFS-PSA-16-550 16 550 20 36 27 86

CFS-PSA-16-800 16 800 20 36 27 86

CFS-PSA-16-1020 16 1020 20 36 27 86

CFS-PSA-16-1440 16 1440 20 36 27 86

CFS-PSA-16-1500 16 1500 20 36 27 86

CFS-PSA-20-500 20 500 24 40 34 99

CFS-PSA-20-700 20 700 24 40 34 99

CFS-PSA-20-1000 20 1000 24 40 34 99

CFS-PSA-20-1280 20 1280 24 40 34 99

CFS-PSA-20-1500 20 1500 24 40 34 99CFS-PSA-20-1800 20 1800 24 40 34 99

CFS-PSA-20-2000 20 2000 24 40 34 99

CFS-PSA-25-600 25 600 30 50 41 117

CFS-PSA-25-1000 25 1000 30 50 41 117

CFS-PSA-25-1500 25 1500 30 50 41 117

CFS-PSA-25-2260 25 2260 30 50 41 117

CFS-PSA-28-400 28 400 36 60 50 125

CFS-PSA-28-1790 28 1790 36 60 50 125

CFS-PSA-28-2530 28 2530 36 60 50 125

CFS-PSA-32-1400 32 1400 42 65 55 153

CFS-PSA-32-2000 32 2000 42 65 55 153

CFS-PSA-32-2300 32 2300 42 65 55 153

CFS-PSA-40-1600 40 1600 48 72 65 172

CFS-PSA-40-3400 40 3400 48 72 65 172

PSA rebar couplers – pressed version

Can also be used for lifting. Please consult CFS.

Page 136: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 136/274

www.cfsfixings.com8-7

TSE forged male bar coupler

For use with PSA coupler.

Ø d

L

Ø M

Page 137: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 137/274

www.cfsfixings.com  8-8

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

Ø M

A    L1 L1 L2

L

Rebar gnilpuoCdaerh T

Part No. Dia. mm Size Length A mm L mm L1 mm L2 mm

CFS-TSK-12 12 M 16 16 90 13 48

CFS-TSK-16 16 M 20 20 112 16 60

CFS-TSK-20 20 M 24 24 134 19 72

CFS-TSK-25 25 M 30 30 168 24 90

CFS-TSK-26 26 M 33 33 184 26 99

CFS-TSK-28 28 M 36 36 202 29 10

CFS-TSK-32 32 M 42 42 236 34 12

CFS-TSK-40 40 M 48 48 268 38 14

TSK – Position CouplerThe position coupler is assembled from a threaded barwith a hexagonal nut and an internally threaded couplersleeve with a lock nut. The TSK is suitable for a bentor straight reinforcement bar, of which neither can berotated, and where space for the connected bar is limited.

Page 138: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 138/274

www.cfsfixings.com8-9

PSAD DoubleRebar CouplerThis is assembled from reinforcement steel FeB 500and a Patent System coupler with an internal metricthread at both ends.

TSAD DoubleRebar CouplerAssembled from a thread bar with locked couplerswith an internal metric thread on both ends. This isused for applications where tolerance on the lengthis less than 3mm.

PSAG – BentRebar CouplerThe assembly of the PSAG rebar coupler is identical tothat of the PSA rebar coupler. The lengths (L1 and L2)of the reinforcement steel can be made to order andbent as required.

PSAP – End ConnectionIdentical to the PSA rebar coupler, but the coupling willbe joined to an anchor plate by a bolt. The anchor platedimensions allow the full strenght of the reinforcementsteel to be used.

• The Patent System gives optimal flexibility tomanufacture every desired connection using 2 separatecouplers, PKB and PEB, in the workshop, on site or inthe concrete factory.

Page 139: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 139/274

www.cfsfixings.com  8-10

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

A L1

Ø dØ D   Ø DØ M

A L1

Ø DØ MØ dØ D

Rebar Diameter Thread Length Length Dia.Part No. dia mm d mm Size A mm D mm L1 mm

CFS-PKB-16 12 14.5 M 16 27 22 58

CFS-PKB-20 16 19 M 20 36 27 80

CFS-PKB-24 20 24 M 24 40 34 92

CFS-PKB-30 25 29 M 30 50 41 110

CFS-PKB-33 26 31 M 33 54 46 117

CFS-PKB-36 28/30 34 M 36 60 50 125

CFS-PKB-42 32/34 37 M 42 65 55 145

CFS-PKB-48 40/43 47 M 48 65 65 180

 

Accessories and AppliancesPKB – standard anchor coupler

Has internal thread to produce anchors.

PEB – standard end coupler

Has external thread to produce end anchors.

 

Rebar Diameter Thread Length Length Dia.Part No. dia mm d mm Size A mm D mm L1 mm

CFS-PEB-16 12 14.5 M 16 18.5 22 58

CFS-PEB-20 16 19 M 20 22.5 27 80

CFS-PEB-24 20 24 M 24 27 34 92

CFS-PEB-30 25 29 M 30 35 41 110

CFS-PEB-36 28/30 34 M 36 40 50 127

CFS-PEB-42 32/34 37 M 42 46 55 150

CFS-PEB-48 40/43 47 M 48 54 65 180

Page 140: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 140/274

www.cfsfixings.com-11

PKBP – end anchor coupler

Has an anchor plate to produce an end coupler.

PEBL – weldable coupler

Has weldable socket to connect reinforcementsteel with steel constructions.

Page 141: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 141/274

www.cfsfixings.com  8-12

R E I  NF  OR  C E ME NT  C  ONT I  N UI  T Y  S Y  S T E M S 

Page 142: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 142/274

www.cfsfixings.com9-1

Cast-in Channels

Page 143: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 143/274

www.cfsfixings.com  9-2

 C A  S T -I  N  C HA N

NE L  S 

10

Contents

Typical Channel Applications 9-3

Typical Cast-in Channel Anchor Variations 9-4

Cast-in Channel - Cold Rolled 9-5

Cast-in Channel - Hot Rolled 9-7

T-Bolts 9-8

Longitudinal Resistance 9-10

Toothed Channel Type CHT 9-11

CFS Flexi Channels Type F 9-12

CFS Captive Fixing Nuts 9-13

CFS UNI Channel 41/21 Cast-In Insert 9-14

Sled Channels for Metal Deck Floors 9-15

Met Stop for Fixing to the Edge of Metal Deck Floors 9-16

CFS Plain Back Channels 9-18

Special Channel Fabrications 9-19

Channels - Material, Standards 9-20

Page 144: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 144/274

www.cfsfixings.com9-3

Typical Channel ApplicationsCurtain Wall

Curtain Wall: Bracket to Top of Slab

Masonry Support System: Fixing brick and stone

support angles

Fixing of Mechanical Services

Lift guide rails

Curtain Wall: Bracket to Side of Slab

Structural Steel: Curtain Wall Bracket Steel to Structural

Steel with Plain Backet Channel

Pipe Support Bracket to Underside of Slab

Fixing elevator guide rails and door surrounds

Page 145: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 145/274

www.cfsfixings.com  9-4

 C A  S T -I  N  C HA N

NE L  S 

Typical Cast-in ChannelAnchor VariationsCFS high quality inserts are designed to provide flexiblefixing points for concrete structures. Channels are idealfor use near the edges of concrete where drilling is not

possible. They are ideal for use in post-tensioned structures.

‘T’-bolts can be placed in the channels easily and moved tothe desired position. Subsequent removal of componentsis very simple.

CFS-S stud anchor standard

CFS channels can be supplied with either of the above anchor configurations. The load capacity is identical. Standardanchor centres on long lengths of channel are 250 mm. Other centres can be supplied on request. Special anchor typescan be provided to suit specific site requirements.

Cold Rolled or Hot Rolled

In most circumstances, cold rolled sections provide the appropriate solution. Where vibration is an issue or in safety-critical applications, hot rolled channels should be considered. If in doubt, seek advice.

CFS-W welded wave anchor

T-Bolts

T head bolts or locking plates are simply insertedanywhere along the channel and turned through90° to block into position.

Filler

All channels intended for casting in contain CFS quickto remove filler.

Page 146: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 146/274

www.cfsfixings.com9-5

Channel

Anchor

PEC-TA28/15Cold rolledBolt anchor

PEC-TA38/17Cold rolledBolt anchor

PEC-TA40/25Cold rolledBolt anchor

PEC-TA49/30Cold rolledBolt anchor

PEC-TA54/33Cold rolledBolt anchor

PEC-TA72/49

Cold rolled

Welded Ianchor

Material

Hot-dip. galvan. x x x x x x

Stainless steel A4 x x x x x x

Stainless steel A2 On Demand On Demand On Demand On Demand On Demand On Demand

Bolt 28/15 38/17 40/22 50/30 50/30 72/48

hef,min

 /bch

 /hch

45/28/15 76/38/17 79/40/25 94/50/30 155/53.5/33 179/72/49

hef,min

- Effective anchoring depth min. bch

 - Width of channel hch

- Height of channel

Standard Short piece cast-in channels

Anchor centres(mm)

  150 200 250 300 150 150 250 250

Standard channellengths (mm)

  150 200 250 300 350 550

Other short lengths are available to order, please consult CFS.

Cast-in Channel - Cold Rolled

Cold Rolled C-Channel

 

Page 147: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 147/274

www.cfsfixings.com  9-6

 C A  S T -I  N  C HA N

NE L  S 

Cast-in Channel - Cold RolledDimensioning and design calculationsThe design of the products with a European Technical Approval is based on the standard CEN/TS 1992-4. We provide PECRail software to allow you to optimize product selection, which is available on our website www.cfs-fixings.com

The design loads for the CFS-PEC-TA Cast in channel are provided in this brochure. Please contact our technical officefor assistance if necessary

Load capacities for cold rolled channelsCapacities per bolt where the T-bolts are spaced no closer than the anchors on the back of the channel

This table may be used in simple cases. The values are for tension only, shear only, or compare resultant forces of atension and shear components with the shear capacities. In cases where there is a longitudinal force along the lengthof the channel, please see our nibbed bolt and toothed channel products.

These values are ultimate capacities and should be compared with the factored design loads.

PEC Rail software is available on our website www.cfs-fixings.com that would be useful for complex cases, withtensile and shear forces together, with close edge distances, different slab thickness or different concrete strength.

CFS will provide technical assistance for any problems you have, so if in doubt, ask for help.

TensionCapacity C25/30

Max ShearCapacity C30/37

Min ShearCapacity C30/37

Slabthickness ≥

AnchorSpacing

where c≥ TensionOnly

where c≥ ShearOnly

where c≥ ShearOnly

(if thinner,consult

software)

5min 5max  

mm kN mm kN mm kN mm mm mm

CFS-PEC-TA 28/15

40 5 59 5 40 4.5 100 50 200

CFS-PEC-TA 38/17

50 10 90 10 50 5.5 125 100 200

CFS-PEC-TA 40/25

50 11.1 100 11.1 50 6.2 150 100 250

CFS-PEC-

TA 49/30

75 17.2 141 17.2 75 9.4 150 100 250

CFS-PEC-TA 54/33

100 30.5 250 30.5 100 14.4 200 100 250

CFS-PEC-TA72/49

150 55.6 360 55.6 150 22.2 250 100 400

Page 148: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 148/274

www.cfsfixings.com9-7

Channel

Anchor

PEC-TA 40/22

Hot rolled

Welded I anchor

PEC-TA 50/30

Hot rolled

Welded I anchor

PEC-TA 52/34

Hot rolled

Welded I anchor

Material

Hot-dip. galvan. x x x

Stainless steel A2 On Demand On Demand On Demand

Bolt to suitv 40/22 50/30 50/30

hef,min

 /bch

 /hch

79/40/22 94/50/30 155/52/34

hef,min

- Effective anchoring depth min. bch

 - Width of channel hch

- Height of channel

Cast-in Channel - Hot Rolled

Hot Rolled C-Channel

Capacities per bolt where the T-bolts are spaced no closer than the anchors on the back of the channel

This table may be used in simple cases. The values are for tension only, shear only, or compare resultant forces of a

tension and shear components with the shear capacities.These values are ultimate capacities and should be compared with the factored design loads.

For more complicated design cases, please consult with CFS who will prepare a calculation for situation.

TensionCapacity C25/30

ShearCapacity C30/37

ShearCapacity C30/37

Slabthickness ≥

AnchorSpacing

where c≥ TensionOnly

where c≥ ShearOnly

where c≥ ShearOnly

(if thinner,consult soft-ware)

5min 5max  

mm kN mm kN mm kN mm mm mm

PEC-TA 40/22 50 11.1 100 11.1 50 6.4 150 100 250

PEC-TA 50/30 75 17.2 141 17.2 75 4 150 100 250

PEC-TA 52/34 100 30.6 250 30.5 100 6.1 200 100 250

Page 149: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 149/274

www.cfsfixings.com  9-8

 C A  S T -I  N  C HA N

NE L  S 

T-BoltsCFS T-bolts are drop forged specifically designed to be usedwith the appropriate channel section. All mild steel T-boltsare supplied electroplated finish as standard grade 4.6.

They are also available grade 4.6 hot dip spun galvanised

to BS-1971 to provide a minimum of 43 microns thickness.Stainless steel T-bolts are A2 grade 50.

Grade A4 and class 70 are also available toorder. Please note that when deciding the correctchannel and ‘T’-bolt combination the load capacity of bothchannel and ‘T’-bolt need to be taken into consideration.

Type T Bolt 28/15 T Bolt 38/17 T Bolt 40/22 T Bolt 50/30 T Bolt 72/48

All bolts are delivered in onebox with nuts and washers.Nuts and washers are packedin separate plastic bags.

Electro zinc plated* x x x x x

Stainless steel A4 x x x x x

Grade 4.6 as standard x x x x x

8.8 on request x x x x x

Diameter M8-M12 M10-M16 M10-M16 M12-M20 M20-M30

Length (mm) 15-100 20-200 20-300 30-300 50-200

*Hot-dip galvanised available on request.

* Please also check channel capacities for the conditions present.

Size Range for Channels

Bolt size

Grade 4.6 Grade 8.8

Torque

Nm

Max. Load kN* Bending

MomentkNm

TorqueNm

Max. Load kN* Bending

Moment

kNmTension Shear Tension Shear

M 6 3 4.3 2.9 3 3 11.6 6.4 9M 8 8 7.9 5.3 8 8 21.1 11.7 22

M 10 13 12.5 8.4 16 15 33.4 18.6 43

M 12 25 18.2 12.1 28 25 48.6 27 75

M 16 40 33.9 22.6 72 40 90.4 50.2 192

M 20 120 52.9 35.3 140 120 141.1 78.4 374

M 24 200 76.3 50.7 242 200 203.3 113 647

M 27 300 99.1 66 360 300 264.1 146.9 959

M 30 380 121.1 80.6 486 380 322.8 179.5 1295

SWL and Technical Characteristics

Page 150: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 150/274

www.cfsfixings.com9-9

Once you have determined the minimum required bolt length for yourapplication, please consult with CFS to establish the suitable stock length.We carry a wide range of lengths in stock.

Profile Type f (mm) Bolt m+s+u (mm)

CFS-PEC-TA 28/15 Cold 2.3 M6 8.8

CFS-PEC-TA 38/17 Cold 3 M8 11.3

CFS-PEC-TA 40/25 Cold 6 M10 13.9

CFS-PEC-TA 49/30 Cold 7.5 M12 17.3

CFS-PEC-TA 54/33 Cold 8 M16 21.8

CFS-PEC-TA 72/49 Cold 10 M20 27.0

CFS-PEC-TA 40/22 Hot 6 M24 32.5

CFS-PEC-TA 50/30 Hot 8 M27 36.5

CFS-PEC-TA 52/34 Hot 11.5 M30 40

Cold = Cold rolledHot = Hot rolled

l = Required bolt length

f = Height of the profile lip

m = Height of the nut

s = Thickness of the washer

lk  = Clamping thickness

u = Length of bolt protruding

DETERMINING REQUIRED BOLT LENGTH

Page 151: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 151/274

www.cfsfixings.com  9-10

 C A  S T -I  N  C HA N

NE L  S 

Nibbed T-BoltsThese bolts must be used with hot rolled channels, hotdipped galvanized. All bolts grade 8.8

Channel Nibbed T-Bolt ToqueNm

LongitudinalDesign CapacitykN

CFS-PEC-TA 40/22 HSZ 40-22 M16 120 4.1

CFS-PEC-TA 50/30 HSZ 50-30 M16 120 10.0

CFS-PEC-TA 50/30 HSZ 50-30 M20 360 11.8

CFS-PEC-TA 52/34 HSZ 52-34 M20 360 11.8

Longitudinal ResistanceWhere forces exist along the length of the channel, thereare two alternative solutions, ribbed T-Bolts alongside ourhot-rolled channels, or toothed channels. If in doubt, pleasesend your conditions to CFS for advice.

A steel-to-steel contact is required between channel and attachment.A calibrated torque wrench must be used.

Page 152: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 152/274

www.cfsfixings.com-11

Toothed Channel Type CHTBoltdiameter

Channelprofile(CHT)

Allowable loads inreinforced concrete(kN)†

Long length Short channelor single bolt with bolt pair

3-anchor

Longitudinal loads

Long length Bolt pairor single bolt 2-anchor* 3-anchor*

Minimum spacing inreinforced concrete (mm)

Channel spacingNormal pair Parallel edge End edge

C1 C2 C3

T-bolts Grade 8.8

M16 38/2341/22

12.0 20.08.0 14.0

12.0 20.0 24.05.5 8.0 110

125 85 75100 75 60

M12 38/2341/22

12.0 20.08.0 14.0

12.0 20.0 24.05.5 8.0 11.0

125 85 75100 75 50

Stainless steel bolts

M16 41/22 8.0 14.0 5.5 8.0 11.0 100 75 60

M12 41/22 8.0 14.0 4.0 8.0 8.0 100 75 50

Notes: *Subject to check on resultant load. †Pull-out, transverse shear or resultant loads. Allowable loads quoted are after application of a Safety Factor of approximately2.5 on test in reinforced concrete. For extreme bolt positions and minimum cut edge distances, please consult CFS Ltd. Two bolts on the same channel taking longitudinalloads can be as little as 50mm apart, please consult CFS Ltd.

 

C1   C2

C3

 

250 250

250   150 150

150

Page 153: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 153/274

www.cfsfixings.com  9-12

 C A  S T -I  N  C HA N

NE L  S 

CFS Flexi Channels Type FCFS Flexi Channels are ideally suited for the quick, reliableand cost efficient fixing of different construction elements tometal deck floors.

The insert can be adjusted in height to suit the varying floor

profiles and fabricated ski assemblies are simple to fit to thebase of the adjustable feet.

• Loads based on minimum C35 concrete strength

• For 350mm channels minimum bolt centres = 150mm• For minimum height flexi anchors reduce the load by (x 0.92)

CFS Cast-In 49/30 with Flexible Anchor

Product DescriptionHot dipped galvanized orstainless steel

Length[mm]

Numberof Anchors

Min. TotalHeight [mm]

Max. Total[mm]

CFS - TA/F - 40/25, 49/30 200 or 350 200 (2) / 350 (3) 60 90

CFS - TA/F - 40/25, 49/30, 54/33 200 or 350 200 (2) / 350 (3) 85 110

CFS - TA/F - 40/25, 49/30, 54/33 200 or 350 200 (2) / 350 (3) 108 158

Other lengths / profile types or materials are available on request

For min. total height = 60mm the loads FRd have to be reduced by factor 0.92

200m 350m

SectionTension [kN]SWL [NRD]

Shear [kN]SWL [N]

Resultant[kN]

SWL [R]

Min. EdgeDistance [mm]

T-BoltsSWL

40/25 10 10 10 120 12mm (9.3kN) 16mm (17.3kN)

49/30 15 15 15 150 16mm (17.3kN) 20mm (27.0kN)

54/33 25 25 25 250 16mm (17.3kN) 20mm (27.0kN)

All load values in accordance with design criteria CEN /TS 1992-4-3

Page 154: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 154/274

www.cfsfixings.com-13

Captive Nut Indicative Load Capacities

40/25 Channel c/w M12 Captive Nut 8kN Tensile: 10kN Shear

49/30 Channel c/w M16 Captive Nut 12.5kN Tensile: 15kN Shear

54/33 Channel c/w M20 Captive Nut 25kN Tensile: 25kN Shear

40/25 Channel c/w M12 Captive Nut

49/30 Channel c/w M16 Captive Nut

54/33 Channel c/w M20 Captive Nut

CFS Captive Fixing NutsThe Economic Fix to Channel InsertsThe main benefits are:

• Channels are supplied ready for casting in complete

with the channel nuts.• Very quick to install – no down time looking for

seperate T-Bolts.

• Very economical particularly for larger diameters andlonger projections.

Captive Nut Data for Cast-In Channel Inserts

Page 155: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 155/274

www.cfsfixings.com  9-14

 C A  S T -I  N  C HA N

NE L  S 

CFS UNI Channel 41/21Cast-In InsertSize: 41 x 21 x 2.5mm

• Concrete inserts are available in standard lengths of3 metres which are supplied complete with polystyreneinfill and End Caps in place.

• Non-standard lengths can be supplied in increments of200mm. Dedicated lengths to suit your requirementscan also be produced.

