precision studies for drell-yan processes at nnlo

23
Precision studies for Drell-Yan processes at NNLO Sven-Olaf Moch Universit ¨ at Hamburg ————————————————————————————————————– RADCOR-LoopFest 2021, Florida State University, Tallahassee (via Zoom), May 19, 2021 Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.1

Upload: others

Post on 21-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Precision studies for Drell-Yan processes at NNLO

Precision studies for Drell-Yan processes at NNLO

Sven-Olaf Moch

Universitat Hamburg

————————————————————————————————————–

RADCOR-LoopFest 2021, Florida State University, Tallahassee (via Zoom), May 19, 2021

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.1

Page 2: Precision studies for Drell-Yan processes at NNLO

Plan

Based on work done in collaboration with:

• Precision studies for Drell-Yan processes at NNLO

Sergey Alekhin, Adam Kardos, S. M. and Zoltan TrócsányiarXiv:2104.02400

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.2

Page 3: Precision studies for Drell-Yan processes at NNLO

W - and Z-boson cross sections

W - and Z-boson cross sections

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.3

Page 4: Precision studies for Drell-Yan processes at NNLO

Status (I)

Data• High precision experimental data from LHC ATLAS, CMS, LHCb and Tevatron

D0 useful for determinations of parton distributions

• statistically significant NDP = 172 in ABMP16

• Differential distributions in decay leption pseudo-rapidity extend

kinematics to forward region

• sensitivity to light quark flavors at x ≃ 10−4

• leading order kinematics with:

σ(W+) ≃ u(x2)d(x1) and σ(W−) ≃ d(x2)u(x1);

σ(Z) ≃ Q2uu(x2)u(x1) +Q2

dd(x2)d(x1)

• cf. DIS: σ(DIS) ≃ q2uu(x) + q2dd(x)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.4

Page 5: Precision studies for Drell-Yan processes at NNLO

Status (II)

Theory• Complete NNLO QCD corrections with fully differential kinematics to

match experimental cuts −→ solved problem

• combination of squared matrix elements with three different

multiplicities of partons in final state

• subtraction scheme to cancel of soft and collinear singularities upon

integration over their phase space

• Public codes at NNLO including the leptonic decay

• FEWZ (v3.1) (sector decomp.) Gavin, Li, Petriello, Quackenbush ‘12

• DYNNLO (v1.5) (qT slicing) Catani, Grazzini ‘07

• MATRIX (v1.0.4) (qT slicing) Grazzini, Kallweit, Wiesemann ‘17

• MCFM at NNLO (N -jettiness slicing)Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams ‘16

• Also:• (SHERPA-NNLO-FO (qT slicing) Höche, Li, Prestel ‘14)

• (DYTURBO (qT slicing, based on DYNNLO (v1.5))

Camarda, Boonekamp, Bozzi et al. ‘19)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.5

Page 6: Precision studies for Drell-Yan processes at NNLO

Regularization

Subtraction

• removes all1

ǫksingularities in d = 4− 2ǫ analytically; k ≤ 4 at NNLO

• Antenna subtraction Gehrmann-De Ridder, Gehrmann, Glover ‘05

• Colourful subtraction Del Duca, Somogyi, Trocsanyi ‘05

• Sector subtractionCzakon ‘10; Boughezal, Melnikov, Petriello ‘11; Czakon, Heymes ‘14

• Projection to Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi ‘15

• Local analytic sector subtractionMagnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, Uccirati ‘18

Slicing

• Cuts imposed in phase space; singularities lnk(some cut) need to cancel

numerically; k ≤ 4 at NNLO• qT -subtraction Catani, Grazzini ‘07

• N -jettiness subtractionBoughezal, Focke, Liu, Petriello ‘15; Gaunt, Stahlhofen, Tackmann, Walsh ‘15

