precision engineering used in euvl 03/18/2003 me250 prof. furman by: udayasri jandhyala kanchan...

11
03/18/2003 ME250 Prof. Furman Precision Engineering used in EUVL By: Udayasri Jandhyala Kanchan Joshi

Upload: shavonne-gilbert

Post on 15-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

By:

Udayasri Jandhyala

Kanchan Joshi

Page 2: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

By:

Udayasri Jandhyala

Kanchan Joshi

Page 3: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

• Lithography: A basic photographic process that allows more features to be crammed onto a computer chip.

• EUVL: Lithography at extreme UV wavelengths is called EUVL.• Lithography Process: Light is directed onto a mask-a sort of stencil of an

integrated circuit pattern and the image of that pattern is then projected onto a semiconductor wafer covered with light sensitive photoresist.

• Present: Current lithography techniques use deep ultraviolet range 248nm wavelengths to print 150 to 120nm size features.

• Future is EUVL: Creating smaller features requires wavelengths in the Extreme Ultraviolet range. Light at Extreme Ultraviolet wavelengths is absorbed instead of transmitted by lenses.

• Industry Developments: LLNL has developed multilayer coatings capable of reflecting nearly 70% of EUV light at a wavelength of 13.4nm that can be used to fabricate structures with a smaller minimum feature size 50nm.

Page 4: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

Page 5: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

•Micro Exposure tool (MET):

•A two-mirror camera which is capable of printing 30nm features.

•Functional Requirements:

•Low distortion support of the optics

•Precision adjustments for aligning the optics

•Dimensional stability,both long term-alignment and short term-image placement

Page 6: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL• The support ring provides upper and lower kinematic mounting interfaces

available to MET.• The support ring has a 360 degrees rotational interface to the M2 cell for the

clocking adjustment and it provides attachment points for six actuation flexures.• The triangular shaped M1 cell attaches to the opposite ends of the actuation

flexures and together they provide high resolution adjustment in 5 dof critical for optical alignment.

• Why Flexures: – Strain attentuation– The function of actuation flexure is to provide a single,adjustable constraint

along its axis. It is remotely actuated during alignment process but otherwise functions as a passive constraint.

• The M1 and M2 cells each support three flexures that combine to constrain 6dof for each optic.

• The support ring, actuation flexures etc are manufactured from Super Invar (a low CTE alloy).

Page 7: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

•Actuation System: The actuation flexures support and move the M1 cell relative to the support ring (often called a Stewart platform). •All six members are required to provide rigid constraint and any pure motion of the stage requires coordinated motion of all six flexures.•A number of factors are considered and balanced in the design of actuation flexure.•It must provide stiff axial constraint, sufficient compliance and range of motion in the non constraint directions, low actuation force.

Page 8: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

Projection Optic Mount:

Objective:Kinematic Constraint

Optic Cell

Bipod Flexure

Optic

Page 9: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

Properties

Material Super Invar 32-5

CTE, linear 20 ºC 0.19 μm/m- ºC

CTE, linear 250 ºC 2.5 μm/m- ºC

3DOF Blade Flexure:

xz

y

Tx Ty Tz Rx Ry Rz

S S S F F F

w

l

Blade thk=tl=10*tw=l

Page 10: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

4DOF Bipod Flexure:

Features:• Blades in series to add compliances• Equivalent to a sphere and a vee• Connect-disconnect function• Repeatable forces on optic

x

z

yTx Ty Tz Rx Ry Rz

S F S F F F

Page 11: Precision Engineering used in EUVL 03/18/2003 ME250 Prof. Furman By:  Udayasri Jandhyala  Kanchan Joshi

03/18/2003 ME250 Prof. Furman

Precision Engineering used in EUVL

The final assembly:

1. Mechanical assembly2. Precision3. Accuracy