• Finish pre-galvanised or hot dip galvanised. If siteinstallation requires the concrete insert to be cut andend caps must be reinserted at each end.

100mm

100mm

100mm

1522

39

7mm Diameter 

Fixing Hole21mm

41mmUNI Channel 41/21 Safe working load

Point load(250mm centres) 5.5 kN

Continuous Load(per 1000mm) 22 kN

Concrete Strength 35 N/mm

Recommended loadings

Page 156: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 156/274

www.cfsfixings.com-15

Ski allowable load data(for typical example when used to fix curtain walling)

Channel with support foot for metal deck flooring

Sled Channels for MetalDeck FloorsCFS ski channels are designed to to be used in the topsurface of metal deck floors. Ski channel assemblies allowchannel inserts to be easily positioned so that they are

flush with the surface of the concrete and maintain acorrect edge distance from the decking edge trim.

Ski channel assemblies are fabricated to suit your particularproject requirements. We manufacture to suit your slabdepth and decking type and edge condition details.CFS will be pleased to advise of the most economicalassembly for you.

 

ll

i i l i

Page 157: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 157/274

www.cfsfixings.com  9-16

 C A  S T -I  N  C HA N

NE L  S 

Met Stop for Fixing to the Edgeof Metal Deck FloorsCFS Met stop provides the complete solution for fixing to metal deck floors.Comprising a cast-in channel contained within a metal edge trim.

toorder

to order

Min50

Fix restraint straps, tying verticalleg backto the metal decking

CFS Met stop is manufactured to suit your particularproject conditions. Met-stop edge trim is produced frompre-galvanized sheet with either hot-dip galvanized orstainless steel channel inserts.

Typical installation showing Met stop shot fired ortek-screwed down to the steel frame. Restraint straps areprovided to give additional restraint to the upper edge.

Page 158: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 158/274

www.cfsfixings.com-17

Met stop load data and reinforcement requirements

Loading data for lightweight concrete of minimum 25 N/mm2 strengthreinforced as detailed on previous page.

Extreme bolt Allowable

Maximum position (ed), resultant

Met stop cantilever (c)* (assuming mc)* load (F)

28/15 MTS 40 mm 25 mm 3.5 kN

38/17 MTS 50 mm 30 mm 6.0 kN

40/25 MTS 75 mm 45 mm 8.0 kN

Quoted loads are after the application of a safety factor 

of 3:1. * ‘Preferred cantilever’ = 25 mm.

 

250 mm mc

ed

F

Reinforcement requirements to achieve full loading in lightweight concrete, strength 25 N/mm2.

Standard mesh

plus

10 mm diameter longitudinal bar

with

10 mm diameter bobs (300/80)

at 300 mm centres for long lengths

150 mm centres for short lengths

CFS Met stop can be provided to suit your site requirements at short notice.We manufacture to suit your site dimensions.

Page 159: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 159/274

www.cfsfixings.com  9-18

 C A  S T -I  N  C HA N

NE L  S 

Max.pointload

Bending load capacity at span L (single span element) CorrespondingBoltF

flex [kN] 2x F

flex [kN] q

 flex [kN/m]

Fz[kN]

Lmax

[cm]

L [m] L [m] L [m] Type Thread

0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50 M

28/15 3.9 8 0.8 0.3 0.12 0.6 0.16 0.07 3.3 0.4 0.13 28/15 6-12

38/17 4.8 11 1.5 0.6 0.3 1.1 0.3 0.15 6.1 0.9 0.3 38/17 10-16

41/41 5.6 49 5.4 2.7 1.8 4.0 2.0 1.3 21.5 5.4 2.3 41/41 8-16

40/25 3.8 33 2.6 1.3 0.6 1.9 0.8 0.4 10.3 2.2 0.7 40/22 10-16

49/30 4.9 46 4.3 2.2 1.2 3.3 1.6 0.7 17.4 4.3 1.3 50/30 10-20

40/22 5.7 21 2.6 1.3 0.6 2.0 0.8 0.3 10.5 2.1 0.6 40/22 10-16

50/30 11.0 19 5.3 2.7 1.6 4.0 2.0 0.9 21.4 5.3 1.7 50/30 10-20

52/34 17.0 21 8.8 4.4 2.8 6.6 3.3 1.6 35.1 8.8 3.0 50/30 10-20

72/48 31.0 32 22.3 11.2 7.4 16.7 8.4 5.6 89.3 22.3 9.9 72/48 20-30

All load bearing are calculated as elastic-plastic values according to DIN 18800; these are approximate values and can beused for EC3.

Partial safey coefficient gammaf=1.4, deflection =max l/150. Calculate the design values as F

R,d=1.4xF

For other sizes, please consult CFS.

CFS Plain Back ChannelsPlain back channels are useful in non-concrete applicationsfor example, welded to steel stations.

Page 160: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 160/274

www.cfsfixings.com-19

SKI Channel for the Metal Deck Floor

Special Channel Fabrications

Radiussed

Welded in pairs to aid setting out

Fabricated corner piece

Page 161: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 161/274

www.cfsfixings.com  9-20

 C A  S T -I  N  C HA N

NE L  S 

T-Bolt Grade 4.6, Grade 8.8

Hot Dip Galvanized DIN EN ISO 10684,

DIN EN ISO 898-1

DIN EN ISO 4034

zinc coating ≥ 40 µm

DIN 50961, DIN EN 1403,

DIN EN ISO 4042

DIN EN ISO 898-1

zinc coating ≥12 µm

Grade A2-50, A2-70

Grade A4-50, A4-70

Stainless Steel HCR

Material No. 1.4529, HCR50

DIN EN 3506-1

DIN EN 10 088

A4

Material No. 1.4401/ 1.4404/1.4571

DIN EN ISO 3506-1

DIN EN 10 088

Channel Hot Rolled, Cold Rolled

Mild Steel Material S235JR (RSt 37-2)

Material No. 1.0038, 1.0044

DIN EN 10025

Hot DipGalvanized

Material S235JR (RSt 37-2)

Material No. 1.0038, 1.0044

DIN EN 10025

hot dip galvanised - DIN EN ISO1461,

zinc coating≥

 50 µmStainless Steel HCR

Material No. 1.4529/1.4547

DIN EN 10088

A4

Material No. 1.4401/ 1.4404/1.4571

DIN EN 10088

Channels - Material,Standards

Page 162: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 162/274

www.cfsfixings.com0-1

Precast Panel Supportand Restraint Systems

Page 163: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 163/274

www.cfsfixings.com  10-2

P R E  C A  S T P A NE L  S  UP P  OR T A NDR E  S T R A I  NT  S Y  S T E M S 

10

Contents

Panel Support Shoe System 10-3

Angle Cleats to Support Panels 10-5

CFS Design Support 10-6

Page 164: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 164/274

www.cfsfixings.com0-3

Panel Support ShoeSystemCFS have developed an innovative solution to panelsupport which are cost effective and make optimal use ofmaterial.

Our shoe system is designed to be cast in to the concretepanel and poduced in a range of projections to suitdifferent cavity widths.

Part No Working Load kN Dimensions

Cavity

C B W H

mm

CFS-SB25-250 25 60 250 100 78

CFS-SB25-310 25 120 310 100 90

CFS-SB45-250 45 60 250 130 92

CFS-SB45-310 45 120 310 140 112

CFS-SB60-250 60 60 250 140 95

CFS-SB60-310 60 120 310 190 115

CFS can design and produce these brackets for other cavities and working loads. Please contact CFS with your preciserequirements and we will prepare specific calculations.

Page 165: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 165/274

www.cfsfixings.com  10-4

P R E  C A  S T P A NE L  S  UP P  OR T A NDR E  S T R A I  NT  S Y  S T E M S 

Page 166: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 166/274

www.cfsfixings.com0-5

Angle Cleats to Support Panels

Available in stainless steel or hot dip galvanised.Dimensions to suit your requirements with precisioncut slots or serrated patches. Fixed with cast-inchannels, cast-in sockets or drill and fixed.Provides three-dimensional adjustment on site.

Page 167: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 167/274

www.cfsfixings.com  10-6

P R E  C A  S T P A NE L  S  UP P  OR T A NDR E  S T R A I  NT  S Y  S T E M S 

CFS Design SupportCFS can help you with Autocad design to produce themost economical user friendly design to suite yourapplication. We can analyse your loads to select thecorrect channel profile. Precast brackets designs can alsobe optimised, taking in to account your façade dead and

wind loads. Fischer drill fixing applications are calculatedutilising the Compufix Software programme.

Available in either painted mild steel, hot dip galvanisedand stainless steel.

Brackets are produced to short lead times. CFS will workclosely with your production team to assemble completefixings assemblies including associated isolators, setscrews and bolts.

Alternative BracketFixing MethodsPlain back channels are available for welding or boltingto structural steelwork. The maximum length of channelsavailable is 3.0 m length up to 3.0 meters can be cut tosuit your requirements.

Fixed to Steel Structurewith Blind BoltsCFS can provide ‘Blind Bolt’ fixings. There are ideal forsituations where you may be connecting to an enclosedsteel section or those which have difficult access.

Available electroplated stainless steel finishes. Fixed with Blind Bolts

Welded to Steel Sections

Page 168: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 168/274

www.cfsfixings.com1-1

MOSO Precast PanelSuspension System

Page 169: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 169/274

www.cfsfixings.com  11-2

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

10

Contents

MOSO Precast Panel Suspension System for Concrete Facades 11-3

MOSO Product Summary 11-4

System Diagram 11-5

Precast Panel Suspension System 11-6

Technical data 11-7

Precast Panel Suspension System 11-8

Precast Panel Suspension System 11-9

Precast Panel Suspension System 11-10

Precast Panel Suspension System 11-11

Precast Panel Suspension System 11-12

Precast Panel Suspension System 11-13

Assembly Instructions CFS-FB-H 11-14

Parapet anchor – Standard design CFS-FB-E 11-16

Parapet anchor – with adjustment CFS-FB-EJ 11-18

Assembly instructions CFS-FB-E 11-20

Assembly instructions CFS-FB-EJ 11-21

Pressure screws CFS-FB-DS 11-22

Wind Anchor Restraint CFS-FB-DZA 11-24

Assembly Instructions CFS-FB-DZA 11-25

Dowel Connection CFS-FB-VD 11-26

Other Products 11-27

Page 170: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 170/274

www.cfsfixings.com1-3

MOSO Precast PanelSuspension System forConcrete FacadesIntroductionThe MOSO precast panel suspension system is anapproved system. It consists of an upper part, a middlepart and a cast-in part.

There are several models of the upper part availabledepending on the structural situation.

The standard upper part is fastened to a vertical surfaceof the structure, or alternatively there is a fixing availableto connect to the top of a slab.

If a single point fixing is insufficient a double bolt versionis available.

The component cast into the facade was developed forslender precast concrete units

Product information

• Load range: 6.0 – 70.0 kN

• Material: approved stainless steel

• Certificate: technical approval.

Page 171: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 171/274

www.cfsfixings.com  11-4

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

MOSO ProductSummary

Precast panel suspension system:

FB-H

Parapet anchors:

FB-E

Wind anchor restraint:

FB-DS, FB-DZA

Dowel connection Turn buckle restraint system

Page 172: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 172/274

www.cfsfixings.com1-5

System Diagram

Typical suspension systemCross section wall fixing type

Page 173: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 173/274

www.cfsfixings.com  11-6

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Precast PanelSuspension SystemPrecast panel cast-in component, Type CFS-FB-HE

Together with the supplementary reinforcement included

in the scope of supply, the cast-in parts form an officiallyapproved system.

Type 1 covers load range from6.0 kN to 22.0 kN inclusive.

Type 2 was designed for loads from38.0 kN to 70.0 kN inclusive.

Please refer to the table for the dimensions.

Product information

• Load range: 6.0 – 70.0 kN

• Material: approved stainless steel

• Certificate: technical approval.

Front view Side view Top view

Front view Side view Top view

Cast-in part: load range : 38,0 kN - 70,0 kN

Cast-in part: load range : 6,0 kN - 22,0 kN

Type 1 Type 2

C-channel with twonail holes Ø 4 mm

Stud Anchors

Hex bolt acc. toDIN EN ISO 4017(DIN 933)

Stud Anchors

L Profile

Page 174: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 174/274

www.cfsfixings.com1-7

Technical data

Page 175: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 175/274

www.cfsfixings.com  11-8

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Precast PanelSuspension SystemSingle bolt type for wall fixing, Type FB-HO1

The upper mounting is fixed to the concrete frame with a

drilled bolt or a cast-in channel.

Please refer to the table for the dimensions.

Product information

• Load range: 6.0 – 70.0 kN

• Cavity: up to 500 mm

• Material: approved stainless steel

• Certificate: technical approval

• Fixing angle allowable variance ±5°

Front view Side view Top view

CFS-FB-HO1

60 70 80 90 100 110 120 130 140 150 160 >160Ø d

[mm] [ - ]

6.0 kN 8.10 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 M10

8.5 kN 11.48 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 14 M12

13.5 kN 18.23 kN 16.0° 18.5° 21.5° 24.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 18 M16

16.0 kN 21.60 kN 14.0° 16.5° 19.0° 22.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 18 M16

22.0 kN 29.70 kN 13.0° 15.0° 17.5° 20.0° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 18/22 M16/M2038.0 kN 51.30 kN - 14.0° 16.0° 18.0° 20.0° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22 M20

48.0 kN 64.80 kN - - - - 14.5° 17.0° 18.0° 19.0° 20.0° 20.0° 20.0° 20.0° 22 M20

70.0 kN 94.50 kN - - - - - 13.5° 15.0° 16.0° 17.5° 18.5° 19.5° 20.0° 26 M24

  l i i i ll i

Working Load Design load VRd

Connection angle α at wall distance b in mm Dim.

Dowel

 

.

 

l i i i ll i

l

 

l i i i ll i

l

 

l i i i ll i

l

1 For more information please see page 11-12 or contact us.

Page 176: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 176/274

www.cfsfixings.com1-9

Technical data

Precast PanelSuspension SystemDouble bolt type for wall fixing, CFS-FB-HO2

The double slotted bracket of the upper part is fastened

to the in-situ concrete with two drilled bolts or a cast inchannel.

Please refer to the table for the dimensions.

Product information

• Load range: 6.0 – 70.0 kN

• Cavity: up to 500 mm

• Material: approved stainless steel

• Certificate: technical approval

• Fixing angle allowable variance ±5°

Front view Side view Top view

1 For more information please see page 11-12 or contact us.

CFS-FB-HO2

60 70 80 90 100 110 120 130 140 150 160 >160  Ø d

[mm]

 j

[mm]

a

[mm] [ - ]

6.0 kN 8.10 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 10 20 100 M8

8.5 kN 11.48 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 20 100 M10

13.5 kN 18.23 kN 16.0° 18.5° 21.5° 24.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 14 25 115 M1216.0 kN 21.60 kN 14.0° 16.5° 19.0° 22.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 14 25 115 M12

22.0 kN 29.70 kN 13.0° 15.0° 17.5° 20.0° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 18 30 130 M16

38.0 kN 51.30 kN - 14.0° 16.0° 18.0° 20.0° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 18 40 150 M16

48.0 kN 64.80 kN - - - - 14.5° 17.0° 18.0° 19.0° 20.0° 20.0° 20.0° 20.0° 18 40 180 M16

70.0 kN 94.50 kN - - - - - 13.5° 15.0° 16.0° 17.5° 18.5° 19.5° 20.0° 22 60 205 M20

Working load  Design

load VRd

Connection angle α at wall distance b in mm   Dimensions

Dowel

  l

  l

 

l

 

Page 177: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 177/274

www.cfsfixings.com  11-10

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

  l

 

l

Technical data

Front view Side view Top view

1 For more information please see page 11-13 or contact us.

Precast PanelSuspension SystemSingle bolt type for top of slab fixing,Type CFS-FB-HO1A

The upper mounting is fixed to the concrete frame witha drilled bolt or a cast-in channel.

Please refer to the table for the dimensions.

Product information

• Load range: 6.0 – 70.0 kN

• Cavity: up to 500 mm

• Material: approved stainless steel

• Certificate: technical approval

• Fixing angle allowable variance ±5°

CFS-FB-HO1A

60 70 80 90 100 110 120 130 140 150 160 >160  Ø d

[mm]

cmin

[mm] [ - ]

6.0 kN 8.10 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 45 M10

8.5 kN 11.48 kN 15.5° 19.0° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 60 M10

13.5 kN 18.23 kN 14.5° 17.0° 19.5° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 14 60 M1216.0 kN 21.60 kN 13.0° 15.0° 17.0° 19.5° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 14 65 M12

22.0 kN 29.70 kN 12.5° 14.5° 16.5° 18.0° 20.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 14 65 M12

38.0 kN 51.30 kN - 12.5° 15.0° 16.5° 18.5° 20.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 18 80 M16

48.0 kN 64.80 kN - - - - 15.0° 16.0° 17.0° 18.5° 20.0° 20.0° 20.0° 20.0° 18 90 M16

70.0 kN 94.50 kN - - - - - 14.0° 15.0° 16.0° 17.0° 18.0° 19.0° 20.0° 22 120 M20

Working load  Design load

VRd

Connection angle α at wall distance b in mm   Dimensions

Dowel

 

Washer acc. to

DIN EN ISO 7093 (DIN 9021)

Edge protection profile

  l

Page 178: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 178/274

www.cfsfixings.com1-11

Washer acc. toDIN EN ISO 7093 (DIN 9021)

Edge protection profile

  l

Precast PanelSuspension SystemDouble bolt type for top of slab fixing,Type CFS-FB-HO2

The double bolt bracket of the upper part is fastened to thein-situ concrete with two drilled bolts or a cast in channel.

Please refer to the table for the dimensions.

Product information

• Load range: 6.0 – 70.0 kN

• Cavity: up to 500 mm

• Material: approved stainless steel

• Certificate: technical approval

• Fixing angle allowable variance ±5°

Technical data

Front view Side view Top view

1 For more information please see page 11-13 or contact us.

CFS-FB-HO2A

60 70 80 90 100 110 120 130 140 150 160 >160  Ø d

[mm]

 j

[mm]

a

[mm]

cmin

[mm] [ - ]

6.0 kN 8.10 kN 18.0° 21.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 10 20 100 80 M8

8.5 kN 11.48 kN 15.5° 19.0° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 10 20 100 85 M8

13.5 kN 18.23 kN   14.5° 17.0° 19.5° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 20 115 85 M1016.0 kN 21.60 kN   13.0° 15.0° 17.0° 19.5° 22.5° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 25.0° 12 20 115 90 M10

22.0 kN 29.70 kN   12.5° 14.5° 16.5° 18.0° 20.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 12 20 130 90 M10

38.0 kN 51.30 kN   - 12.5° 15.0° 16.5° 18.5° 20.5° 22.5° 22.5° 22.5° 22.5° 22.5° 22.5° 14 40 150 125 M12

48.0 kN 64.80 kN   - - - - 15.0° 16.0° 17.0° 18.5° 20.0° 20.0° 20.0° 20.0° 18 40 180 160 M16

70.0 kN 94.50 kN   - - - - - 14.0° 15.0° 16.0° 17.0° 18.0° 19.0° 20.0° 18 40 205 180 M16

Working

loadDesignload V

Rd

Connection angle α at wall distance b in mm   Dimensions

Dowel

 

l

  l

 

l

  l

 

i il

 

i il

 

Page 179: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 179/274

www.cfsfixings.com  11-12

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Technical data

Precast PanelSuspension SystemSingle and double bolt wall fixedanchors - overview

Single bolt wall fixed anchor Double bolt wall fixed anchor

CFS-FB-H1 / CFS-FB-H2

6.0 kN 8.5 kN 13.5 kN 16.0 kN 22.0 kN 38.0 kN 48.0 kN 70.0 kN

8.10 kN 11.48 kN 18.23 kN 21.60 kN 29.70 kN 51.30 kN 64.80 kN 94.50 kN

hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

  hx

[mm]  α

60 185 18.0° 185 18.0° 210 16.0° 240 14.0° 260 13.0° - - - - - -

70 180 21.5° 180 21.5° 210 18.5° 235 16.5° 260 15.0° 285 14.0° - - - -

80 175 25.0° 175 25.0° 205 21.5° 230 19.0° 255 17.5° 285 16.0° - - - -

90 200 25.0° 195 25.0° 200 24.0° 225 22.0° 250 20.0° 280 18.0° - - - -100 220 25.0° 215 25.0° 220 25.0° 220 25.0° 245 22.5° 275 20.0° 380 14.5° - -

110 240 25.0° 240 25.0° 240 25.0° 245 25.0° 270 22.5° 270 22.5° 365 17.0° 450 13.5°

120 265 25.0° 260 25.0° 265 25.0° 265 25.0° 290 22.5° 295 22.5° 365 18.0° 450 15.0°

130 285 25.0° 280 25.0° 285 25.0° 285 25.0° 315 22.5° 320 22.5° 375 19.0° 450 16.0°

140 305 25.0° 305 25.0° 305 25.0° 310 25.0° 340 22.5° 340 22.5° 385 20.0° 450 17.5°

150 325 25.0° 325 25.0° 325 25.0° 330 25.0° 365 22.5° 365 22.5° 410 20.0° 450 18.5°