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.6

Page 7: Precision studies for Drell-Yan processes at NNLO

Theory issues

-Wfidσ / +Wfidσ

1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34

ATLAS-113 TeV, 81 pb

total uncertainty±data stat. uncertainty±data

ABM12CT14nnloNNPDF3.0MMHT14nnlo68CLATLAS-epWZ12nnloHERAPDF2.0nnlo

-Wfidσ / +Wfidσ = -/W+WR

Zfidσ / ±Wfidσ

9.4 9.6 9.8 10 10.2 10.4 10.6 10.8

ATLAS-113 TeV, 81 pb

total uncertainty±data stat. uncertainty±data

ABM12CT14nnloNNPDF3.0MMHT14nnlo68CLATLAS-epWZ12nnloHERAPDF2.0nnlo

Zfidσ / ±Wfid

σ = W/ZR

ATLAS (13 TeV, 81 pb-1) 1603.09222

σfidW+/σfid

W-

ABM12

ABMP15

present analysis

σfidW±

/σfidZ

• Differences at NNLO between DYNNLO and FEWZ up to O(1%) or more

DYNNLO (v1.5)

Catani, Grazzini ‘07

FEWZ (v3.1)

Gavin, Li, Petriello,

Quackenbush ‘12

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.7

Page 8: Precision studies for Drell-Yan processes at NNLO

Benchmark computations

Benchmark computations

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.8

Page 9: Precision studies for Drell-Yan processes at NNLO

Benchmarking DYNNLO

ATLAS (7 TeV, 4.6 fb-1

)

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0 2η

l

da

ta/A

BM

P1

6 -

1

W+ --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

FEWZ 3.1

DYNNLO 1.5

0 2η

l

W- --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

0 2η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

|ηl2

|<2.5

1 2.25 3.5η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

2.5 <|ηl2

|<4.9

• Deviations of DYNNLO (qT slicing) at NNLO

• up to O(1%) for W+-production

• few per mill for W−- and Z-production

• up to O(2− 3%) for forward Z-production, O(10%) in first bin

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.9

Page 10: Precision studies for Drell-Yan processes at NNLO

Benchmarking MCFM

ATLAS (7 TeV, 4.6 fb-1

)

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0 2η

l

da

ta/A

BM

P1

6 -

1

W+ --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

FEWZ 3.1

MCFM (τ=0.006)

MCFM (τ=0.001)

MCFM (τ=0.0004)

0 2η

l

W- --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

0 2η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

|ηl2

|<2.5

1 2.25 3.5η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

2.5 <|ηl2

|<4.9

• Substantial deviations of MCFM at NNLO (N -jettiness slicing)

• Variation of τcut (smallest value τcut = 4 · 10−4 at computational limits)

• up to O(3%) for W+-production

• up to O(2%) for W−- and Z-production

• up to O(2− 3%) for forward Z-production, O(20%) in first bin

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.10

Page 11: Precision studies for Drell-Yan processes at NNLO

Benchmarking MATRIX

ATLAS (7 TeV, 4.6 fb-1

)

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0 2η

l

da

ta/A

BM

P1

6 -

1

W+ --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

FEWZ 3.1

MATRIX (rcut

=0.15%)

MATRIX (rcut

=0.05%)

0 2η

l

W- --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

0 2η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

|ηl2

|<2.5

1 2.25 3.5η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

2.5 <|ηl2

|<4.9

• Findings for MATRIX similar to DYNNLO (both based on qT slicing)

• up to O(1%) for W+-production

• few per mill for W−- and Z-production

• up to O(1− 2%) for forward Z-production, O(5%) in first bin

• Variation of rcut has similar effect as smaller τcut in MCFM

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.11

Page 12: Precision studies for Drell-Yan processes at NNLO

Slicing methods (I)

• W - and Z-boson production with decay to leptonic final state L

• gauge boson mass q2 = Q2

a(pa) + b(pb) → V (q) +X(ki) → L(q) +X(ki)

pa

pbX(ki)

V (q)L(q)

• Slicing parameter τ for qT -subtraction defined with ~kT,i (transverse

momenta of hadronic final states) Catani, Grazzini ‘07

τ = q2T /Q2 =

(

i

~kT,i

)2

/Q2

• Slicing parameter τ for leptonic 0-jettiness T0

Boughezal, Focke, Liu, Petriello ‘15; Gaunt, Stahlhofen, Tackmann, Walsh ‘15

τ = T0/Q =∑

i

min {2pa · ki, 2pb · ki} /Q2

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.12

Page 13: Precision studies for Drell-Yan processes at NNLO

Slicing methods (II)

• Definitions of τ vanish at Born level and resolve additional radiation ininfrared-safe manner