160 350 25.0° 345 25.0° 350 25.0° 350 25.0° 390 22.5° 390 22.5° 435 20.0° 450 19.5°

170 370 25.0° 370 25.0° 370 25.0° 375 25.0° 410 22.5° 415 22.5° 465 20.0° 465 20.0°

180 390 25.0° 390 25.0° 390 25.0° 395 25.0° 435 22.5° 440 22.5° 490 20.0° 495 20.0°

190 415 25.0° 410 25.0° 415 25.0° 415 25.0° 460 22.5° 460 22.5° 520 20.0° 520 20.0°

200 435 25.0° 430 25.0° 435 25.0° 440 25.0° 485 22.5° 485 22.5° 545 20.0° 550 20.0°

210 455 25.0° 450 25.0° 455 25.0° 460 25.0° 510 22.5° 505 22.5° 570 20.0° 575 20.0°

220 475 25.0° 475 25.0° 475 25.0° 480 25.0° 535 22.5° 530 22.5° 595 20.0° 600 20.0°

230 495 25.0° 495 25.0° 500 25.0° 500 25.0° 560 22.5° 555 22.5° 620 20.0° 625 20.0°

240 520 25.0° 515 25.0° 520 25.0° 520 25.0° 580 22.5° 580 22.5° 650 20.0° 655 20.0°

250 540 25.0° 540 25.0° 540 25.0° 540 25.0° 605 22.5° 605 22.5° 675 20.0° 680 20.0°

FB-HE-6.0 FB-HE-8.5 FB-HE-13.5 FB-HE-16.0 FB-HE-22.0 FB-HE-38.0 FB-HE-48.0 FB-HE-70.0

M8 M10 M12 M16 M16 M20 M24 M27

13 17 19 24 24 30 36 41

Working load

Design load VRd

Cavity b [mm]

Cast in part

Threaded rod

Metric spanner size

 

Page 180: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 180/274

www.cfsfixings.com1-13

Precast PanelSuspension SystemSingle and double bolt top of slab fixedanchors - overview

Single bolt top of slab fixed anchor Double bolt top of slab fixed anchor

Technical data

CFS-FB-H1A / CFS-FB-H2A

6.0 kN 8.5 kN 13.5 kN 16.0 kN 22.0 kN 38.0 kN 48.0 kN 70.0 kN

8.10 kN 11.48 kN 18.23 kN 21.60 kN 29.70 kN 51.30 kN 64.80 kN 94.50 kN

hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

  hxA

[mm]  α

60 170 18.0° 195 15.5° 210 14.5° 240 13.0° 250 12.5° - - - - - -

70 165 21.5° 190 19.0° 210 17.0° 240 15.0° 250 14.5° 280 12.5° - - - -

80 160 25.0° 180 22.5° 210 19.5° 240 17.0° 250 16.5° 275 15.0° - - - -

90 180 25.0° 175 25.0° 205 22.5° 240 19.5° 255 18.0° 275 16.5° - - - -100 200 25.0° 195 25.0° 200 25.0° 230 22.5° 250 20.5° 275 18.5° 335 15.0° - -

110 220 25.0° 220 25.0° 220 25.0° 220 25.0° 240 22.5° 270 20.5° 345 16.0° 400 14.0°

120 245 25.0° 240 25.0° 240 25.0° 240 25.0° 265 22.5° 265 22.5° 360 17.0° 405 15.0°

130 265 25.0° 260 25.0° 260 25.0° 260 25.0° 290 22.5° 290 22.5° 355 18.5° 415 16.0°

140 285 25.0° 280 25.0° 280 25.0° 285 25.0° 315 22.5° 315 22.5° 355 20.0° 420 17.0°

150 305 25.0° 305 25.0° 305 25.0° 305 25.0° 335 22.5° 335 22.5° 380 20.0° 425 18.0°

160 330 25.0° 325 25.0° 325 25.0° 325 25.0° 360 22.5° 360 22.5° 410 20.0° 430 19.0°

170 350 25.0° 350 25.0° 345 25.0° 345 25.0° 385 22.5° 385 22.5° 440 20.0° 435 20.0°

180 370 25.0° 370 25.0° 365 25.0° 370 25.0° 410 22.5° 410 22.5° 465 20.0° 460 20.0°

190 395 25.0° 390 25.0° 385 25.0° 390 25.0° 435 22.5° 435 22.5° 495 20.0° 490 20.0°

200 415 25.0° 415 25.0° 410 25.0° 410 25.0° 460 22.5° 460 22.5° 520 20.0° 520 20.0°

210 440 25.0° 435 25.0° 435 25.0° 435 25.0° 485 22.5° 475 22.5° 550 20.0° 545 20.0°

220 460 25.0° 460 25.0° 455 25.0° 455 25.0° 510 22.5° 500 22.5° 575 20.0° 575 20.0°

230 480 25.0° 480 25.0° 480 25.0° 475 25.0° 535 22.5° 525 22.5° 605 20.0° 600 20.0°

240 505 25.0° 500 25.0° 500 25.0° 495 25.0° 555 22.5° 550 22.5° 630 20.0° 630 20.0°

250 525 25.0° 525 25.0° 520 25.0° 520 25.0° 580 22.5° 575 22.5° 660 20.0° 655 20.0°

FB-HE-6.0 FB-HE-8.5 FB-HE-13.5 FB-HE-16.0 FB-HE-22.0 FB-HE-38.0 FB-HE-48.0 FB-HE-70.0

M8 M10 M12 M16 M16 M20 M24 M27

13 17 19 24 24 30 36 41

Working load

Design load VRd

Cavity b [mm]

Cast in part

Threaded rod

Metric spanner size

 

Page 181: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 181/274

www.cfsfixings.com  11-14

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

 

Tinst

 [Nm]

6.0 kN 15 M10 17

8.5 kN 25 M12 19

13.5 kN 60 M16 24

16.0 kN 60 M16 24

22.0 kN 120 M20 30

38.0 kN 240 M20 30

48.0 kN 240 M20 3070.0 kN 420 M24 36

Working loadConnection

bolt

Width across

flat

 

Assembly Instructions CFS-FB-H

1.1 Components ofprecast panel part

Type 1The precast part withload range 6.0 kN – 22.0kN consists of a MOSanchor channel twoT-head bolts and twoend plates for connectingthe reinforcement loops.The MOS anchor channelcontains a recess unitmade of PE foam.

1.2 Components ofprecast panel part

Type 2The precast part with loadrange 38.0 kN – 70.0 kNconsists of a bracket, twoT-head bolts and two endplates for connecting thereinforcement loops.

2.1 Assembly of thereinforcement

Additional U bars

2.2 Assembly of thereinforcement

Additional U bars

3.1 Attaching to the formwork

The cast in part can be attached to the formwork with

the help of two nails. There are two nail holes on theback of the MOS channel for this purpose. This enablescasting flush with the concrete surface.

 

3.2 Attaching to the formwork

The Type 2 cast in part can be fixed to the formwork withthe projecting stud.

Page 182: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 182/274

www.cfsfixings.com1-15

4.1 Attaching the suspension system to the precastpanel - Type 1

The installation part of the suspension system consists ofan upper part (available in four different designs) and amiddle part (available in two different designs). The hangeris delivered completely pre-assembled. Prior to installing thesuspension anchor, the channel filler must be removed from

the MOS anchor channel. Then the hanger is connectedto the cast-in part with the aid of an MHH T-bolt, washerand hexagon nut. The anchor channel allows for horizontaladjustment. The tightening torques indicated in the table onpage 11-14 must be adhered to.

4.2 Attaching the suspension system to the precastpanel - Type 2

The installation part of the suspension system consistsof an upper part (available in four different designs) anda middle part (available in two different designs). Thehanger is delivered completely pre-assembled.

The hanger is connected to the mounting part withthe aid of a washer and a hexagon nut. The tighteningtorques indicated in the table on page 11-14 must beadhered to.

5.1 Attaching suspension system to the in-situconcrete - Single fixing

The upper part of the suspension system is fastened tothe in-situ concrete with an officially approved throughbolt or a cast-in channel. The tightening torques must betaken from the relevant approvals and must be adheredto.

A vertical adjustment of the precast part can be madeby means of the adjustment of the hexagon nut onthe threaded rod. In order to minimise the risk of coldwelding, a lubricant must be applied (e.g. Molykote® –can be ordered separately). Height adjustment not to betaken under load.

5.2 Attaching suspension system to the in-situconcrete - Double fixing

The upper part of the suspension system is fastened tothe in-situ concrete with an officially approved throughbolt or a cast-in channel. The tightening torques must betaken from the relevant approvals and must be adheredto. The slots in the upper part allow for a horizontaladjustment.

A vertical adjustment of the precast part can be madeby means of the adjustment of the hexagon nut onthe threaded rod. In order to minimise the risk of coldwelding, a lubricant must be applied (e.g. Molykote® –can be ordered separately). Height adjustment not to betaken under load.

Page 183: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 183/274

www.cfsfixings.com  11-16

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

 

Parapet anchor –Standard design CFS-FB-EFor connecting upstand/downstand parapetsto slabs

The MOSO precast fixing CFS-FB-E is a anchor for supportingparapet elements.

In order to achieve a uniform distribution of load, eachconcrete element is braced with at least two anchors. Whenusing more than two anchors, the design with adjustingscrew must be used

The parapet anchor is fastened to the in-situ concrete with anofficially approved through bolt or a cast in channel. Pleaserefer to the table for the dimensions.

Product information

• Types: 1 – 8

• Wall thicknesses: up to 200 mm (> on request)

• Material: approved stainless steel

• Certification: structural analysis 

Profile cross-section

 

Serratedplate

Slottedshim

For downstand situation FB-EA

Compressionpacker piece

FB-E

FB-EA

c

[mm]

b

[mm]

h

[mm]

t

[mm]

1 102 62 45 3

2 106 62 48 3

3 126 76 55 4

4 134 76 66 4

5 138 78 70 5

6 148 78 83 5

7 160 80 84 6

8 190 90 85 8

Page 184: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 184/274

www.cfsfixings.com1-17

1 Select accessories set 2 with size M16

Technical data

0 – 40 mm 50 – 100 mm110 – 140

mm

150 – 200

mm

LL

[mm]

te

[mm]

f min

[mm]

ds

[mm]

i

[mm]

lb

[mm]

1 400 450 500 600 18 x 80 70 100 Ø 10 40 350

2 450 500 550 650 18 x 80 72 100 Ø 10 40 400

3 500 550 600 700 18 x 80 82 110 Ø 12 50 450

4 550 600 650 750 18 x 80 92 120 Ø 14 60 500

5 550 600 650 750 22 x 80 102 130 Ø 14 70 525

6 600 650 700 800 22 x 80 108 135 Ø 16 75 600

7 650 700 750 850 22 x 80 123 150 Ø 16 90 625

8 700 750 800 900 22 x 80 125 150 Ø 20 90 700

W t = 3 mm W t = 6 mm Tooth. W t = 5 mm PDP

[mm]SH Ø[mm] [mm]

SH Ø[mm] [mm]

RH Ø[mm] [mm]

t[mm]

1 M12 50 13 50 13 34 13 70 5

2 M16 65 17 65 17 40 17 70 5

3 M16 65 17 65 17 40 17 70 5

4 M16 65 17 65 17 40 17 70 5

5 M20 90 21 90 21 45 21 90 5

6 M20 90 21 90 21 45 21 90 5

7 M20 90 21 90 21 45 21 90 5

8 M20 90 21 90 21 45 21 90 5

CFS-FB-E / CFS-FB-EA

Accessories for parapet system

Standard lengths

L in mm with cavity b

Longitudi-

nal hole

 Anchoring

depth

Panel

thicknessReinforcement

Max.

size Length Length Length Length

 i l

 

Page 185: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 185/274

www.cfsfixings.com  11-18

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

 

l

 

l

l

l

 Adjusting

screwSerrated

washer 

Pressure

distribution plateSlotted

washer 

 

 Adjusting

screw

 

Serrated

washer 

 

l

Pressure

distribution

plate

l

Slotted

washer 

 

Parapet anchor – withadjustment CFS-FB-EJThe MOSO precast fixing FB-EJ is a parapet anchor forparapet elements. The system allows for the quick andeasy adjusment of structural tolerances using the heightadjusting screw.

In order to achieve a uniform distribution of load,each concrete element is braced with at least twoanchors. When using more than two anchors, a uniformdistribution of load must also be ensured.

The parapet anchor is fastened to the in-situ concretewith officially approved through bolts or a cast inchannel. Please refer to the table for the dimensions.

Product information

• Types: 1 – 8

• Wall thicknesses: up to 200 mm (> on request)

• Material: approved stainless steel

• Certification: structural analysis

Serrated plate

 

l

 

l

l

l

FB-EJ

FB-EJA

c

[mm]

b

[mm]

h

[mm]

t

[mm]

1 102 62 45 3

2 106 62 48 3

3 126 76 55 4

4 134 76 66 4

5 138 78 70 5

6 148 78 83 5

7 160 80 84 6

8 190 90 85 8

For upstand situation FB-EJ

For downstand situation FB-EJA

Serrated plate

Page 186: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 186/274

www.cfsfixings.com1-19

0 – 40 mm 50 – 100 mm110 – 140

mm

150 – 200

mm

LL

[mm]

te

[mm]

f min

[mm]

ds

[mm]

i

[mm]

lb

[mm]

1 400 450 500 600 18 x 80 70 100 Ø 10 40 350

2 450 500 550 650 18 x 80 72 100 Ø 10 40 400

3 500 550 600 700 18 x 80 82 110 Ø 12 50 450

4 550 600 650 750 18 x 80 92 120 Ø 14 60 500

5 550 600 650 750 22 x 80 102 130 Ø 14 70 525

6 600 650 700 800 22 x 80 108 135 Ø 16 75 600

7 650 700 750 850 22 x 80 123 150 Ø 16 90 625

8 700 750 800 900 22 x 80 125 150 Ø 20 90 700

W t = 3 mm W t = 6 mm Tooth. W t = 5 mm PDP

[mm]SH Ø[mm] [mm]

SH Ø[mm] [mm]

RH Ø[mm] [mm]

t[mm]

1 M12 50 13 50 13 34 13 70 5 M16

2 M16 65 17 65 17 40 17 70 5 M16

3 M16 65 17 65 17 40 17 70 5 M20

4 M16 65 17 65 17 40 17 70 5 M24

5 M20 90 21 90 21 45 21 90 5 M30

6 M20 90 21 90 21 45 21 90 5 M30

7 M20 90 21 90 21 45 21 90 5 M30

8 M20 90 21 90 21 45 21 90 5 M30

CFS-FB-EJ / CFS-FB-EJA

Accessories for parapet system

Standard lengths

L in mm with wall distance b

Longitudi-

nal hole

 Anchoring

depth

Panel

thicknessReinforcement

Max.

mounting size

Pres-

surescrew

Length Length Length Length

  i l

 

Technical data

1 Select accessories set 2 with size M16

Page 187: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 187/274

www.cfsfixings.com  11-20

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Assembly instructions CFS-FB-E

CFS-FB-E: Through bolt fixing CFS-FB-E: Cast in channel fixing

Installing the parapet anchor in the precastconcrete unit

The parapet anchor is installed in the precast concreteunit in such a way that the rear reinforcement bars havea concrete cover towards the inside of the precast partof at least 25mm. The reinforcement bars must havesufficient concrete cover all around.

Please note the following during installation:

The height of the parapet anchor depends on themounting level of the top side of the slab. The loweredge of the profile should be Δh = 5 – 10 mmabove level so that there is enough clearance for theadjustment.

If the parapet anchor is mounted in a recess, as shown inthe sketches, the setting position depends on the level ofthe lower edge of this recess plus the measurement Δh.

Installing the parapet anchor on the slab

The parapet anchor is fastened to the slab with anofficially approved through bolt or a cast-in channel.Height adjustment can be made on the U profile bymeans of the included slotted washers.

To do this, the associated accessories of the relevant

anchor must be used according to the table.

Page 188: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 188/274

www.cfsfixings.com1-21

Assembly instructions CFS-FB-EJ

CFS-FB-EJ: Through bolt fixing CFS-FB-EJ: Cast in channel fixing

Mounting the parapet anchor in the precastconcrete unit

The parapet anchor is installed in the precast concreteunit in such a way that the rear reinforcement bars havea concrete cover towards the inside of the precast partof at least 25mm. The reinforcement bars must havesufficient concrete cover all around.

Please note the following during installation:

The height of the mounting part depends on themounting level of the parapet anchor on the upper edgeof the slab. The lower edge of the profile should be Δh= 15 – 25 mm above this mounting level so that there isenough clearance for the adjustment.

If the parapet anchor is mounted in a recess, as shown inthe sketches, the mounting measurement depends on thelower edge of this recess plus the measurement Δh.

Installing the parapet anchor on the slab

The parapet anchor is fastened to the slab with anofficially drilled bolt or a cast in channel. A heightadjusment can be made by means of the included slottedwashers as well as with the adjusting screw on thepressure bearing.

To do this, the correct parts of the relevant anchor mustbe used according to the table. The pressure distributionplate is shimmed at the lower end of the screw in such away that the screw is located in the recess of the plate.

The hexagon bolt may only be rotated manually to adjustthe height, during which the precast part must not beunder load. In order to minimise the risk of cold welding,a lubricant must be applied (e.g. Molykote®).

Page 189: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 189/274

www.cfsfixings.com  11-22

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Pressure screwsCFS-FB-DSThe MOSO precast fixing FB-DS is used for the horizontalrestraint façade panels. The acting pressure forces areabsorbed in combination with panel suspension system.It is connected to the precast part by means of a CFS castin socket which must be ordered separately.

1 The threaded sleeve is only to be used for Type FB-DS2.

Table of pressure screw

Solid rod socket c/wcross pin

Pressure screw

Solid rod socket c/wcross pin

Pressure screw

CFS-FB-DS2

CFS-FB-DS1

Product information CFS-FB-DS1,CFS-FB-DS2

• Diameter: M12 – M24

• Cavity: up to 300 mm largerdistances on request

• Material: A4-70; 1.4362

• Certification: structural analysis

Product information CFS-FB-M

• Diameter: M12 – M20

• Material: approved stainless steel

• Certificate: technical approval

aSW

60 80 100 120 140 160 180 200 220 240 260 280 300 [ - ] [mm] [mm] [mm]

M1280 100 120 140 160 180 200 220 240 260 280 300 320 FB-M12K ± 15 80 / 80 / 8 13 19

90 110 130 150 170 190 210 230 250 270 290 310 330 FB-M12L ± 20 80 / 80 / 8 13 19

M1680 100 120 140 160 180 200 220 240 260 280 300 320 FB-M16K ± 20 80 / 80 / 10 16 24

100 120 140 160 180 200 220 240 260 280 300 320 340 FB-M16L ± 20 80 / 80 / 10 16 24

M2080 100 120 140 160 180 200 220 240 260 280 300 320 FB-M20K ± 20 100 / 100 / 12 20 30

100 120 140 160 180 200 220 240 260 280 300 320 340 FB-M20L ± 20 100 / 100 / 12 20 30

M24 100 120 140 160 180 200 220 240 260 280 300 320 340 FB-M24 ± 20 100 / 100 / 15 24 36

CFS-FB-DS1 / CFS-FB-DS2

Thread length l

for the cavity b [mm]Cast in

part Adju-

stment

Pressure

plate for

Type DS2

Page 190: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 190/274

www.cfsfixings.com1-23

FB 60 80 100 120 140 160 180 200 220 240 260 280 300

M12K 70 mm 285 mm C25/30 3.15 12.84 10.16 9.21 8.34 7.55 6.83 6.19 5.61 5.10 4.64 4.24 3.88 3.56

M12L 100 mm 350 mm C25/30 8.54 19.55 17.28 15.18 13.30 11.64 10.20 8.97 7.92 7.02 6.25 5.60 5.04 4.55

M16K 80 mm 250 mm C25/30 6.05 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64 12.64

M16L 120 mm 350 mm C25/30 12.13 30.97 30.97 30.97 30.97 29.43 26.75 24.28 22.04 20.02 18.21 16.59 15.16 13.88

M20K 100 mm 375 mm C30/37 8.80 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.91

M20L 140 mm 500 mm C30/37 24.93 49.20 49.20 49.20 49.20 49.20 49.20 45.94 42.55 39.39 36.45 33.73 31.24 28.95

M24 140 mm 425 mm C30/37 - 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84 41.84

M24 160 mm 500 mm C30/37 - 57.33 57.33 57.33 57.33 57.33 57.33 57.33 57.33 57.33 57.33 57.33 54.59 51.18

CFS-FB-DS1

CFS-FB-DS2

FB 60 80 100 120 140 160 180 200 220 240 260 280 300

M12K 70 mm 50 mm C25/30 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15

M12L 100 mm 75 mm C25/30 8.54 8.54 8.54 8.54 8.54 8.54 8.54 8.54 7.92 7.02 6.25 5.60 5.04 4.55

M16K 80 mm 75 mm C25/30 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05

M16L 120 mm 100 mm C25/30 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13

M20K 100 mm 75 mm C30/37 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80

M20L 140 mm 125 mm C30/37 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93 24.93

Nailing plate

Nailing plate

Bearing capacity (with minimum reinforcement Q188 + pressure plate)

Boundary conditions

Minimum

concrete

quality

Tensile

load

FZ, Rd

[kN]

Pressure load for cavity b in mm

FD, Rd

[kN]

Panel

thick-

ness

f min

Edge

distance

c1,min

;

c2,min

Bearing capacity (without reinforcement)

Boundary conditions

Min.

concrete

quality

Tensile

load

FZ, Rd

[kN]

Pressure load for cavity b in mm

FD, Rd

[kN]

Panel

thick-

ness

f min

Edge

distance

c1,min

;

c2,min

*Use table for guidance.For project ordening please askCFS for exact length

Note: CFS cast in solid socket tobe ordered separately

Technical Data

Table of pressure screw diameter in relation to cavity width and corresponding load capacities

Page 191: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 191/274

www.cfsfixings.com  11-24

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Wind AnchorRestraint CFS-FB-DZAFor negative wind loads (suction) acting on facadepanels.

The MOSO precast fixing CFS-DB-DZA is used for thehorizontal suction protection of façade panels. This isused in combination with pressure screw CFS-FB-DS. It isconnected to the precast part by means of the CFS cast insocket. The mounting part and the pressure screw mustbe ordered separately.

Product information

• Load range 2.0 – 6.0 kN

• Material: approved stainless steel

• Certification: structural analysis

Please note: The pressure screw and the cast in socket to be ordered separately.

[kN]l

[mm]a

[mm]t

[mm]x

[mm]y

[mm]Ø d

[mm]LL

[mm]

2.0 M12 157 40 10 38 69 12 13 x 40

3.5 M12 / M16 148 48 12 39 59 14 17 x 40

6.0 M16 / M20 171 60 15 49 72 18 21 x 40

CFS-FB-DZA

CFS-FB-DZA

Washer 

 Adjusting screw

Slotted hole LH

for pressure screw

Round hole Ød for

anchoring

Round hole with

internal thread for

adjusting screw

 See table "Pressure screws" for the admissible compressive forces.

Load range Suitable

pressurescrew

Dimensions

Type

Page 192: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 192/274

www.cfsfixings.com1-25

FH,Rd

[kN][kN]

2.0 3.00 FAZ II 10/50 M10 x 40 M12

3.5 5.25 FAZ II 12/60 M12 x 40 M12 / M16

6.0 9.00 FAZ II 16/50 M16 x 50 M16 / M20

CFS-FB-DZA

Nailing plate

 

 The proof of anchoring must be provided in consideration of the respective boundary conditions.

 See table "Pressure screws" for the admissible compressive forces.

CFS-FB-DZA: Installation condition

Load range Design loadRecommended

mount Adjusting screw

Suitable pressure

screw

Type

,

 

 

i i i i i i i i

  l i i l i

Technical data

Assembly InstructionsCFS-FB-DZA

The plate is pre-mountedon the in-situ concreteusing the ith a drilledbolt or a cast-in channel.When setting the anchor,the offset dimension x(distance between slotof pressure screw andround hole of anchor)must be noted. The platecan be mounted in anydirection radially aroundthe pressure screw.

The adjusting screw isused to set the plateparallel to the wall.The through bolt orMHH screw boltissubsequently tightenedwith the requiredtightening torque.

The pressure screw Type

FB-DS1 or Type FB-DS2with previously fixedwasher is passed throughthe slot of the plate.

The pressure screw

is screwed into theembedded cast inchannel of the precastpart. The distance ofthe precast part to thein-situ concrete can beset exactly by rotatingthe pressure screw.

Page 193: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 193/274

www.cfsfixings.com  11-26

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Dowel ConnectionCFS-FB-VDThe dowel connection allow the transmission of shear forcesbetween two precast parts.

A round sleeve is embedded into the bottom of the upperpanel and grouting sleeve is embedded into the top of thelower panel.

Please refer to the table for the dimensions.

Product information

• Load range: 1.0 kN – 5.0 kN

• Material: approved stainless steel

• Certification: structural analysis

Technical data

Table of dowel sizes and design loads

CFS-FB-VD

[kN]

FH,Rd

[kN]Ø d

[mm]l[mm]

f min

[mm]

amax

[mm]

± 1.0 ± 1.50 12 180 100 20 Ø12x80 - Ø40x100

± 2.5 ± 3.75 16 200 100 20 Ø16x100 44/18x100 Ø40x100

± 5.0 ± 7.50 20 220 120 20 Ø20x140 47/22x100 Ø40x100

 

Loadrange

Designload

Dimensions Accessories

Diame-

ter Length

Panelthick-

ness

Jointthick-

ness

Plastic sleeve Additional

reinforc-

ement

top bottom

round oval round

Type

required

required

required l = 100 + a + 5 * Ød acc. to 346 acc. to DAfStb

 Minimum concrete quality C30/37

 

CFS-FB-VD: Installationcondition

Page 194: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 194/274

www.cfsfixings.com1-27

Other ProductsTurnbuckle Restraint System CFS-FB-SPV

The turnbuckle restraint system CFS-FB-SPV allows for thetransmission of tensile and compressive forces betweentwo concrete elements. It consists of a turnbuckle and

two MHH T-bolts with a left-hand and a righthandthread. The turnbuckle can be rotated to adjust thetolerances.

Product information

• Load range: 5.0 kN – 10.0 kN

• Diameter: M12 and M16

• Material: approved stainless steel

• Certification: structural analysis

* For more detail please consult CFS.

Page 195: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 195/274

www.cfsfixings.com  11-28

M O S  OP R E  C A  S T P A NE L  S  U

 S P E N S I   ON S Y  S T E M

Page 196: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 196/274

www.cfsfixings.com2-1

Precast Wall ConnectionWire Rope Boxes

Page 197: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 197/274

www.cfsfixings.com  12-2

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

10

Contents

Wire Boxes for Precast Panels 12-3

Selection 12-4

Capacities 12-5

Installation 12-7

Reinforcement of Concrete Elements 12-8

Supervision of Installation 12-9

R-Steel Loops 12-10

Dimensions 12-11

Installation 12-12

Page 198: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 198/274

www.cfsfixings.com2-3

Wire Boxes forPrecast PanelsWire Rope Boxes are designed to be used as a structuralconnection for pre-cast units with recesses, or betweenprecast units and in-situ concrete components. The casingof the box eliminates the need for additional formwork.

The rope boxes are very easy to use on site, with provenno-tool tear-off tape that releases the flexible loops. Theloops are stitched into the adjoining element with rodsand insitu concrete.

We can provide boxes either containing a single loop ora double loop, depending on the load capacities thatare required.

Page 199: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 199/274

www.cfsfixings.com  12-4

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

SelectionOur range includes Standard wire boxes, a Maxi wire box and Double wire rope boxes. The fourtypes of Standard wire boxes have the same load capacity, selection should be made based on thethickness of the joint. For greater loads, use the Maxi box or Doube wire rope boxes.

Dimensions

Box Type Part No SL(mm)

± 10

L(mm)

± 20

L1(mm)

± 10

h(mm)

± 2

b(mm)

± 2

t(mm)

± 2

ø(mm)Note 1

D(mm)

Standard CFS-RVL-60 60 336 270 160 50 20 6 55

CFS-RVL-80 80 250 60

CFS-RVL-100 100 230 65

CFS-RVL-120 120 210 70

Maxi CFS-RVL-140 140 528 370 200 50 20 8 100

Double CFS-RWL-THIN

80 306 220 180 50 20 6 60

CFS-RWL-WIDE

100 331 225 220 80 25 6 60

Thickness of steel plate of the box is 0,7mm. Note 1 – according to SFS-EN 12385

Materials

Part Material Standard

Steel box 1.0330 SFS-EN 10130

Wire rope high strength steel wire rope SE-Zn SFS-EN 12385

Compression sleeve 1.0046 SFS-EN 10025

The steel box and the wire rope are zinc coated. Zinced products are passivated with min. 1 month of storage.

Standard and Maxi Wire Loop Boxes

  | | , | : I | . . . | . .

 

Double Wire Loop Boxes

Page 200: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 200/274

www.cfsfixings.com2-5

CapacitiesThe Standard boxes (RVL-60, -80, -100 and -120) all haveequal capacities. For greater loads, use the Maxi box (RVL-140) or the Double boxes (RWL-THIN and –WIDE).

Design PrinciplesThe capacities presented in the tables below are calculatedfor static loads. Our wire rope loops are not designed to beused for dynamic loading or for lifting. For the capacitiesto be achieved, there should be no cracks or deformationsin the joints.

The capacities of the wire rope loops are calculated for a joint as presented in the diagram with seam thickness andreinforcement as outlined in the following sections. Thesteel boxes and the seam must be fully filled with concrete.

The capacities given are the resistances in ultimate limit

state, so please compare to design loads.

Boxes Centreto Centre

Design Value of Longitudinal Shear Resistance, VRd (kN/m)

Standard Maxi Double Thin Double WideCFS-RVL-60, -80, -100, -120 CFS-RVL-140 CFS-RWL-THIN CFS-RWL-WIDE

C25/30 C40/50 C25/30 C40/50 C25/30 C40/50 C25/30 C40/50

250 125 159 112 116

300 117 148 94 98 141 154

350 101 128 182 230 81 84 120 132

400 89 112 163 207 70 74 106 118

450 79 100 146 184 63 66 95 106

500 72 91 131 166 56 59 85 96

550 66 83 120 152 51 54 77 87

600 60 76 110 139 46 49 70 80

650 56 71 102 129 43 45 64 73

700 52 66 95 120 40 43 60 69750 49 62 37 40 55 63

Longitudinal Force Capacity

The resistance is defined by the weakest concrete in the system, either to fill the joint or the concrete used to make theprecast element.

Page 201: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 201/274

www.cfsfixings.com  12-6

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

Box Type Part No Design Value of Horizontal ShearResistance, NRd (kN)

C25/30 C40/50

Standard

CFS-RVL-60

4.6 5.8

CFS-RVL-80

CFS-RVL-100

CFS-RVL-120

Maxi CFS-RVL-140 8.2 10.3

DoubleCFS-RWL-THIN

10.8 13.6CFS-RWL-WIDE

Box Type Part No Design Value of Tensile Resistance,FRd (kN)

C25/30 C40/50

Standard

CFS-RVL-60

12.9 12.9CFS-RVL-80

CFS-RVL-100

CFS-RVL-120

Maxi CFS-RVL-140 23.1 23.1

DoubleCFS-RWL-THIN

17 25.8CFS-RWL-WIDE

Tensile Capacity

Capacities are shown here per box, thus for Standard andMaxi boxes the capacities are for a single wire rope pair,and for the double boxes are for two wire rope pairs.

Combined Forces

For circumstances where there is a combination of forceson the wire loop joints, the following must apply:

Horizontal Shear Force

Capacities are shown here per box, thus for Standard andMaxi boxes the capacities are for a single wire rope pair,and for the double boxes are for two wire rope pairs.

The resistance is defined by the weakest concrete in thesystem, either to fill the joint or the concrete used tomake the precast element. The distance between wire

loop boxes must be as defined later in this section.

The resistance is defined by the weakest concrete in thesystem, either to fill the joint or the concrete used tomake the precast element. The distance between wireloop boxes must be as defined later in this section.

VApplied

+F

Applied+

NApplied

≤ 1V

RdF

RdN

Rd

Page 202: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 202/274

www.cfsfixings.com2-7

InstallationSeam Thickness

The size of the wire rope loops must be chosen accordingto the thickness of the joint to enable the vertical ribbedsteel bar in the joint to pass through the wire rope loops

on both side of the joint.

Box Type Part No Recommendedthickness of rope loopseam (mm)

Standard

CFS-RVL-60 70-90

CFS-RVL-80 90-110

CFS-RVL-100 110-140

CFS-RVL-120 140-190

Maxi CFS-RVL-140 160-220

DoubleCFS-RWL-THIN 90-130

CFS-RWL-WIDE 110-160

Minimum Edge Distance and Spacing

Centre to centre Emin = minimum distance between wire rope loops at the same side of the joint.

Edge distance Dmin = the minimum distance of the wire rope loop to the upper and lower edge of the concrete element(see diagram for double boxes).

Centre to centre Cmax  = minimum distance between wire rope loops at opposite sides of the joint.

Minimum width Bmin = minimum total wall width.

Box Type Part No Centre to Centre Emin

Edge Distance Dmin

Centre to Centre Cmax

Minimum Width Bmin

mm

Standard

CFS-RVL-60

250 100 20 120CFS-RVL-80

CFS-RVL-100

CFS-RVL-120

Maxi CFS-RVL-140 350 200 25 150

Double CFS-RWL-THIN 250 250 20 80CFS-RWL-WIDE 300 300 25 100

Dimensions for Standard and Maxi Boxes Dimensions for Double Boxes

Page 203: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 203/274

www.cfsfixings.com  12-8

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

Reinforcement ofConcrete Elements

The wall elements must be reinforced according to the wallelement design.

Case 1 – Where wire loops are used totransfer forces

When RVL wire rope loops are used to transfer forcesin the joint, anchorage of the wire rope loop must besecured by overlapping the wire rope loop sufficientlywith the reinforcement of the concrete element. Thisshould be done to the engineer’s design depending onyour precise arrangement.

Where the wire loop is used in a corner joint a reinforcingbar should be installed into the inner edge of the fold ofthe RVL wire rope loop, the diameter of this bar shouldbe the same as the reinforcement installed in the joint.

Case 2 – Where RVL wire loops are not used totransfer forces

When wire rope loops are used to limit cracking of theseam or to tie elements together without defining therequired force, additional reinforcement in the wall isrecommended as shown here, including 2 No 10mmdiameter additional bars in each piece.

Attachment to the formworkThe wire rope loop box must be attached securely so itcannot move during casting of the concrete. At the wirerope loop, the concrete must be compacted carefullyas the loop cannot be vibrated. The wire rope loopsLoop boxes may be fastened to formwork with nails orby magnets. The part of the wire rope which enters theconcrete element is installed amidst the reinforcementand does not need to be tied to the reinforcement.

Case Study 1 Diagrams

Case Study 2 Diagrams

Reinforcement of the joint

When using wire rope loops, a vertical ribbed steel barmust always be installed through the wire loops asshown here.

Reinforcing steel A500HW or similar

Box Type Part No Diameter of theribbed steel bar Øs

Standard CFS-RVL-60 12

CFS-RVL-80

CFS-RVL-100

CFS-RVL-120

Maxi CFS-RVL-140 16

Double CFS-RWL-THIN 12

CFS-RWL-WIDE

Page 204: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 204/274

www.cfsfixings.com2-9

Supervision ofInstallationCheck list before casting:

• Wire rope loop is in good condition

• Wire rope loop is according to designs and in the rightplace

• Wire rope loop is attached firmly

• The required additional reinforcement is installed.

During the casting:

• Wire rope loop stays in the right place

• The concrete is thoroughly vibrated around the RVL wirerope loop.

After the casting:

• The tape covering the steel box is removed at the factoryafter the concrete is cured.

ManufacturingOur RVL wire rope loops are manufactured byR-Group Finland Oy.

Manufacturing markings

The product packaging includes a R-Steel sticker,

containing the following information: product type,product name, quantity, ISO9001 and ISO14001 qualityand environmental system markings, FI marking andproduct picture.

Products are delivered in cardboard boxes marked withFI and BY (Concrete Association of Finland) logo and thenumber of certified product declaration, numbers of theISO-certificates and the product type and name.

Quality control

Quality control of the wire rope loops is done accordingto the requirements of the Finish Code of Building

Regulation and the instructions according to the qualityand environment system of R-Group Finland Oy (ISO 9001and ISO 14001).

Page 205: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 205/274

www.cfsfixings.com  12-10

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

R-Steel LoopsR-Steel Loops are used to tie precast concrete elements tothe building frame using a reinforcement bar through theloops and casting some concrete insitu.

They are similar to the RVL Wire Loop in application. The

wire boxes have the advantage of ease of casting andprotection of the loop, however the R-Steel loops can beused in thinner panels and can also be used for lifting.

Page 206: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 206/274

www.cfsfixings.com2-11

Dimensions MaterialsPart Material Standard

Wire rope high strength steel wireSE-Zn

SFS-EN 12385

Compression sleeve 1.0046 SFS-EN 10025

CapacitiesDesign principles:

The capacities presented in the tables below are calculatedfor ultimate limit states according to the following codesand regulations:

• SFS-EN1992-1-1

• SFS-EN1993-1-1

R Steel loops cannot be welded.

Capacity for element tying

Ultimate limit capacity for horizontal force, NRd = 4.8kN

Concrete strength ≥C25/30. This design is for a staticload, for dynamic load please seek advice from CFStechnical help.

Capacity for element lifting

The R-Steel Loop can be used for lifting concrete elements,according to the diagram below as long as the followingare met:

• Lifting angle must be between 0° and 45°

• R-Steel Loop resistance for lifting FRd = 1.9kN (concrete≥ C15/20)

• Lifting device diameter must be ≥ 40mm

Page 207: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 207/274

www.cfsfixings.com  12-12

P R E  C A  S T WA L L  C  ONNE  C T I   O

NWI  R E R  OP E B  OX E  S 

InstallationMinimum Edge Distanceand Spacing

Minimum edge distance from sleeve, e = 15mm

A reinforcing bar needs to be provided in the element as

shown above to prevent the loop bursting out of the wall.

Supervision ofInstallationCheck before casting:

• R-Steel loop is in good condition

• R-Steel loop I according to design and in the right place

• R-Steel loop is attached firmly

• The additional reinforcement is installed

During casting:

• R-Steel loop stays in the right place

• The concrete is thoroughly vibrated aroundthe R-Steel loop

After casting:

• The situation of the R-Steel loop is accordingto the design

Reinforcement

Anchoring reinforcement must be installed through theR-Steel Loop and it must be anchored to cast in situconcrete. Reinforcement to be A500HW or similar.

Attachment to the formwork

The R-Steel Loop and anchoring reinforcement must be

securely attached and must not move during casting. TheR-Steel Loop may not be vibrated during casting.

ManufacturingR-Steel loops are manufactured by R-GroupFinland Oy.

Manufacturing markings

The product packaging includes a R-Steel sticker,containing the following information: product type,

product name, quantity, ISO9001 and ISO14001 qualityand environmental system markings, FI marking andproduct picture.

Products are delivered in cardboard boxes marked withFI and BY (Concrete Association of Finland) logo and thenumber of certified product declaration, numbers of theISO-certificates and the product type and name.

Quality control

Quality control of the wire rope loops is done accordingto the requirements of the Finish Code of BuildingRegulation and the instructions according to the quality

and environment system of R-Group Finland Oy (ISO 9001and ISO 14001).

Page 208: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 208/274

www.cfsfixings.com3-1

CVS StaircaseConnectors

Page 209: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 209/274

www.cfsfixings.com  13-2

 C V  S  S T A I  R  C A  S E  C  O

NNE  C T  OR  S 

10

Contents

CVS 40 / 60 / 100 Staircase Products 13-3

Reinforcement Arrangement 13-5

Page 210: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 210/274

www.cfsfixings.com3-3

CVS 40 / 60 / 100Staircase ProductsThe CVS 40 / 60 / 100 staircase products are used forconnecting precast staircases to concrete shear walls. Thisis done by having a bearing that rests within the shearwall.

The former for the cast in part is re-usable. The formeris secured by two screws and can be removed once theconcrete has cured.

The inner bearing part of the connector is slid out intothe pocket in the shear wall on the construction site.

CVS bearers are produced under ISO 9001.

Page 211: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 211/274

www.cfsfixings.com  13-4

 C V  S  S T A I  R  C A  S E  C  O

NNE  C T  OR  S 

Part No CFS-CVS-40 CFS-CVS-60 CFS-CVS-100

Design Capacity kN 40 60 100

Landing Thickness mm 150 175 200 175 200 200 250

Concrete

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      4      0      /      5      0

      C      3      0      /      3      7

      C      3      5      /      4      5

      C      3      0      /      3      7

      C      3      5      /      4      5

Bar No 1 -Front ShearBar

Bars No 2 2 1 1 1 1 2 2 2 1 1 2 2 1 1

Diameter, ds mm 12 12 16 16 16 12 12 12 10 16 16 16 16 20 20

Lb,net mm 60 60 85 85 110 110 85 85 110 110 110 110 110 160 160

La ≥ 5 x ds mm 60 60 80 80 80 60 60 60 50 80 80 80 80 100 100

Bar No 2 -Back ShearBar

Bars No 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

Diameter, ds mm 16 12 12 12 12 12 16 16 16 16 16 12 12 12 12

Lb,net mm 100 100 100 100 100 100 100 100 100 100 100 110 110 110 110

La ≥ 5 x ds mm 80 60 60 60 60 60 80 80 80 80 80 60 60 60 60

Bar No 3 -Edge U Bar

Bars No 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Diameter, ds mm 12 12 12 12 12 12 12 12 12 12 12 16 16 16 16

Spacing, e mm 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Lb,net mm 350 350 350 350 350 350 400 400 400 400 400 400 400 400 400

Technical Data

The maximum gap between the concrete stair and wall elements to achieve the full design capacity is 40mm.If this is increased to 50mm, the capacities reduce by 5kN.

To reduce the noise transmission, an insolating pad can be inserted into thewall pocket underneath the bearing part.

The staircase connectors, made of material S355 are available in four different

load groups. The product designation CVS 40 / 60 / 100 / 200 indicates theultimate capacity per connector in kN.