• Phase space integration for cross section with cut for slicing τcut

σ =

dτdσ

dτ=

∫ τcut

dτdσ

dτ+

τcut

dτdσ

dτ= σ(τcut) +

τcut

dτdσ

• Dependence of dσ/dτ on τ predicted from universal QCD factorization in

soft and collinear limits• power corrections proportional to τp−1 with p > 0 are integrable

dτ∼ δ(τ) +

i

[

lni τ

τ

]

+

+∑

j

τp−1 lnj τ +O(τp)

• Analytical result for σ(τcut)

σ(τcut) ∼ 1 +∑

i

lni+1 τcut +∑

j

τpcut ln

j τcut +O(τp+1

cut )

• Subtraction scheme implemented via global subtraction term σsub(τcut)

σ = σsub(τcut) +

τcut

dτdσ

dτ+∆σsub(τcut)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.13

Page 14: Precision studies for Drell-Yan processes at NNLO

Power corrections (I)

• Residual power corrections are numerically sizable

∆σsub(τcut) = σ(τcut)− σsub(τcut)

• difference between σ(τcut) and global subtraction term σsub(τcut)

Scaling behavior of power corrections• Exponent p in power corrections τp

cut in σ(τcut)

• Stable gauge boson V• positive integer values for exponent p = 1, 2, 3, . . .

• power corrections scale as τ = q2T /Q2 or T0/Q

• Decay of V to leptonic final state L• pT -cuts on leptons in decay change power counting of power

corrections Ebert, Tackmann ‘19

• half-integers values p = 1/2, 1, 3/2, . . . for exponent p

• power corrections scale as√τ = qT /Q or

T0/Q

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.14

Page 15: Precision studies for Drell-Yan processes at NNLO

Cuts on leptons in decay (I)

• Experimental data has cuts on pT of leptons

• ATLAS data with plT ≥ 20GeV for decay of Z-boson (or pl/νT ≥ 25GeV

for W -boson)

• pT -cuts break azimuthal symmetry in phase space integration

• recall e.g. Drell-Yan process with L(q) → l−(p1) + l+(p2)

a(pa) + b(pb) → V (q) +X(ki) → l−(p1) + l+(p2) +X(ki)

pa

pbX(ki)

V (q)L(q)

• Leptonic final state phase space ΦL

ΦL(qT ) =1

4π2

∫ π

0

−∞

d∆yp2T1

Q2

• φ (azimuthal angle) and ∆y (difference in rapidity between l− and l+)

• Lepton pT -cuts pT1, pT2 ≥ pminT induce power corrections of order ~kT,i for

hadronic final state X(ki)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.15

Page 16: Precision studies for Drell-Yan processes at NNLO

Cuts on leptons in decay (II)

• pT -cuts restrict phase space to min {pT1, pT2} ≥ pminT

• (pT1)2 = p2T

• (pT2)2 = (qT + pT1)

2 = p2T − 2pT qT cosφ + q2T

• Azimuthal integration for small qT under condition

min{

pT , p2T − 2pT qT cosφ

}

=

p2T , cosφ ≤ 0

p2T − 2pT qT cosφ , cosφ > 0

• Leptonic phase space dΦL after integration yields

dΦL = π√

1− (2pminT )2/Q2 − 4

1− (2pminT )2/Q2

pminT qTQ2

• ηl-cuts impose additional restriction on azimuthal angle φ• value φ∗ for boundary of phase space depends on gauge-boson

rapdity Y and on ∆y = η1 − η2

cosφ∗ =Q

2qT

sinh(2Y )

sinh(2Y +∆y)+O(qT /Q)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.16

Page 17: Precision studies for Drell-Yan processes at NNLO

Lepton decay phase space (I)

|1-ΦL(qT)/ΦL(0)|

|ηl| < 2.5, |ην| < 2.5

plT > 25 GeV, p

νT > 25 GeV

ηl = 0.0

ηl = 1.0

ηl = 2.0

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Plot of |1− ΦL(qT )/ΦL(0)| for W±-production with cuts in ATLAS data

• deviations of ΦL(qT ) from Born level leading power results for qT = 0

• Pseudo-rapidity distribtions for W±-production fix ηl

• pT -cuts lead to linear power corrections in qT

• MATRIX technical cutoff rmincut = 0.15% indicated by vertical dashed line

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.17

Page 18: Precision studies for Drell-Yan processes at NNLO

W -production with MATRIXATLAS (7 TeV, 4.6 fb

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0 2η

l

da

ta/A

BM

P1

6 -

1

W+ --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

FEWZ 3.1

MATRIX (rcut

=0.15%)