Additional reinforcement located at the rear of the cast in part is required totransfer loads from the connectors into precast unit (see above image andoverleaf).

Calculations are available for the staircase connectors to provide proof for thesteel components and the anchorage arrangement within the precast unit.

Connector load bearing capacities have also been verified by practical tests.

Available in black or galvanised finish.

Page 212: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 212/274

www.cfsfixings.com3-5

ReinforcementArrangement

Bar No 1 - Front Shear Bar

- Anchorage of shear bars may be bent either

perpendicular or aligned to CVS.

- Shear bar may be vertical or at an angle as shown.

- Shear bars may be doubled up in some cases.

Bar No 2 - Back shear bar Bar No 3 - Edge U Bar

Page 213: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 213/274

www.cfsfixings.com  13-6

 C V  S  S T A I  R  C A  S E  C  O

NNE  C T  OR  S 

Page 214: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 214/274

www.cfsfixings.com4-1

Precast Column andWall Shoes, and OtherConnection Systems

Page 215: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 215/274

www.cfsfixings.com  14-2

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

10

Contents

Anstar Products 14-3

Diagonal Ties and Lifting Anchors 14-4

Fastening Plates 14-5

Fastening Plates 14-6

Standard Steel Anchors 14-7

Standard Steel Anchors 14-8

Standard Steel Anchors 14-9

Standard Steel Anchors 14-10

Column Shoes 14-11

Column Shoes 14-12

Anchor Bolts 14-13

Anchor Bolts 14-14

Wall Shoes 14-15

Steel Brackets 14-16

Steel Brackets 14-17

Composite Beams 14-18

Bracing Connections 14-19

Bracing Connections 14-20

Page 216: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 216/274

www.cfsfixings.com4-3

Anstar ProductsQuality Products from Finland

Range includes column shoes, wall shoes, foundationbolts, composite structures steel to concrete connections,precast panel suspension system and lattice reinforcement

for sandwich panels product.

Page 217: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 217/274

www.cfsfixings.com  14-4

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

AD 150-2400 (2700)

AD 180-2400 (2700)

AD 200-2400 (2700)

AD 220-2400 (2700)

AD 240-2400 (2700)

AD 260-2400 (2700)

AD 280-2400 (2700)

AD 300-2400 (2700)

AD 320-2400 (2700)

AD 360-2400 (2700)

t d H weight

[mm] [mm] [mm] [kg]

AN25-V, AN25-O 8 12 1000 3.9

AN40-V, AN40-O 12 16 1100 6.1

AN60-V, AN60-O 16 20 1450 12.0

SBKL fastening plates

H t A C Ø weight Nu Vu MuL MuB T u

[kg]SBKL 50/100 68 8 0 60 12 0.5 7.7 9.8 0.38 0.30 0.49

SBKL 100/100 68 8 60 60 12 1.0 13.7 19.3 0.68 0.68 1.38

SBKL 100/150 70 10 60 90 12 1.5 18.4 19.3 1.20 0.91 1.76

SBKL 100/200 162 12 60 120 12 2.5 37.2 19.3 2.98 1.86 2.15

SBKL 150/150 162 12 90 90 12 2.7 39.6 22.6 2.57 2.57 2.10

SBKL 200/200 162 12 120 120 16 5.0 82.8 43.5 6.62 6.62 4.92

Standard products

[Code B-L]

TYPE

DIMENSIONS

Allowed

lifting angle

0-20º

Concrete K20

CAPACITIES

260

CODE L/B

DIMENSIONS CAPACITIES

[mm]

40 kN 40 kN

[kNm][kN]

60 kN

Allowed

lifting angle

0-30º

Concrete K25

25 kN

60 kN

Recommended insulation thickness

25 kN

160

180

200

220

140

240

300

DIMENSIONS

[mm]

90

120

 Lappr. 45°

     BØ5

Ø5

     1     5

     1     5

Diagonal External bar Internal bar

AD 1.4301 1.4301 B500 K  

ADR 1.4301 1.4301 1.4301

   H

AN25-OAN40-OAN60-O

AN25-VAN40-VAN60-V

d

   O  v  a   l   h  o   l  e   f  o  r   5  o  r   8

   t  o  n  s   h  o   i  s   t   l  o  c   k

Concrete Association of Finland certificate 269HL

C

     A   B

t   Ø

Plate Anchors

SBKL S235JR+AR S235JR+AR

SBKLR 1.4301 S235JR+AR

SBKLRr 1.4301 1.4301SBKLH 1.4401 S235JR+AR

Concrete Association of Finland certificate 250

Rebars A500HW

Profile S235JR+AR

Steelplate S355J2+N

Concrete Association of Finland certificate 281

SBKL 200/300 and SBKL 300/300 are delivered as AKL-fastening plates, see page 4.

Fastening PlatesSBKL fastening plates

Diagonal Ties and Lifting AnchorsAD diagonal ties

AN lifting anchors

Page 218: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 218/274

www.cfsfixings.com4-5

H t A C weight Nu   Vu   MuL   MuB   T u

[kg]

KL 50/100 218 8 0 60 0.7 7.7 9.8 0.38 0.30 0.49

KL 100/100 218 8 60 60 1.4 13.7 19.3 0.68 0.68 1.38

KL 100/150 220 10 60 90 2.0 18.4 19.3 1.20 0.91 1.76

CODE L/B

DIMENSIONS CAPACITIES

[kN] [kNm][mm]

Ø

12

12

12

t Ø C A H weight Nu   Vu   MuL   MuB   T u

[kg]

AKL 150/150 11 12 90 90 161 2.7 99.7 38.9 8.4 8.4 3.0

AKL 200/100 11 12 120 60 161 2.5 94.2 38.0 11.3 5.6 3.2

AKL 200/200 12 16 120 120 162 5.0 201.0 73.0 20.0 20.0 7.3

AKL 300/100 15 16 180 60 165 4.7 177.0 71.5 30.1 9.3 8.1

AKL 300/200 13 16 180 120 163 7.5 215.0 74.2 30.1 20.1 9.3

AKL 300/300 12 16 180 180 162 9.8 231.0 77.0 30.1 30.1 10.9

CODE L/B

DIMENSIONS CAPACITIES

[mm] [kN] [kNm]

t Ø A H weight Nu   VuL   VuB

[kg/m] [kNm]

AKLP 100/L 12 16 60 115 10.8 79.4 23.4 37.4

AKLP 150/L 12 16 90 115 15.5 93.6 27.6 37.4

AKLP 200/L 12 16 100 115 20.2 97.1 28.6 37.4

AKLP 300/L 12 16 200 115 29.6 116.5 34.4 37.4

AKLP 400/L 12 16 200 115 39.0 116.5 34.4 37.4

 AKLJ 300/L 20 20 200 220 53.9 182.0 53.7 58.4

 AKLJ 400/L 24 20 300 220 82.0 195.0 57.6 58.4

 AKLJ 500/L 24 20 200 220 104.0 287.0 84.9 87.6

 AKLJ 600/L 25 20 250 220 128.0 296.0 87.6 87.6

CODE B/L

DIMENSIONS CAPACITIES

[kN][mm]

Concrete Association of Finland certificate 269

Concrete Association of Finland certificate 218

Concrete Association of Finland certificate 218

C

L

   B   A

H

t   Ø

   B

L

C

   A

   Øt

H

B

   L  =   n

   *   2   0   0  m  a  x .   2   0   0   0

   2   0   0

   2   0   0

   2   0   0

   2   0

   0

   1   0   0

   1   0   0

   Ø

t

H

Plate Anchors

KL S235JR+AR A500HW

KLR 1.4301 A500HW

KLH 1.4401 A500HW

Plate Anchors

AKL S355J2+N A500HWAKLR 1.4301 A500HW

AKLH 1.4401 A500HW

Plate Anchors

AKLP/AKLJ S355J2+N A500HW

AKLPR/AKLJR 1.4301 A500HW

AKLPH/AKLJH 1.4401 A500HW

Fastening PlatesKL fastening plates

AKL fastening plates

AKLP and AKLJ long fastening plates

Page 219: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 219/274

www.cfsfixings.com  14-6

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

t Ø C A H weight   Nu   Vu   MuL   MuB   T u

[kg]

JAL 150/150 25 16 90 90 220 6.0 177 69.2 15.1 15.1 5.4JAL 200/150 25 20 120 90 220 8.5 295 110.0 31.4 23.6 10.0

JAL 250/150 25 20 190 90 220 10.0 316 114.0 49.7 23.6 14.1

JAL 250/200 25 20 190 120 220 12.4 339 116.0 49.7 31.4 15.1

JAL 250/250 25 20 190 190 220 14.9 369 121.0 49.7 49.7 18.0

JAL 300/200 25 25 200 120 280 16.8 533 182.0 81.8 49.1 24.5

JAL 300/300 25 25 200 200 280 22.9 584 190.0 81.8 81.8 29.7

JAL 400/400 30 25 300 300 280 42.7 646 196.0 123.0 123.0 44.5

JAL 500/300 30 25 140 200 280 46.0 687 374.0 190.0 108.0 62.3

JAL 500/500 30 25 400 400 280 63.9 682 200.0 164.0 164.0 59.4

JAL 600/600 30 25 500 500 280 89.8 705 202.0 205.0 205.0 74.2

JAL 800/500 30 25 175 400 280 106.0 912 490.0 358.0 265.0 131.0

JAL 800/800 30 25 350 350 280 162.0 1050 404.0 430.0 430.0 156.0

JAL 1000/600 30 25 180 500 280 156.0 1050 595.0 515.0 374.0 192.0

JAL 1000/1000 30 25 450 450 280 244.0 1240 408.0 550.0 550.0 200.0

CODE L/B

DIMENSIONS CAPACITIES

[mm] [kN] [kNm]

L   H B t Ø   weight

[kg]

AVT 15   460 95 450 8 10 2.5

AVT 16   550 105 475 10 12 3.9

AVT 17   740 125 560 12 16 7.1

35.2

51.5

89.1

TYPE

DIMENSIONS

[mm]

CAPACITIES

Vu

[kN]

 H B L1 L2 Ø weight   Nu   V1u   V2u

[kg]

AVT 25   80 80 235 270 8 1.9 92.2 17.9 10.7

AVT 26   100 100 315 350 10 3.4 115.2 30.5 10.7

AVT 27   120 120 385 430 12 5.0 198.9 43.6 10.7

DIMENSIONS CAPACITIES

[mm]   [kN]

TYPE

Concrete Association of Finland certificate 218

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

HL

     B

C

     A

t  Ø

Vu

30

t

     H

B

     L

140 Ø

150

25

Nu

uV1   V2u

     L     2

     H

L1B

75

Ø

     Ø

Plate Anchors

JAL S355J2+N A500HW

JALR 1.4301 A500HW

JALH 1.4401 A500HW

Plate Anchors

AVT S355J2+N A500HW

AVTr   1.4301 A500HW

Angle Bar Plate (AVT 27) Anchors

AVT S235JR+AR S355J2+N A500HW

AVTr 1.4301 1.4301 A500HW

Fastening PlatesJAL heavy fastening plates

AVT 25 – 27

Standard Steel AnchorsAVT 15 – 17

Page 220: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 220/274

www.cfsfixings.com4-7

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

B

      H

      S

L2

L1

Ø2 Ø1

uN2

N1uuM2

M1u

uV

      1      5

      1      0      0

B   

uM

Nu

   B

uN

  6

1   5   

      A

Ø

      1      5

Ø

L

      H

uV

uV

      3      0      0

L

      1

      5

Ø

Ø

ØMu

   B

1   5   

      A

  6uN

Nu

B   

Plate Anchors

AVT S355K2C A500HW

AVTR 1.4301 A500HW

AVTRr 1.4301 1.4301

Plate Anchors

AVT S355K2C A500HW

AVTR 1.4301 A500HW

AVTRr 1.4301 1.4301

Plate Anchors

AVT S355K2C A500HW

AVTR 1.4301 A500HW

AVTRr 1.4301 1.4301

 H B S L1 Ø1 L2 Ø2 weight   N1u   M1u   N2u   M2u   Vu

[kg]   [kN] [kNm] [kN] [kNm] [kN]

AVT 23 55 65 15 205 8 100 10 0.8 15.7 0.57 4.3 0.29 10.7

AVT 24 80 85 20 305 10 120 12 1.3 26.6 0.85 6.6 0.69 11.6

CAPACITIES

[mm]

TYPE

DIMENSIONS

B A L Ø weight   Nu   Mu   Vu

[kg]   [kN] [kNm] [kN]

AVT 32 65 60 245 8 2.3 28.1 2.0 21.5AVT 33 80 80 305 10 3.3 43.5 2.5 33.6

TYPE

DIMENSIONS   CAPACITIES

[mm]

H B A L Ø   weight   Nu   V1u   V2u

[kg]

AVT 34   150   65 60 245 8 1.3 16.9 1.2 10.7

AVT 35   150   80 80 305 10 1.8 26.2 1.2 16.8

AVT 36   80   65 60 245 8 0.9 11.5 0.6 10.7

AVT 37   100   80 80 305 10 1.4 21.4 0.8 16.8

TYPEDIMENSIONS CAPACITIES

[mm]   [kN]

Standard Steel AnchorsAVT 23 and 24

AVT 32 and 33

AVT 34 – 37

Page 221: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 221/274

www.cfsfixings.com  14-8

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

B C E H L Ø weight   V1u   V2u   Nu   M1u   M2u

[kg]

AVT 43 100 150 100 45 320 8 1.3 29.3 4.7 5.6 0.29 0.56

AVT 45 100 100 100 45 320 8 1.0 22.8 3.9 5.6 0.28 0.28

AVT 46 150 150 170 65 430 10 2.5 45.1 4.7 16.0 1.04 1.15

AVT 47 200 200 210 85 545 12 5.1 70.9 5.1 28.0 2.29 2.70

[kNm]

TYPE

DIMENSIONS CAPACITIES

[mm]   [kN]

[kg]

AVT 44 1.4   16.818.3

[kN]

TYPEweight

K45-1 K30-2

Nu

CAPACITIES

Vu

K45-1 K30-2

45.849.9

[kg]

AVT 39 0.8

K45-1

CAPACITIES

17.6 12.1 13.8 10.7

TYPEweight   Nu   Vu

K45-1 K30-2 K30-2

[kN]

B H L S weight   Nu   Mu   Vu

[kg]   [kN] [kNm] [kN]

AVT 38 100 45 575 120 1.1 14.8 1.11 14.8

AVT 41 150 65 690 200 2.7 33.9 2.61 26.1

AVT 42 200 85 870 320 5.5 64.9 5.01 40.7

TYPE

DIMENSIONS CAPACITIES

[mm]

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

 4  5

600

      Ø     8     1

     5

Nu

Vu

     1     0     0

     1     5     0

uN

uV

     1     4     0

650

70

     3     5     0

     2     5

     C

B

     H

L

25   E

Ø

N

M1

u

u

V1u

M2u   V2u

Mu

Nu

Vu

Mu

B

     H

     2     0

     B

edge distance SL

Plate Anchors

AVT S355J2+N A500HW

AVTR 1.4301 A500HW

AVTRr 1.4301 1.4301

Plate Anchors

AVT S355J2+N A500HW

AVTR 1.4301 A500HW

Plate Anchors

AVT S355J2+N A500HW

AVTR 1.4301 A500HW

Plate Anchors

AVT S355J2+N A500HW

AVTR 1.4301 A500HW

AVTRr 1.4301 1.4301

Standard Steel AnchorsAVT 38, 41 and 42

AVT 39

AVT 44

AVT 43, 45 – 47

Page 222: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 222/274

www.cfsfixings.com4-9

Vu Nu Mu

[kg] [kNm]

AVT 48 1.0 14.5 5.2 0.28

TYPEWEIGHT

CAPACITIES

[kN]

WEIGHT

[kg]

AVTR 51 2.9

AVTR 52 0.3

TYPE

[kg]

AVT 57 6.3 5.3

TYPE WEIGHT

CAPACITIES

Vu

[kN]

S weight Nu Vu

[mm] [kg]

ASKT 50 50x50x5 15 26.6 7.7 10.7

ASKT 80 80x80x8 25 62.0 7.7 10.7

ASKT 100x50 100x50x8 15 58.0 7.7 10.7

ASKT 100 100x100x10 25 94.6 7.7 10.7

DIMENSIONS CAPACITIES

angle size[kN]

TYPE

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

100

       1

       0       0

100

       4       5

       1       5

       2       5

320

uMNu

Vu

Ø8100 4*400 100

1800

2   2   

6   0   

       1       1       5

Vu uV

uV

uN

uV uV

2   1  0   

       S

150 300 n*300 150

L=6000 standard length

  Ø  8

       6       5       5       5

       5

       5       5

100

       1       3       5

40

uV = 6,9 kN

= 26,4 kNuN

       5       0

5501315

L < 400

       5       0

       2       5

       1       0       5

100

M12-45

65

8

AVTR 51 -L AVTR 52FRAMEWORK BALCONY 

Plate Anchors

AVT S355J2+N A500HW

AVTR 1.4301 A500HW

Plate, square bar and U-loop 1.4301

Nuts M12 and washers 1.4301

Angle ba S235JR+AR

Anchor ba A500HW

Plate Anchors

AVT S235JR+AR A500HW

AVTR 1.4301 A500HW

Angle Bar Anchors

ASKT S235JR+AR A500HW

ASKTR 1.4301 A500HW

Standard Steel AnchorsAVT 48

AVT 57 corner protector

ASKT fastening angle bar

AVTR 51 and 52 balcony slab joint

Page 223: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 223/274

www.cfsfixings.com  14-10

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

weight

[kg]

AUKT 50 26.6

AUKT 80 62.0

AUKT 100x50 58.0

AUKT 100 94.6   10.7

1.0

1.0

CAPACITIES

[kN]

Vu

10.7

10.7

100x50x8

1.0

10.7

1.0

TYPE

DIMENSIONS

Nu

100x100x10

angle size

50x50x5

80x80x8

weight

[kg/m]

AKKT 50 5.3

AKKT 80 11.2

AKKT 100 18.0

16.3

17.3

28.725.0

[kN]

14.1

15.1

Vu

CAPACITIES

Angle size

50x5

80x8

100x10

TYPE

DIMENSIONS

Nu

Vc,Rd

A A1 E H D1 D2 ø T weight

[kg]

APK16 95 110 50 850 10 10 25 12 3.0 6.8 ATP16

APK20 100 120 50 1045 12 12 30 18 5.1 10.7 ATP20

APK24 110 130 50 1025 16 16 35 25 8.9 13.2 ALP22

APK30 125 140 50 1360 20 20 40 30 15.6 17.2 ALP27

APK33 150 180 50 1540 25 20 50 40 26.4 27.2 AET36

APK36 150 180 50 1680 25 25 50 40 30.6 35.5 ALP36

APK39 160 180 60 1830 25 20 54 40 34.2 41.8 ALP39

APK45 175 230 60 2050 32 25 60 50 54.0 55.6 ALP45

APK52 190 280 60 2230 32 25 70 70 78.2 74.3 ALP52

APK60 240 305 70 2255 32 25 75 70 118.2 99.7 ALP60

365.0

Nt,Rd

[kN]

ANCHOR

BOLT

174.5

264.4

562.2

97.0

470.6

CAPACITIES

1340.0

752.2

1012.6

62.2

TYPE

DIMENSIONS

[mm]

C32/40 (K40-1)

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

Concrete Association of Finland certificate 270

Concrete Association of Finland certificate 270

APK 

Concrete Association of Finland certificateBY-272 and EC-3

     2     0     0

Nu

     Ø     8

L=6000 standard length

300150

uV

150n*300

Vu Vu

     2     0

1  6   0   

   3  0

  Ø

uN

L=6000 standard length

100 n*CC 100

Vu uV

     H

     C

     E

     B

     T

APK column shoe

     4     4

   -     5     0

A

A1

APK-Mbeam shoe

Ø   

A1

A

Ø   

     E

     C

     4     4

   -     5     0

Angle bar Anchors

AUKT S235JR+AR A500HW

AUKTR 1.4301 A500HW

Angle bar Anchors

AKKT S235JR+AR A500HW

Baseplate S355J2+N

Anchors A500HW

Nuthouse S355J2+N

Standard Steel AnchorsAUKT fastening angle bar

AKKT

Column ShoesAPK

Page 224: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 224/274

www.cfsfixings.com4-11

Nt,Rd   Vc,Rd

B C E L D1 D2 ø T weight

[kg]

AK16S2 75 66 50 650 12 12 25 15 3.3 62.2 6.8   ATP16

AK20S2 80 70 50 1115 12 12 30 18 4.5 97.0 10.7   ATP20

AK24S2 95 74 50 1475 16 12 35 25 8.7  139,7

174,5

16,6

13,2ATP24

ALP22

AK30S2 120 88 50 1820 20 16 40 30 14.8  222,1

264,4

27,2

17,2ATP30

ALP27

AK36S2 130 100 50 1910 25 16 50 35 22.6 349.5 36.8   AET36

AK39S2 140 116 60 2300 25 20 54 40 30.3 386.5 43.2   ATP39

AK45S2 150 120 60 2325 32 25 60 50 45.9 546.0 41.9   AET45

TYPE

DIMENSIONS  CAPACITIES

 ANCHOR

BOLTC32/40 (K40-1)

[mm] [kN]

N t,Rd   V c,Rd

A B E/F L D1 D2 ø T weight

[kg]

AK20KK 90 80 50/53 905 20 - 30 18 4.4 97.0 10.7 ATP20

AK24KK 98 95 50/55 1290 25 - 35 25 8.2

  139,7

174,5

16,6

13,2

ATP24

ALP22

AK30KK 112 120 50/60 1520 32 - 40 30 15.0  222,1

264,4

27,2

17,2

ATP30

ALP27

AK36KK 118 130 50/60 1840 32 - 50 35 19.0 349.5 36.8 AET36

AK39KK 129 140 60/65 2420 40 - 54 40 34.7 386.5 43.2 ATP39

AK45KK 137 150 60/65 3065 40 - 60 50 45.5 546.0 41.9 AET45

AK36KI 120 130 50/56 1635 25 20 50 35 22.5 470.6 35.5 ALP36

AK39KI 127 140 60/56 1650 25 25 54 40 27.4 562.2 41.8 ALP39

AK45KI 137 150 60/60 2080 32 20 60 50 43.4 752.2 55.6 ALP45

AK52KI 146 160 60/60 2115 32 32 70 60 64.4 1012.6 74.3 ALP52

TYPEC32/40 (K40-1)

[mm]   [kN]

CAPACITIESDIMENSIONS

 ANCHORBOLT

Concrete Association of Finland certificate 184

Concrete Association of Finland certificate 184

AK-S column shoes with one anchor rebar are available on request.

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

AK-S2Capacities due to EC2 SFS-EN 1992-1-1:2005 (+NA2007)

A

B

D1

       L

       5       0

       T

       B

E   

4   3   

  4   3

A - A

B - B

    Ø  C

D2

hole for wireon request

       5       0

       L

A

F

D1

E

Ø 

A

B

A

B

A - A

AK-KK 

B - B

A

F

       T

       B

AK-KI

35 40

C - C

       B

       T

C

D1

C

D2

       7       0

       L

AA

Baseplate, nuthouse S355J2+N

Rebars A500HW

Rebar ø40 NFA 35016-NS

Column ShoesAK – S2

AK-KK and AK-KI

Page 225: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 225/274

www.cfsfixings.com  14-12

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

Concrete Association of Finland certificate 184

Concrete Association of Finland certificate 184

Capacities due to EC2 SFS-EN 1992-1-1:2005 (+NA2007)

 

     B

     T

     L

35

A

E

     Ø

D

AK-P

E

A - A

A

B

A

B

AK-P-J- L

     L

     K

M

D

     T

     B

B - B

        5         3 

AK-K-J- L

E   

Ø   

Baseplate, nuthouse S355J2+N

Rebars A500HW

Rebar ø40 NFA 35016-NS

Baseplate, nuthouse S355J2+N

Rebars A500HW

Rebar ø40 NFA 35016-NS

Nt,Rd   Vc,Rd

A L B E D ø T weight

[kg]

AK20P 100 1040 80 50 20 30 15 4.3 97.0 10.7 ATP20

AK24P 105 1295 95 50 20 36 20 5.5 136.5 10.6 AET24

AK30P 116 1620 120 50 25 40 25 10.3 213.0 16.4 AET30

AK36P 139 2060 130 50 32 50 35 20.6 349.5 26.8 AET36

AK39P   168 2440 140 60 40 56 40 34.3   386.5 43.2 ATP39

AK45P   182 3065 150 60 40 63 50 44.9   546.0 41.9 AET45

TYPE

DIMENSIONSCAPACITIES

C32/40 (K40-1)

[mm] [kN]

ANCHOR

BOLT

Nt,Rd   Vc,Rd

B E D T M K  

80 50 20 15 20 120   97.0 10.7

95 50 20 20 24 130   136.5 10.6

120 50 25 25 30 150   213.0 16.4

130 50 32 35 39 170   349.5 26.8140 60 40 40 39 190   386.5 43.2

150 60 40 50 48 210   546.0 41.9

TYYPPI

CAPACITIES

C32/40 (K40-1)

[kN]

AK39 K/P-J-L

AK45 K/P-J-L

DIMENSIONS

[mm]

AK20 K/P-J-L

AK24 K/P-J-L

AK30 K/P-J-L

AK36 K/P-J-L

Column ShoesAK-P column shoe for round columns

AK K/P-J-L for storey high columns

Page 226: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 226/274

www.cfsfixings.com4-13

TYPENt,Rd Vc,Rd

L K M ø weight

[kg]

ATP16 280 100 M16 16 0.7 62.2 6.8

ATP20 350 120 M20 20 1.2 97.0 10.7

ATP24 430 140 M24 25 2.2 139.7 16.6

ATP30 500 170 M30 32 4.3 222.1 27.2

ATP39 700 190 M39 40 10.0 386.5 43.2

AHP16 800 100 M16 16 1.5 62.2 7.6

AHP20 1000 120 M20 20 2.7 97.0 11.8

AHP24 1200 140 M24 25 4.8 139.7 18.2

AHP30 1500 170 M30 32 10.2 222.1 29.8

AHP39 2000 190 M39 40 21.6 386.5 47.1

Nt,Rd Vc,Rd

L K M ø weight

[kg]

ALP22L 490 140 M22 3x16 2.6 174.5 13.2

ALP27L 620 170 M27 3x20 5.0 264.4 17.2

ALP30L 650 170 M30 3x20 5.7 323.1 24.6ALP36L 740 180 M36 3x25 10.0 470.6 35.5

ALP39L 860 190 M39 3x25 12.6 562.2 41.8

ALP45L 970 210 M45 3x32 22.5 752.2 55.6

ALP52L 1130 240 M52 3x32 27.2 1012.6 74.3

ALP60L 1290 270 M60 4x32 39.6 1340.0 99.7

ALP22P 1070 140 M22 3x12 3.6 174.5 13.2

ALP27P 1150 170 M27 3x16 6.7 264.4 17.2

ALP30P 1370 170 M30 3x16 8.0 323.1 24.6

ALP36P 1390 180 M36 4x16 11.8 470.6 35.5

ALP39P 1490 190 M39 4x20 17.7 562.2 41.8

ALP45P 1710 210 M45 4x20 23.6 752.2 55.6

ALP52P 1880 240 M52 4x25 36.3 1012.6 74.3ALP60P 2430 270 M60 4x32 70.0 1340.0 99.7

   E   X   T   R   A

   L   O   N   G    B

   O   L   T   S

TYPE LENGTH

AHP 20

L = 1500

L = 2000

L = 2500

L = 3000

AHP 24

C25/30 (K30-2)

[mm] [kN]

DIMENSIONSCAPACITIES

AHP 30

L = 2000

L = 2500L = 3000

L = 1500

L = 2000

L = 2500

L = 3000

TYPE

DIMENSIONSCAPACITIES

C25/30 (K30-2)

[mm] [kN]

Concrete Association of Finland certificate BY-289 and EC-2

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

ATP and AHP foundation bolts

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

Ø

       L

       L

Ø

       K

ATP

       K

AHPM M

M22, M27

ALP-PALP-L

       L

Ø

M22-M52

       K

       5       0

       L

       5       0

       K

Ø

M36-M60

M60

M M

Rebars A500HW

Rebar ø40 NFA 35016-NS

Nuts strength m8

Washers S235J2+AR

Rebars A500HW

Thread part ImacroM

Nuts strength m10Washers S235J2+AR

Anchor BoltsATP and AHP foundation bolts

ALP anchor bolts

Page 227: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 227/274

www.cfsfixings.com  14-14

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

Nt,Rd Vc,Rd

L K M A B ø U weight

[kg]

AMP36 670 180 M36 160 80 25 137 10.5 470.6 35.5

AMP39 680 190 M39 180 90 32 140 13.8 562.2 41.8

AMP45 800 210 M45 200 100 32 165 20.7 752.2 55.6

AMP52 930 240 M52 230 115 32 190 38.3 1012.6 74.3

AMP60 1490 270 M60 270 130 40 270 72.8 1340.0 99.7

Nt,Rd Vc,Rd

L K M ø weight

[kg]

AET24 430 135 M24 20 1.7 136.5 10.6

AET30 500 150 M30 25 3.3 213.0 16.4

AET45 760 210 M48 40 13.4 546.0 43.2

-AES24 1275 135 M24 20 3.7 136.5 10.7

AES30 1435 150 M30 25 6.6 213.0 16.4

AES36 1910 170 M39 32 13.1 349.5 26.8

AES45 2315 210 M48 40 26.0 546.0 43.2

C25/30 (K30-2)

TYPE

DIMENSIONS

[mm]

CAPACITIES

AAK 24, 27, 30, 36

AAK 16, 20, 22

TYPE

TYPE

DIMENSIONS

[mm] [kN]

CAPACITIES

C25/30 (K30-2)

[kN]

AAK 39, 45, 52, 60

Rebars A500HW

Rebar ø40 NFA 35016-NS

Nuts strength m8

Washers S235J2+AR

Rebars A500HW

Threaded part ImacroM

Nuts   strength m10

Washers   S235J2+AR

Concrete Association of Finland certificate BY-289 and EC-2

Concrete Association of Finland certificate BY-290 and EC-4

Rectangular assembly frames

for 4 bolts max cc 500/500

       K       K

       L

       L

Ø

Ø

M

AETM

AES

B   H

     A

     B

L

50

U     Ø

     MAMP

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

Capacities due to BY50 and EC2 SFS-EN 1992-1-1:2005 (+NA2007)

Anchor BoltsAMP anchor bolts

AET and AES full capacity bolts

AAK assembly frame

Page 228: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 228/274

www.cfsfixings.com4-15

B H t D Ø d L C Weight

[kg]

ASL 16 80 120 30 115 41*76 10 600 20 3.6

ASL 20 90 130 30 120 45*80 12 800 24 5.5

ASL 24 110 145 35 135 49*85 16 1000 32 10.5

ASL 30 130 160 40 140 55*90 20 1300 40 19.0

ASL 36 150 175 55 160 61*96 25 1600 50 34.9

ASL 39 160 205 60 170 64*99 25 1800 75 42.0

ASL 45 180 220 70 180 70*105 32 1900 96 67.9

ASL 52 200 260 80 200 77*105 32 2400 96 90.7

K30-2

[kN]

AHP 16 +AL

AHP 20 +AL

AHP 24 +AL

AHP 30 +AL229.7

TYPE

DIMENSIONSCAPACITY 

F u

ALP 36/P +AL

ALP 39/P +AL

ALP 45/P +AL

ALP 52/P +AL

BOLTS (Including a nut

and a special washer)

TYPE[mm]

1005.0

469.5

565.0

752.8

63.8

99.2

143.8

K30-2

ARJ16 16 20 1200 220 23 46 28 60 83.7 yellow

ARJ20 20 24 1500 290 27 54 35 60 130.8 blue

ARJ25 25 30 1700 360 32 64 40 80 204.1 black 

ARJ32 32 38 2400 500 40 80 55 80 335.0 grey

F uTYPE

DIMENSIONS CAPACITIES

[mm] [kN]

COLOURø1 M L1 L2 B1 B2 ø2 ø3

365.0

K40-1

91.2

142.5

222.4

Bolts available also on special lengths.

Concrete Association of Finland certificate 277

Threaded joint for full rebar capacity!

ARJ40 on request.

Concrete Association of Finland certificate 11

Ask tender forebar tension rods.

      L

d

      t

      D

C

Ø

B

      H

AHP +AL

special washer

A  R   J   - L   A  R   J   - R   

A  R   J   - L  T   

A  R   J   - A  

B   1  

L  1   L  1  

B   2   

1  0   

L  2   

1  0   

B   2   

L   =   o  r  d   e  r   l   e  n   g  t  h  

B   2   

1  0   

Ø   3   

   M

  Ø  1

  Ø  1

  Ø  1

  Ø  1

  Ø  2

Baseplate S355J2+N

Washers and nuthouses S235JRG2

Anchors A500HW

Rebar A500HW

Sleeves MoC 210M or ImacroM

Wall ShoesASL

Reinforcement JointsARJ

Page 229: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 229/274

www.cfsfixings.com  14-16

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

Steel BracketsASL

Concrete Association of 

Finland certificate 227

AEP-S is column part

for wall connections.

 AEP450PI-Ø280-2

      2      8      0

      D      1

      2      8      0

 AEP450PI-280-2

 AEP450S

150 mm AEP300S

150 mm AEP450S

175 mm AEP650S

215 mm AEP950S

 AEP450PI-380-190-3

      3      8      0

 AEP-PI  AEP1300PI (2 x AEP650PI)

 AEP1900PI (2 x AEP950PI)

 A1 A1

 A4

 A6

 A5

      A      2

      4      0

      4      0

Ø

45

      A      3

      B      2

B5

B6 B3

      7      1

B7

       Ø      2

B1 B4B1

       Ø      1

 AEP-PA  AEP1300PA (2 x AEP650PA)

 AEP1900PA (2 x AEP950PA)

 AEP-PA

 AEP-K

 AEP-KL

 AEP-PS

 AEP-PI

        5        0        0

T12

arm wedge

Vc,Rd   T Rd   Nta,Rd

[kN] [kNm] [kN]AEP400 400 10 100   red

AEP600 600 20 110   grey

AEP800 800 30 120   yellow

AEP1100 1100 50   150   green

AEP1600 1600 30 240   black 

AEP2200 2200 50 300   blue

AEP400-S

AEP600-S

AEP800-S

AEP1100-S

NEW: Beam to beam connection. See manual.

Wedge with assembly arm AEP-KL-500

TYPE

TYPE

CAPACITIESSHEAR, TORSION, TENSION

COLOUR

Capacities due to EC2 SFS-EN 1992-1-1:2005 (+NA2007), concrete C40/50

 

Page 230: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 230/274

www.cfsfixings.com4-17

L

        H

A C

B

anchors intosurface concrete

suspension bar

AEP-PS fire

protection plate

anchor bar intoslab seams

AEP-KL wedgesagainst torsion

AEP-K bridge partinto concrete column

fire resistance upto 180 minutes

AEP-K 

       C       1

       3       5

       4       5

C2

       C       3

C6

C4

C

BEAM LOWER SURFACE

C1 C2 C3 C4 C5 C6 weight

[kg]

AEP400K 125 70 195 56 35 15 5.6

AEP600K 180 80 260 56 35 15 8.6

AEP800K 230 100 305 56 35 20 12.7

AEP1100K 260 100 350 71 50 20 22.3

Plate

A B C H

AOK200 100 140 68 200

AOK265 100 140 68 265

AOK320 100 140 70 320

AOK370 100 140 70 370

AOK400 100 150 80 400

AOK500 100 150 80 500

Concrete Association of Finland certificate BY-283, EC-1

A-beam is composite steel/concrete beam system designed by Anstar Oy. Anstar’s complete service includes

strength calculations, manufacturing, concreting of the beam and carriage to site.

Beams are dimensioned and priced individually for each project.

Ask for tender!

TYPE

TYPE

DIMENSIONS

[mm]

Optim500ML

DIMENSIONS

[mm]

Steel BracketsAEP bridge

Slab HangersAOK slab hanger for hollow core slabs

Composite BeamsA-BEAM

Page 231: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 231/274

www.cfsfixings.com  14-18

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

Composite Beams

Concrete Association of Finland certificate 216

Normal surface treatment: hot dip galvanising. Manufactured on request.

Ask for tender!

Concrete Association of Finland certificate 291

Concrete Association of Finland certificate 291

ADE ADL ADK  

20

EDGE BEAMe.g. A265-280R

MIDDLE BEAMe.g. A265-280

EDGE BEAMe.g. A265-280Rm

Beam steels are protected by seam concrete

LOWERED BEAMSWITHOUT SURFACE CONCRETE

Reinforced surface concrete acts as composite structure with beam

STANDARD BEAMSWITH SURFACE CONCRETE

280-380-480-580

HC200HC265HC320

HC370HC400HC500

3030280-380-480 30 280-380-48030

      D      B

L

T      Ø

ADE-P

thread M

DIMENSIONS CAPACITIES

F u VuL B D T M ø weight(L = 600mm) K40-1

TYPE

[mm] [kg] [kN]

ADE20P-L column width

column width

190 110 12 20 16

200 120 12 20 16

11,3 190 10

ADE24P-L 11,7 260 10

ADE30P-L column width

column width

200 120 12 24 20

250 150 12 30 25

14,7 390 20

ADE36P-L 22,5 550 30

Plates S355J2+N

Anchors A500HW

Sleeves MoC 210M

Bracing Connections

ADE horizontal rod connection

Page 232: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 232/274

www.cfsfixings.com4-19

ADL truss connection

 

H

   B

   L

   t   h  r  e  a   d   M

ADK 

  Ø  2t  h  r  e  a  d    M   

      B

B

ADL-P1

T

L

      Ø      1

H

CAPACITIES

Truss connection Horizontal rod connectionDIMENSIONS

K40-1 K40-1 K40-1 K40-1

L H B T M ø1 ø2 weight Fu   Vu   F u   Vu

TYPE

[mm] [kg]   [kN]

ADL250P1 295 660 175 45 30 16 114 14,5 250 100 353,5 20

ADL350P1 365 800 200 45 36 20 139 21,3 350 150 469,5 30

ADL500P1 395 800 240 45 45 25 169 32,4 500 250 752,9 40

Plates andtubes   S355J2+N

Anchors   A500HW

Sleeves MoC 210M

Plates S355J2+N

Anchors   A500HW

Sleeves

Normal force ofdiagonal rod Connection capacities

DIMENSIONS

 = 0°- 60° =60° =0°

Fdv Nu60 Vu60 Nu0 Vu0

H B L M weightK40-1

TYPE

[mm] [kg] [kN]

ADK300 300 280 240 24 17,0 300 150 260 300 10

ADK500 440 280 240 24 26,6 500 250 433 500 10

ADK700 510 280 340 24 37,0 700 350 606 700 20ADK900 550 320 440 30 57,8 900 450 779 900 20

ADK1100 600 320 440 30 67,5 1100 550 952 1100 30

MoC 210M

Bracing ConnectionsADL truss connection

ADK diagonal rod connection

Page 233: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 233/274

www.cfsfixings.com  14-20

P R E  C A  S T 

 C  OL  UMNA NDWA L L  S H OE  S  ,A N

D OT HE R  C  ONNE  C T I   ON S Y  S T E M

 S 

Bracing ConnectionsCut and edged steel profiles

b t kg/m

PL 50 x 5 50 5 1,96

PL 80 x 5 80 5 3,14

PL 100 x 5 100 5 3,93

PL 100 x 8 100 8 6,28

PL 100 x 10 100 10 7,85

b h t r kg/m

5 50 50 5 8 3,55

5 70 70 5 8 5,12

5 80 80 5 8 5,91

x 5 100 50 5 8 5,51

x 5 150 50 5 8 7,48

weight

weight

weight

b h t r kg/m50x70x50x 50 70 5 8 5,93

50x100x50 50 100 5 8 7,1

60x120x60 60 120 5 8 10,6

60x140x60 60 140 5 8 11,2

60x160x60 60 160 5 8 12,2

U-profiledimensions

FLAT BARdimensions

ANGLEBAR

dimensions

      h   t

b

  r

      h     t

b

  r

     t

b

 

stainless   1.4301

acid-proof   1.4401

 

Page 234: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 234/274

www.cfsfixings.com5-1

Thermokorb BalconyConnector System

Page 235: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 235/274

www.cfsfixings.com  15-2

T HE R M OK  OR B B A L  C  ONY  C  ONNE  C T  OR  S Y  S T E M

10

Contents

Thermal AVI Thermokorb® Insulated Balcony Connection System 15-3

Type TKM 15-6

Type TKA 15-7

Type TKF 15-8

Thermokorb® – Special Solutions 15-9

Designation System For AVI Insulated Balcony Connectors 15-10

Design of Compression Strut 15-10

Standard Type 15-11

Rib Type 15-12

Design Of AVI Insulated Balcony Connectors 15-13

Page 236: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 236/274

www.cfsfixings.com5-3

Thermal AVI Thermokorb® Insulated Balcony Connection System

Ten key benefits - Why to use AVI BalconyConnectors?

1. Reduces heat loss and helps to reduce heating costsand CO2 emissions.

2. Avoids condensation, damp walls, mould formationand structural damage.

3. Reduces sound transmission to the inside of thebuilding.

4. If using the fire protected connector, all four sides areprotected, thus complete fire protection provided.

5. Good aesthetic appearance to blend with attachedslab.

6. UK assembly option available for quick delivery.

7. High quality due to Group owned steel mill.

8. Simple marking system for easy use on site or inprecast factory.

9. Robust units are good for site handling.10. Installation of units is easy.

Page 237: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 237/274

www.cfsfixings.com  15-4

T HE R M OK  OR B B A L  C  ONY  C  ONNE  C T  OR  S Y  S T E M

Thermal AVI Thermokorb® Insulated Balcony Connection SystemPrevention of thermal bridges is better than cure

NIRO Thermokorbs are heat insulating, load-bearingconnection elements between structural componentsmade of reinforced concrete. They are used to improveheat insulation of reinforced concrete balconies fromtheir connection into the inside of buildings. Furtheruseful areas of application are: parapet walls and corbels.