MATRIX (rcut

=0.05%)

0 2η

l

W- --> l

PTl>25 GeV

PTν>25 GeV

MT>40 GeV

0 2

|1-ΦL(qT)/ΦL(0)|

|ηl| < 2.5, |ην| < 2.5

plT > 25 GeV, p

νT > 25 GeV

ηl = 0.0

ηl = 1.0

ηl = 2.0

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Linear power corrections in qT in leptonic phase space dΦL present in allηl bins

• Deviations of MATRIX from FEWZ uniform across all ηl bins

• up to O(1%) for W+-production

• few per mill for W−-production

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.18

Page 19: Precision studies for Drell-Yan processes at NNLO

Lepton decay phase space (II)

|1-ΦL(qT)/ΦL(0)|

|ηl1,2| < 2.5

plT > 20 GeV

ηll = 0.0

ηll = 1.2

ηll = 1.8

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Plot of |1− ΦL(qT )/ΦL(0)| for central Z-production with ATLAS cuts

• Power corrections depend on gauge boson pseudo-rapidity ηll

• Small ηll: cuts on pT dominate and lead to linear power corrections in qT

• Large ηll: cuts on pseudo-rapidities ηl1 , ηl2 dominate

• azimuthal symmetry is restored for small qT , when | cosφ∗| ≥ 1• transition between linear and quadratic behavior around ηll ≃ 1.2

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.19

Page 20: Precision studies for Drell-Yan processes at NNLO

Central Z-production with MCFMATLAS (7 TeV, 4.6 fb )

0 2

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

|ηl2

|<2.5

1 2.25 3.5

|1-ΦL(qT)/ΦL(0)|

|ηl1,2| < 2.5

plT > 20 GeV

ηll = 0.0

ηll = 1.2

ηll = 1.8

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Deviations of MCFM from FEWZ display particular pattern as function ofpseudo-rapidity ηll• consistent with appearance/disappearance of linear power

corrections in qT in leptonic phase space dΦL

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.20

Page 21: Precision studies for Drell-Yan processes at NNLO

Lepton decay phase space (III)

|1-ΦL(qT)/ΦL(0)|

|ηl1| < 2.5 < |ηl2| < 4.9

plT > 20 GeV

ηll = 1.3

ηll = 2.6

ηll = 3.4

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Plot of |1− ΦL(qT )/ΦL(0)| for forward Z-production with ATLAS cuts

• Cuts on pseudo-rapidities |ηl1 | ≤ 2.5 ≤ |ηl2 | ≤ 4.9 do no overlap

• pT -cuts lead to linear power corrections in qT

• Size of linear power corrections depend on pseudo-rapidity ηll• power corrections for small and large ηll are order of magnitude

larger than for W±-production

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.21

Page 22: Precision studies for Drell-Yan processes at NNLO

Forward Z-production with MATRIX

ll

1 2.25 3.5η

ll

Z --> l+l-

PTl>20 GeV

66 <Mll<116 GeV

|ηl1

|<2.5

2.5 <|ηl2

|<4.9

|1-ΦL(qT)/ΦL(0)|

|ηl1| < 2.5 < |ηl2| < 4.9

plT > 20 GeV

ηll = 1.3

ηll = 2.6

ηll = 3.4

qT/Q

10-5

10-4

10-3

10-2

10-1

1

10-4

10-3

10-2

10-1

1

• Linear power corrections in qT in leptonic phase space dΦL present in allηll bins

• dΦL(ηll = 1.3) ≫ dΦL(ηll = 3.6) ≫ dΦL(ηll = 2.4)

• Size of deviations of MATRIX from FEWZ display same pattern as function ofpseudo-rapidity ηll

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.22

Page 23: Precision studies for Drell-Yan processes at NNLO

Summary

W±- and Z-boson production at the LHC• Currently available public codes with short-comings

• long run times

• problems with precision (short-comings of slicing methods)

• Sizable differences between public codes

• differences at least similar, sometimes larger than sizes of NNLO

corrections

• Linear power corrections from cuts on final state momenta affect

precision of NNLO results

Upshot• Need for fast and precise public code for differential distribution at NNLO

(per mill level accuracy)

Sven-Olaf Moch Precision studies for Drell-Yan processes at NNLO – p.23