Cross sectional height of a single rib element

Slab thickness (cm)   ≥ 16.0   ≥ 18.0   ≥ 20.0   ≥ 22.0

Rib height RH (cm) 11.0 13.0 15.0 17.0

Introduction

The AVI insulated balcony connector consists of astructural framework of independent ribs and an 80 mmthick expanded polystyrene panel (EPS-W 30 accordingto standard OENORM B 13163).

The individual ribs penetrate the EPS panel and, in orderto avoid corrosion, they consist of U-shaped stainlesssteel profiles with stirrups made of ribbed reinforcingsteel welded to their ends which transfer the forcesfrom the individual ribs to the subsequent reinforcedconcrete elements.

The system is designed to resist both positive andnegative bending moments and shear forces. They

consist of a uniform U-shaped stainless steel profile(material no. 1.4571 C 850 according to EN 10088-2).

The distance is ensured by 2 ribbed reinforcing steelstirrups of 10 mm diameter each (B 550A according toOENORM B4707) welded to the flanges of upper andlower strut.

The individual ribs are produced by means of weldingrobots with heights of 110 mm, 130 mm, 150 mmand 170 mm. Special elements with rib heights of 190mm are possible. These sizes can cover slab thicknessesranging from 160 mm to 250 mm.

Description

On account of their multi-axial strength, the AVIinsulated balcony connectors are suitable for numerousapplications.

For the use in slab-type structures with predominatelymoment and/or shear force loading (Mx, Vy), standard

elements of types TKM and TKA with a uniform lengthof 1.00 m and varying number of ribs (2 to 9 ribs) areprovided.

For narrow spaces it is also possible to produce elementswith 1 to 9 ribs and a uniform spacing of 100 mm, hencethe length of element depends on the number of ribs. Byconnecting two 5-ribs elements with a length of 500 mmeach, it is also possible to use 10 ribs per metre.

The forces are transferred from the stainless steel profilesto the reinforced concrete through welded ribbedreinforcing steel stirrups of steel grade B550A.

The 10 mm bar diameter that is always used correspondsto the load bearing capacity of the stainless steel profilesand at the same time, it determines the connectionreinforcement to be provided on construction site.

Low deformation and good vibration behaviour is

achieved by AVI insulated balcony connectors becausethe individual ribs have a high moment of inertia. Theadditional precambers for cantilever slabs can thereforebe very small.

The load bearing capacity of the ribs depends on therib height RH. The rib height and slab thickness can bematched according to demand and application. Thedifference of slab thickness and rib height should notbe less than 5 cm in order to ensure sufficient concretecover. For special fire protection requirements R90 (90minutes), fire protection panels are glued on the thermalinsulating elements. An R120 is possible on demand.

In cantilever and terrace balconies slabs, an expansion joint must be provided at least every 7m.

Page 238: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 238/274

www.cfsfixings.com5-5

Slab thickness Rib height RH Camber

cm cm %

≥ 16.0 11.0 0.59 %

≥ 18.0 13.0 0.50 %

≥ 20.0 15.0 0.43 %

≥ 22.0 17.0 0.38 %

Summary of types and applications

TKM AVI insulated balcony connectors for balconies,continuous slabs etc.; special types for different levels, i.e.upstands and dowstands, and wall connections; when

placed vertically: for walls and deep beams

TKA AVI insulated balcony connectors for recessed balconies,parapet walls and special solutions (e.g. floor slabs withdifferent levels)

TKF Split AVI insulated balcony connectors for prefabricatedconcrete elements (constructed with latice reinforcement)

AT/2

AVI insulated balcony connectors for parapet walls

Thermography of a balcony slab

Without thermal insulation high heat loss at the inside-

to-outside transition area. Significant heat loss from theliving area.

Good heat distribution pattern and considerablereduction of heat loss with AVI insulated balconyconnectors. Greatly reduced risk of mould formation.

  Thermal AVI Thermokorb® Insulated Balcony Connection SystemRecommended additional camber (% of the cantilever length)

Page 239: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 239/274

Page 240: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 240/274

Page 241: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 241/274

Page 242: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 242/274

Page 243: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 243/274

www.cfsfixings.com  15-10

T HE R M OK  OR B B A L  C  ONY  C  ONNE  C T  OR  S Y  S T E M

Designation System For AVIInsulated Balcony Connectors

Design of Compression StrutThe bottom leg of the stirrup is available in two variants:

G … straight (also for applied forces with +/- values)

E … bent up (e.g. for lattice reinforcement slabs)

Type/ Rn(G or E) RH/D (Remark)

Special stirrup shapes different from types TKM and TKA are possible.Parapet wall elements AT/2 are available with straight compression struts only.

Examples: TKM/ R6E 15/20 R90 TKM/ 7G 15/22 R90 insulation centeredTKA/ 4G 11/18 TKA/ 5G 13/18 V1TKF/ 9E 13/18AT/2 11/16

Type Design of ribs Numberof ribs

Design ofcompression strut

Rib height Slab thickness Remark

“empty” = elementlength 1 mR = element lengthdepending onnumber of ribs

n G = straightorE = bent up

RH (cm) D (cm) “empty” = no fireprotectionR90 = with fireprotection R120 =with fire protection

TKM –/R max. 9 G/E 11 / 13 / 15 / 17   ≥ 16 / 18 / 20 / 22 –/R90

TKA –/R max. 9 G/E 11 (standard) and/orV1 or V2 11/13/15/17

≥ 16 / 18 / 20 / 22 –/R90Special typeV1 or V2

TKF

split element

–/R max. 9 E 13 / 15 / 17   ≥ 18 / 20 / 22 –/R90

AT/2 parapet wallelement

–/R – G 11   ≥ 16 –/R90

TKM/G

TKM/E

TKA/G

TKA/E

 

l

l

l l

i i

 i

i i

i i

 

600 mm 600 mm

600 mm 600 mm

120mm 600 mm 170mm 600 mm 220 mm 600 mm

120mm 600 mm 170mm 600 mm 220 mm 600 mm

STANDARD V1 V2

STANDARD V1 V2

Page 244: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 244/274

www.cfsfixings.com5-11

Standard TypeDescription

Number of ribs per 1 m of element length (element length without fire protection)

 

200 600 200

200 300 200300

100 300 200 100300

100 200 100 100100 200200

100 100 200 100200 100100 100

100 100 100 100100 100100 200 100

100 100 100

Height of element

100 100 100100 100 100 100

1000 mm

100 200 200 100200 200

TKM/2

TKA/2

TKM/3

TKA/3

TKM/4

TKA/4

TKM/5

TKA/5

TKM/6

TKA/6

TKM/7

TKA/7

TKM/8

TKA/8

TKM/9

TKA/9

Page 245: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 245/274

www.cfsfixings.com  15-12

T HE R M OK  OR B B A L  C  ONY  C  ONNE  C T  OR  S Y  S T E M

50 100 100 100 50100 100 100 100

Height of element

800 mm

50 100 100 100 50100 100 100

700 mm

50 100 100 50100 100 100

600 mm

50 100 100 50100 100

500 mm 500 mm

50 100 100 50100

400 mm

50 100 100 50

300 mm

50 200 50

300 mm

50 50

100 mm

50 100 50

200 mm

Length of element

 

2 TKM/R5 or 2 TKA/R5

provide 10 ribs per metre

 TKM/R1

 TKA/R1

 TKM/R2

 TKA/R2

 TKM/R3

 TKA/R3

AT/2

 TKM/R4

 TKA/R4

 TKM/R5

 TKA/R5

 TKM/R6

 TKA/R6

 TKM/R7

 TKA/R7

 TKM/R8

 TKA/R8

Rib TypeDescription

Element length depending on number of ribs (minimum length without fire protection)

Page 246: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 246/274

www.cfsfixings.com5-13

Design Of AVI InsulatedBalcony ConnectorsThe design program “TK-BEM” calculates and specifies the type of AVIinsulated balcony connectors for the loads. The program is available as anExcel spreadsheet (version 2003 or higher)

This program calculates the different types of the AVI insulated balconyconnectors in all common applications and can take into account momentsand forces along all three axes.

Download under www.avi.at

 

The AVI insulated balcony connectors are designed on 3different calculation sheets. These sheets are launchedand controlled via a menu file.

It is not possible to start the spreadsheets individually. In

the menu, the user name can be entered. Furthermorethe user has options for how to start a new file and howto close the program.

In the start menu, the following spreadsheets can beselected:

• Balcony connections with types AVI-TKM, AVI-TKF andAVI-TKA V1 and AVI-TKA V2

• Parapet wall connections with type AVI-AT/2 or with atransverse single rib (TKA R1)

• Corbel connections with types AVI-TKM and AVI-TKA.

Page 247: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 247/274

www.cfsfixings.com  15-14

T HE R M OK  OR B B A L  C  ONY  C  ONNE  C T  OR  S Y  S T E M

Page 248: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 248/274

www.cfsfixings.com6-1

Well Void Tube

Page 249: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 249/274

www.cfsfixings.com  16-2

WE L L V  OI  DT  UB E 

10

Contents

Well Void Tube Round Profile 16-3

Well Void Tube Ovalised Profile 16-4

Seal Caps for Well Void Tube 16-5

Page 250: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 250/274

www.cfsfixings.com6-3

Internal External Profiling Weight

1   d2   rance hp ± 10 %

30 30 35 ± 0.8 2.5 0.2040 40 46 ± 0.8 3.0 0.20

50 50 56 ± 0.8 3.0 0.34

60 60 67 ± 0.8 3.5 0.46

65 65 72 ± 0.8 3.5 0.56

70 70 77 ± 0.8 3.5 0.57

85 85 92

80 80 87 ± 0.8 3.5 0.77

90 90 97 ± 0.8 3.5 0.95

100 100 108 ± 1.0 3.8 0.85

125 125 133 ± 1.0 3.8 1.11

150 150 158 ± 1.0 3.8 1.28

180 180 188 ± 1.0 3.6 1.55

200 200 208 ± 1.0 3.8 1.70

250 250 260 ± 2.0 4.8 2.24

290 290 300 ± 2.0 4.8 2.50

300 300 310 ± 2.0 4.8 2.68

310 310 320 ± 2.0 4.8 2.80

350 350 360 ± 2.0 4.8 3.11

400 400 410 ± 2.0 4.8 3.55

Internal External Profiling Weight

1   d2   rance hp ± 10 %

450 434 450 ± 2.5 8.0 5.59500 484 500 ± 2.5 8.0 6.22

550 534 550 ± 2.5 8.0 6.96

600 584 600 ± 2.5 8.0 7.49

650 634 650 ± 2.5 8.0 8.12

700 685 700 ± 2.5 8.0 10.99

750 735 756 ± 2.5 8.0 11.78

800 785 800 ± 2.5 8.0 12.58

850 835 850 ± 2.5 8.0 13.37

900 885 900 ± 2.5 8.0 14.17

950 935 950 ± 2.5 8.0 14.96

1000 985 1000 ± 2.5 8.0 20.16

1050 1035 1050 ± 3.5 8.0 22.30

1100 1086 1108 ± 3.5 8.0 24.36

1150 1130 1158 ± 3.5 8.0 25.48

1250 1230 1250 ± 3.5 8.0 27.70

1350 1330 1350 ± 4.0 8.0 30.20

1500 1480 1500 ± 4.0 8.0 33.28

± 0.8 3.5 0.80

CFS-WVR-CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

CFS-WVR-

Well Void Tube Round Profile• Mild steel or galvanised finish

• Available in lengths up to 5 metres

• Length tolerance ± 5 mm up to 250 mm internal diameter

Pull-Out Resistance

The resistance to pull out of these well-void tubes shouldbe considered over the length the tube within to thepunching cone of the anchor that is cast into the tube.

Part No Pull-Out Resistance

kN per 100mm length of tube

CFS-WVR-50 21

CFS-WVR-60 25

CFS-WVR-70 29

CFS-WVR-80 33

CFS-WVR-100 35

CFS-WVR-125 44

CFS-WVR-150 52CFS-WVR-200 70

Page 251: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 251/274

www.cfsfixings.com  16-4

WE L L V  OI  DT  UB E 

rPRhtpeD× ofiling Depth Weight

Outer a/b Tolerance ~ hp kg/m ± 10 %

132-32 132 × 32141-41 141 × 41

150-50 149 × 49

160-60 160 × 60

157-28 157 × 28

170-70 170 × 70

170-50 170 × 50

170-35 170 × 35

180-80 180 × 80

177-42 177 × 42

190-60 190 × 60

208 × 208

CFS-WVV-CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

CFS-WVV-

Well Void Tube Ovalised Profile• Mild steel or galvanised finish

• Available in lengths up to 5 metres

• Length tolerance ± 5 mm up to 250 mm internal diameter

Page 252: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 252/274

www.cfsfixings.com6-5

Seal Caps for Well Void Tube

Steel / plastic without rim Plastic with rim

Steel PlasticPlastic

miRhtiWmiRtuohtiW

Internal External Internal External Internal ExternalDepth Diameter Diameter Depth Diameter Diameter Depth

1   d2   t d1   d2   t d1   d2   t

121 – – – 21.0 24.5 11.0 – – –

130 – – – 30.0 33.0 10.0 – – –

140 – – – 40.0 45.0 10.5 38 88 15.0

150 – – – 51.0 56.0 11.0 48 102 15.0

155 55 64 8 56.0 63.0 12.0 – – –

160 60 69 8 61.0 67.5 11.0 – – –

165 64 74 8 66.0 71.0 12.0 62 122 20.0

170 71 77 5 71.0 77.0 11.0 – – –175 – – – 76.0 80.0 10.5 – – –

180 79 90 8 81.0 85.0 9.5 77 138 20.0

185 84 90 9 86.0 90.0 9.5 – – –

190 88 99 9 90.0 95.5 9.5 – – –

100 99 105 11 98.5 102.5 10.0 96 162 20.0

120 119 130 11 – – – – – –

125 124 129 10 123.0 127.0 15.0 122 188 20.0

150 149 155 17 147.0 153.0 15.0 147 213 20.0

200 200 210 15 199.0 204.0 20.0 193 268 25.0

250 250 265 10 249.0 254.0 20.0 247 340 25.0

290 290 310 17 – – – – – –

300 300 320 17 298.0 314.0 23.0 303 408 22.0

310 – – – – – – – –

350 349 363 18 – – – 355 455 21.0

400 384 400 19 – – – 406 510 32.0

450 434 450 19 – – – – – –

500 483 500 20 – – – – – –

550 535 550 20 – – – – – –

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

CFS-WVC-

Page 253: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 253/274

www.cfsfixings.com  16-6

WE L L V  OI  DT  UB E 

Page 254: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 254/274

www.cfsfixings.com7-1

 Recostal PermanentFormwork forConstruction Joints

Page 255: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 255/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-2

10

Contents

Structural Design 17-3

Standard Type RSH Horizontal 17-5

Standard Type RSH Vertical 17-9

Standard Type V 17-11

Jobsite Application 17-13

Page 256: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 256/274

www.cfsfixings.com7-3

4

Structural Design DIN EN 1992-1-1/NA § 2.8.2: Planning Principles

recostal® Starter Packstype RSH and type RSV 

Joint category

“key profiled” according

to DIN EN 1992-1-1/NA 

Type RSV 

Type RSH

The type of joint must be specified in the starter pack drawings

DIN EN 1992-1-1/NA § 6.2.5: Transfer of Shear Forces in Joints

EC 2 divides the type of joint surface into 4 categories. Trapezoidally profiled construction

 joints represent the highest category with regard to the transfer of shear forces.

Type of surface according

to EC 2 § 6.2.5 (2)

Roughness

coefficient

c 1)

Friction

coefficient

μ

Strength

reduction

coefficient3)

key profiled joint 0.5 0.9 0.7

rough joint 0.4 2) 0.7 0.5

smooth joint 0.2 2) 0.6 0.2

very smooth joint 0 0.5 0 4)

Geometry of key profiled joints according to EC 2: recostal® Starter Packs meet the

EC 2 requirements for the highest category “key profiled“.

Starter Pack Requirements according to DBV Bulletin

Starter packs without key profiled surfaces are to be classified as “rough“, “smooth“ or

“very smooth“ by means of analysis. Starter packs that are not categorized should

always be classified as joint category ”very smooth”.

Concrete Cover for Starter Packs according to DBV Bulletin

For sheet steel starter packs that remain inside the construction, the concrete covershould be determined referring to the most unfavorable section according to DIN EN

1992-1-1, Paragraph 4.4 with Table 4.4DE. The allowance for deviations ∆cdev for the

sheet steel of the box may be reduced by 5mm.

 Reduced Bar Tension

 According to DIN EN 1992-1-1, 8.3 (NA.5), the reinforcement surrounding sections of

rebending, while exposed to predominantly static loading close to the limit of the bearing

capacity, has to be determined with no more than 80 % of the otherwise permissible

values of the calculated stress-strain curve of the reinforcing steel according to DIN EN

1992-1-1, Fig. 3.8. The design value of the anchorage length lb,rqd for this type of starter

pack may, according to DIN EN 1992-1-1, 8.4.3 GL (8.3), also be determined with the

reduced rated value of the bar tension fyd,red = 0.8 fyk / γs.

1) In case of dynamic or fatigue loading, concrete bond (adhesion) should not be taken intoconsideration (c = 0).

2) Where tension occurs perpendicular to the joint due to strain, c = 0.3) For concrete classes ≥ C55/67 the stated values are to be multiplied by factor (1.1 - fck / 500) with fck 

in [N/mm²] .4) The friction proportion in Expression 6.25 may be allowed up to the limit of µ · σN ≤ 0.1 fcd for very

smooth joints.

Page 257: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 257/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-4

5

Shear Force Longitudinal to the Construction Joint

[R1] Exp. 6.25: Design value of the shear capacity

Total bearing capacity = bearing contact area [concrete] + [friction] +

[reinforcement] ≤ max. bearing capacity

VRdi = c · fctd + μ · σN + VRdi,s ≤ VRdi,max [N/mm2]

Where

fctd =αct · fctk;0,05 / γc (with αct = 0.85 and γc = 1.5 according to 3.1.6 (2)P);

σN < 0.6 fcd (positive for stress and negative for tension);

VRdi,s = ρ · fyd,red (1.2µ · sinα + cosα ) whereρ = A s / A i and

fyd,red = 400 [N/mm2] / γs (0.8 fyk at bending);

VRdi,max = 0.5 · v · fcd (no reduction to 0.3 VRd i,max )

Table 1. Classification of joint surfaces according to [R1], 6.2.5

Shear Force Transverse to the Construction Joint 

[R1] Exp. (6.2): Shear resistance without shear reinforcement,

including reduction by applying roughness coefficient c

VRd,c = (c /0.5) · [0.15 / γc · k · (100ρ1 · fck )1/3 + 0.12σcp] · bw · d

where k = 1 +√(200/d [mm]) ≤ 2.0 and c according to Table 1

[R1] Exp. (6.8): Shear resistance with shear reinforcement

VRd,s = (A sw / s) · fywd · z · cot θ

where z = 0.9 d and/or z ≤ d - cv,i - 30 mm and fywd = fyk / γs

Maximum acceptable shear with shear reinforcement

(very smooth joint not permissible): [R1] Exp. (6.9) for 90° bar

reinforcement, reduced to 30% in sections of rebending

VEd ≤ 0.30 · VRd,max = 0.30 · bw · z · v1 · fcd / (cot θ + tan θ )with v1 = 0.75 · (1.1 - fck /500) ≤ 0.75

[R1] Exp. (6.7aDE): Reduction of the strut inclination, calculated with

reduction to θ ≤ 45° in the area le = 0.5 le · cot θ · d on either side of the joint

1.0 ≤ cot θ ≤ [(1.2 + 1.4σcd / fcd )] / [(1 - VRd,cc / Ved )] < 3.0

where [R1] ] Exp. (6.7bDE): VRd,cc = 0.48 · c · fck1/3 · (1 - 1.2σcd / fcd ) · bw · z

with c according to Table;σcd = NEd / Ac > 0 as compressive strength!

Please note: The longitudinal reinforcement to be considered in Exp. (6.2)

is, according to the structural design, the one that is exposed to tensile

loads (e.g. c, d or e). Fig. d and e show the effective depth d to be reduced

by a1 due to the difficult concrete pour conditions of a1 < 50 mm in the stress

area.

1) In case of dynamic or fatigue loading, the concrete bond (adhesion) should not be taken

into consideration (c = 0).2) Where tension occurs perpendicular to the joint due to impact, c = 0.3) For concrete classes ≥ C55/67, the stated values are to be multiplied by the factor

(1.1 - fck / 500) with fck in [N/mm²].4) The friction proportion in Expression 6.25 may be allowed for up to the limit of

µ ·σN ≤ 0.1 fcd.

a2 ≥ 50 mm where

surface roughness

according to DIN EN

1992-1-1, 6.2.5 (see

Table 1)

Edge of concrete pour area,

[R1] DIN EN 1992-1-1 with DIN EN 1992-1-1/NA 

Wall to floor slab Floor slab to floor slab

VEd

a1 < 50 mm a1 < 50 mm

a2 ≥ 50 mm where surface

finish is according to DIN

EN 1992-1-1, 6.2.5

Like a2 a1 ≥ 50 mm may be taken into account for bi;

however, in this case, only the slighter roughness of

the starter pack box or the construction joint surface

should be considered for bi. Alternatively, the

individual width of the construction joint surface area

or the starter pack box with their respective surface

roughness for bi may be allowed for.

a2

bi

bi

VEdiVEdi

a1a1

a1 a1

t ≥ 20 mm

t ≥ 20 mm

Type of surface

according to EC 2

§ 6.2.5 (2)

Roughness

coefficientc 1)

Friction

coefficientμ

Strength

reduction

coefficient

v 3)

key profiled joint 0.5 0.9 0.7

rough joint 0.4 2) 0.7 0.5

smooth joint 0.2 2) 0.6 0.2

very smooth joint 0 0.5 0 4)

Page 258: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 258/274

www.cfsfixings.com7-5

6

Standard Type RSH RSH Starter Packs

recostal® Starter Packs type RSH meet the requirements of DIN EN 1992-1-1 for the

highest surface category “key profiled“ in the case of transverse loads.

 Advantages

■ Strong, robust galvanised sheet metal starter packs, dimensionally stable

■ Cost and time effective installation, starter packs are simply nailed to the formwork

■ Easy removal of the sheet metal covers due to their special design

■ Trapezoidally profiled box for excellent bond

■  Various possible combinations provide a solution for all common installation details

The Decisive Factor for the Designer

recostal® Starter Packs type RSH meet the requirements of the DBV Bulletin

“Rückbiegen von Betonstahl und Anforderungen an Verwahrkästen nach Eurocode 2”

[“Rebending of reinforcement steel and requirements for continuity strips according to Eurocode 2”] (issue January 2011) for the highest joint category “key profiled” in the case of

transverse stresses.

No national approval required!

Technical Data – RSH Starter Packs

■ Trapezoidally profiled starter packs, joint category “key profiled“ according to DIN EN

  1992-1-1, highest shear force bearing capacity

■ Concrete reinforcement steel BSt 500 S or BSt 500 WR according to DIN 488,

Ø = 8 mm – 14 mm (16 mm)

■ Diameter of bending rolls dbr ≥ 6 Ds in the section of rebending

■ 8 standard profiles, bar widths 10 cm – 22 cm, smaller or larger bar widths on request

■ Standard unit length L= 1.25 m, fixed lengths up to 2.50 m on request

 Application

recostal® Starter Packs ensure time-saving installation of secure connections between

steel reinforced concrete construction parts that are created with different pour

sequences. Therefore, floor slabs, walls or staircases can be installed subsequently

with rigid connections corresponding to the highest joint category “key profiled“.

The large variety of shapes offers the perfect connection for many different design

situations; special types for specific solutions are also available. The standard range

includes starter packs with 8, 10 and 12 mm diameter and L=1.25 m unit lengths. Unit

lengths exceeding 1.25 m, the production of special types and the combination with

waterproofing systems as well as solutions for entire projects are possible on request.

Increased Corrosion Protection

Type RSH is installed with a planned

25 mm recess

RSH active - Starter Pack

with active Waterproofing

RSH Starter Packs can be manufactured with an active

bentonite coating on both sides for the application in

construction joints exposed to water.

recostal® Starter Packstype RSH

with trapezoidal profile

for transverse stresses.

Page 259: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 259/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-6

7

s

1.25 m

*) Values for Ø 12 mm

  35 or 40*)

25 or 30*)

Standard TypeØ (mm)/ 

s (cm)

Lap length

l0 (cm)

Bar height

h (cm)

Bar width

b (cm)

Effective depth

d (cm)

RSH 10

 - 8/15   32 17 10 13

 - 8/20   32 17 10 13

-10/15   39 17 10 13

-10/20   39 17 10 13

-12/15   46 17 10 13

-12/20   46 17 10 13

RSH 11

 - 8/15  32 17 11 14

 - 8/20   32 17 11 14

-10/15   39 17 11 14

-10/20   39 17 11 14

-12/15   46 17 11 14

-12/20   46 17 11 14

RSH 12

 - 8/15   32 17 12 15

 - 8/20   32 17 12 15

-10/15   39 17 12 15

-10/20   39 17 12 15

-12/15   46 17 12 15

-12/20   46 17 12 15

RSH 14

 - 8/15   32 17 14 17

 - 8/20   32 17 14 17

-10/15   39 17 14 17

-10/20   39 17 14 17-12/15   46 17 14 17

-12/20   46 17 14 17

RSH 16

 - 8/15   32 17 16 19

 - 8/20   32 17 16 19

-10/15   39 17 16 19

-10/20   39 17 16 19

-12/15   46 17 16 19

-12/20   46 17 16 19

RSH 18

 - 8/15   32 17 18 21

 - 8/20   32 17 18 21

-10/15   39 17 18 21

-10/20   39 17 18 21

-12/15   46 17 18 21

-12/20   46 17 18 21

RSH 20

 - 8/15   32 17 20 23

 - 8/20   32 17 20 23

-10/15   39 17 20 23

-10/20   39 17 20 23

-12/15   46 17 20 23

-12/20   46 17 20 23

RSH 22

 - 8/15   32 17 22 25

 - 8/20   32 17 22 25

-10/15   39 17 22 25

-10/20   39 17 22 25

-12/15   46 17 22 25

-12/20   46 17 22 25

Reinforcement steel: BSt 500 S or BSt 500 WR

Other shapes on request

Page 260: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 260/274

www.cfsfixings.com7-7

8

Standard Type RSH Shear Force Transverse to the Construction Joint

■ Highest joint category “key profiled”

Determination according to:

■ DIN EN 1992-1-1/NA 

■ DBV-Bulletin “Rückbiegen…nach Eurocode 2”

[“Rebending… according to Eurocode 2“], January 2011

Determination Example - Acceptable Shear Force

 Acceptable shear force without shear reinforcement, including reduction by applying

roughness coefficient c:

VRd,c = (c /0.5) · [CRd ,c · k · (100ρ1 · fck )1/3 + k1 · σcp] · bw · d (6.2.a)

VRd,ct = (0.5/0.5) · [0.10 · 2.0 · (100 · 4.435 · 10-3 · 20)1/3 + 0] · 1.0 · 0.17 · 103 

= 70.4 kN/m

 Values Definition

h = 20 cm Height of the construction partd = 17 cm Effective depth

bw = 1.0 m 1m width of section

C20/25  Tab. 3.1 f ck  = 20 N/mm²

c = 0.5 6.2.5 (2) key profiled metal base

CRd ,c = 0.15/  γc = 0.10 (NA, 6.2.2(1)), Y c = 1.5

k = 1 +√(200/170) = 2.08 k = 1 +√(200/d [mm]) ≤ 2.0

ρ1 = 7.54/(100 x 17)

= 4.435 · 10-3

(A sl/bw · d) ≤ 0.02

determined with Ø 12/15 cm = 7.54 cm²/m, single

K1 = 0.12 NA, 6.2.2 (1)

σcp = 0No compressive stress in the concrete from axial

loading or prestressing

recostal® Starter Packstype RSH

with trapezoidal profilefor transverse stresses.

Please note:

If anchorage and lap lengths are reduced,

the bearing values have to be reduced

accordingly.

Page 261: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 261/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-8

9

d h d h

Shear Force Bearing Capacity (kN/m)

Shear force bearing capacity (kN/m) of slab to steel reinforced concrete wall connections without shear reinforcement depending

on the joint category and the stee l cross section, if starter packs are used.

Effective

depth

d (cm)

Type

Bar

diameter/

centers

Joint category key profiled

 V Rd,c,kp

Joint category smooth

 V Rd,c,smooth

C 20/25 C 25/30 C 30/37 C 20/25 C 25/30 C 30/37

11 RSH 10

Ø 8/15   4 0.18 43.28 45.99 16.07 17.31 18.40

Ø 10/15   46.64 50.24 53.39 18.66 20.10 21.36

Ø 12/15   52.65 56.72 60.27 21.06 22.69 24.11

12 RSH 11

Ø 8/15   4 2.58 45.86 48.74 17.03 18.35 19.50

Ø 10/15   49.42 53.24 56.57 19.77 21.29 22.63

Ø 12/15   55.79 60.11 63.87 22.32 24.04 25.55

13 RSH 12

Ø 8/15   4 4.91 48.38 51.41 17.96 19.35 20.56

Ø 10/15   52.13 56.16 59.68 20.85 22.46 23.87

Ø 12/15   58.86 63.40 67.37 23.54 25.36 26.95

15 RSH 14

Ø 8/15   4 9.41 53.22 56.56 19.76 21.29 22.62

Ø 10/15   57.35 61.78 65.65 22.94 24.71 26.26

Ø 12/15   64.75 69.75 74.12 25.90 27.90 29.65

17 RSH 16

Ø 8/15   5 3.71 57.85 70.40 21.48 23.14 28.16

Ø 10/15   62.34 67.16 71.36 24.94 26.86 28.55

Ø 12/15   70.38 75.82 80.57 28.15 30.33 32.23

19 RSH 18

Ø 8/15   5 7.84 62.31 66.21 23.14 24.92 26.48

Ø 10/15   67.14 72.33 76.86 26.86 28.93 30.74

Ø 12/15   75.80 81.65 86.77 30.32 32.66 34.71

21 RSH 20

Ø 8/15   61.09 65.8 69.93 24.43 26.32 27.97

Ø 10/15   70.91 76.38 81.17 28.36 30.55 32.47

Ø 12/15   80.05 86.23 91.64 32.02 34.49 36.66

23 RSH 22

Ø 8/15   6 3.48 68.38 72.67 25.39 27.35 29.07

Ø 10/15   73.69 79.38 84.35 29.47 31.75 33.74

Ø 12/15   83.19 89.61 95.23 33.28 35.85 38.09

Please note:

If anchorage and lap lengths are reduced, the bearing values have to be reduced accordingly.

The values given in the table are subject to the

application of the entire anchorage and lap

lengths required according to EC 2.

■ Tabular values VRd,c in kN/m

■  All values have been determined for σcp = 0

Page 262: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 262/274

www.cfsfixings.com7-9

10

Standard Type RSV  Shear Force Longitudinal to the Construction Joint

■ Highest joint category “key profiled”

Determination Example - Shear Capacity

Total bearing capacity =

bearing contact area [concrete] + [friction] + [reinforcement] ≤ max. bearing capacity

Example: concrete C 20/25

 Values Definition

b = 17 cm Shear force area

σN = 0

Nominal compressive stress vertical to the joint NEd =

design value of the applied axial force or prestressing

which can act together with the shear force.

c = 0.5 c according to DIN EN 1992-1-1, 6.2.5(2) (key profiled)

μ = 0.9 μ according to DIN EN 1992-1-1, 6.2.5(2) (key profiled)

fctd = αct · fctk;0.05 / γc 

= 0.85 · 1.5/1.5

= 0.85

Design value of the axial tensile strength of concrete with

f ctk;0.05 = 1.5 N/mm² according to DIN EN 1992-1-1,

 Table 3.1 and γc = 1.5 for concrete according to

DIN EN 1992-1-1, Table 2.1

αct = 0.85 according to DIN EN 1992-1-1 / NA 3.1.6 (2)P

 Asl = Ø10/15 double

= 5.24 x 2

= 10.48 cm²/m

 

Cross section of the reinforcement transverse to the

 joint, double

fyd,red = 0.8 · 500/1.15

= 348 N/mm²

Design value of the reinforcement steel yield strength

with f yk  = 500 N/mm² according to DIN EN 1992-1-1 /

NA 3.2.2(3P)  γc = 1.15; reduced steel tension 80 % f yd 

according to DIN EN 1992-1-1 / NA 8.3 (5)P

α

 = 90°  Angle of the reinforcement transverse to the jointv = 0.7 v according to DIN EN 1992-1-1 / NA 6.2.2(6)

fcd =αcc · fck / γc 

= 0.85 · 20/1.5

  = 11.33 N/mm²

Design value of the characteristic cylinder strength with

f ck  = 20 N/mm² according to DIN EN 1992-1-1, Tab.3.1 and

αcc = 0.85 according to DIN EN 1992-1-1, NA 3.1.6(1)P

and γc = 1.5 according to DIN EN 1992-1-1 Tab.2.1N

recostal® Starter Packstype RSV 

with trapezoidal profile for

longitudinal stresses.

Bearing Contact Area - Concrete

 VRdi,c = (c · fctd ) = (0.5 · 0.85)

= 0.425 N/mm²

Bearing Contact Area - Friction

 VRd,µ = (µ ·σN ) = (0.9 x 0)

  = 0

Bearing Contact Area - Reinforcement

 VRd,sy =ρ · fyd · (1.2μ · sin α + cos α ) = 10.48/(17 · 100) · 348 · (1.2 · 0.9 · sin 90° + cos 90°)

= 2.32 N/mm²

Factor 1.2 according to DIN EN 1992-1-1, NA 6.2.5

Total Bearing Capacity

 VRdi = VRdi,c + VRd,sy < VRdi,max 

> VEd

The values stated apply to full length

anchorage and lap lengths; if the lengths

are reduced, the bearing values have to be

reduced accordingly.

 VRdi,max = 0.5 · v · fcd 

= 0.5 · 0.7 · 11.33 = 3.97 N/mm²

  = 3.97 · 10³ · 0.17 = 674.9 kN/m

 VRdi  = (0.425 + 2.32) · 10³ · 0.17

= 466.65 kN/m = applicable

  < VRdi,max = 674.9 kN/m

Page 263: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 263/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-10

11

s

Reinforcement steel: BSt 500 S or BSt 500 WR

1.25 m

Standard TypeØ (mm)/

s (cm)

Lap length

l0 (cm)

Bar height

h (cm)

Bar width

b (cm)

Effective depth

d (cm)

RSV 8 - 8/15   32 17 8 11

-10/15   39 17 8 11

RSV 11

 - 8/15   32 17 11 14

-10/15   39 17 11 14

-12/15   46 17 11 14

RSV 14

 - 8/15   32 17 14 17

-10/15   39 17 14 17

-12/15   46 17 14 17

RSV 18

 - 8/15   32 17 18 21

-10/15   39 17 18 21

-12/15   46 17 18 21

Table of the Bearing Capacity Applicable for the Shear Force Stress Longitudinal to the Starter Pack

The values given in the table are subject to

the anchorage and lap lengths required

according to DIN EN 1992-1-1.

■ Tabular values in kN/m

■  All values have been determined forσNd = 0

Determination according to:

■ DIN EN 1992-1-1 § 6.2.5 (6.25)

■ DBV Bulletin “Rückbiegen von ...“ [Rebending…] (Issue 2011)

■ Type of surface “key profiled”

Taken as:

■ σN = 0; 45° ≤α ≤ 90°

 Applicable:

■ max. Ved < VRd,i < VRd,i max

■ e. G. RSV 8 - 8/15 cm, max. Ved = 298.56 kN/m = applicable

Shear force

area b (mm)Type

Ø (mm)/

s (cm)

C 20/25 C 25/30 C 30/37

 V Rd,i galv  V Rd,i galv max  V Rd,i galv  V Rd,i galv max  V Rd,i galv  V Rd,i galv max 

110 RSV 8 - 8/15   298.56 436.21 307.91 545.55 314.13 654.5

-10/15   440.63 436.21 449.98 545.55 456.20 654.5

140 RSV 11

 - 8/15   311.31 555.17 323.21 694.33 331.12 833.00

-10/15   4 53.38 555.17 465.28 694.33 473.19 833.00

-12/15   6 26.27 555.17 638.17 694.33 646.08 833.00

170 RSV 14

 - 8/15   324.06 674.90 338.51 843.12 348.12 1011.50

-10/15   466.65 674.90 480.58 843.12 490.19 1011.50

-12/15   639.02 674.90 653.47 843.12 663.07 1011.50

210 RSV 18

 - 8/15   341.06 832.76 358.91 1041.50 370.78 1249.50

-10/15   4 83.13 832.76 500.98 1041.50 512.85 1249.50

-12/15   6 56.02 832.76 673.87 1041.50 685.73 1249.50

Please note:

If anchorage and lap lengths are reduced, the bearing values have to be reduced accordingly.

17 cm

Page 264: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 264/274

www.cfsfixings.com7-11

12

Standard Type V

Graph for the Determination of the Production-Related

required Box Widths and Max. Producible l0-Lengths

Notes:

b: Production-related required box width for single bars. In case of double bar starter

packs, the respective value has to be doubled.

Example:

Type SB (double bar starter pack)

Ø 12, s = 15 cm, l0 = 50 cm  required box width: 2 x 6.8 = 14 cm

Standard TypeØ (mm)/

s (cm)

Lap length

l0 (cm)

Centers-

s (cm)

 VHQ

 - 8/15 32 15

- 8/20 32 20

 - 8/25 32 25

- 10/15 39 15

- 10/20 39 20

 - 10/25 39 25

- 12/15 46 15

- 12/20 46 20

 - 12/25 46 25

Reinforcement steel: BSt 500 S or BSt 500 WR

1.25 m

Lap length l0 (cm)

   R  e  q  u   i  r  e   d   b  o  x  w

   i   d   t   h   (  c  m   )

recostal® Single Bar Starter Packs

type VHQ

Page 265: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 265/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-12

13

Special typesQty.

(m)

Diameter

Ø (mm)

Centers

s (cm)

Size

b (cm)

Height

h (cm)

Lap length

l0 (cm)

Size

v (cm)

Size

a (cm)

Unit

length

L (cm)

SHQ

SWQ

SG

SR

SB

S2H

SRG

SKB

SKG

SKR

Special Types

recostal® Special Types are made to specification and are available in many different shapes.

 Production-related options can be derived from the graph on page 12.

Special solutions and solutions for special projects on request

Page 266: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 266/274

www.cfsfixings.com7-13

14

Jobsite Application

recostal® Starter Packs typeRSH and type RSV 

Joint category “key profiled”

Page 267: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 267/274

 

R E  C 

 O S T A L P E R MA NE NT F  OR MW OR K 

F  OR  C  ON S T R  U C T I   ON J   OI  NT  S 

www.cfsfixings.com  17-14

15

Specification Example

Starter packs with trapezoidal profile for shear forces, “key profiled joint“ according to Eurocode 2

Project:

1.0 Starter Packs

Position Quantity/unit Price per unit Total

1.0001 Starter packs made from galvanised sheet steel with trapezoidal

profile longitudinal to the unit according to EC 2 joint category

“key profiled““, to be supplied for the horizontal connection of

construction parts.

Bar diameter: Ø = mm

Centers: s = cm

Bar width: b = cm

Bar height: h = cm

Make: recostal® type RSH

m € €

Page 268: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 268/274

www.cfsfixings.com8-1

Magnetic FormworkSystems

Page 269: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 269/274

www.cfsfixings.com  18-2

MA  GNE T I   C F  OR MW O

R K  S Y  S T E M S 

10

Contents

MagFly® Technology 18-3

MagFly® AP 18-4

Examples of MagFly® AP Magnets with FlyFrame® Formwork System 18-5

Page 270: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 270/274

www.cfsfixings.com8-3

MagFly® TechnologyPatented system for efficient formwork

What is MagFly® technology

MagFly® technology is a robust and compact magnetic.The secret behind this technology is our patented foot &spring system which makes positioning magnets and/orshuttering precisely to the millimetre simple.

In the “neutral” position there is an air gap betweenthe steel table and the magnet. This air gap means thatthe full magnetic force of the magnet does not comeinto play straight away, allowing it to be adjusted to thedesired position without clamping.

It is then activated by applying slight pressure. Only then

does the full magnetic force become effective, which canbe more than 30,000 N per magnet.

Advantages at a glance

• Extremely easy and precise positioning because themagnet seems to glide on the tilting table or steel pallet.

• Precise fixing of the magnet by lightly pushing it; onlythen does the full magnetic force come into effect.

• Simple visual checking to see if the magnet is sittingproperly.

• All the painstaking hammering into position usuallyrequired for rigging is dispensed with. This saves time,reduces wear and saves costs.

• Compact construction without steel boxes or casings.

• Full utilisation of the magnetic force by direct andpositive connection between steel table, magnet andshuttering.

Page 271: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 271/274

www.cfsfixings.com  18-4

MA  GNE T I   C F  OR MW O

R K  S Y  S T E M S 

MagFly® APLightweight magnet technology

What is MagFly® AP?

MagFly®AP is a development of the well-provenMagFly® universal magnet.

With an aluminium casing, high performance magnetmaterials and an integrated adapter for MultiForm andFlyFrame® shuttering systems, the new system magnet ispowerful and lightweight.

With a magnetic force of 22,000 N and a weight of only5.40 kg it has the best magnetic force to weight ratio ofits class worldwide.

Advantages at a glance

• Good ergonomic design; it has low weight and thenew type of lever makes carrying and handling easy.

• Extremely light but strong.

• The new MagFly®AP also offers integrated MagFly®technology for precise positioning.

• Accurate fixing of the magnet by light pressure of thehand.

• The permanently mounted eccentric lever makesadditional tools for releasing the magnet unnecessary.

• Compact design with integrated adapter forMultiForm and FlyFrame®.

Page 272: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 272/274

www.cfsfixings.com8-5

Examples of MagFly® AP Magnetswith FlyFrame® Formwork System

Page 273: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 273/274

Page 274: Precast Concrete Systems (1)

7/18/2019 Precast Concrete Systems (1)

http://slidepdf.com/reader/full/precast-concrete-systems-1 274/274