predicting*dpf*performance*based*on*3d ......o 2010,)33dsimulation*of*particle*...

24
PREDICTING DPF PERFORMANCE BASED ON 3D MICROSCOPIC STRUCTURE FROM CTSCAN Yujun Wang 1 , Paul Folino 2 , Carl J. Kamp 2 , Rakesh K. Singh 1 , Amin Saeid 1 , Bachir Kharraja 1 , Victor W. Wong 2 1. Rypos, Inc., Franklin, MA, USA 2. Massachusetts Institute of Technology,Cambridge, MA, USA Presenter: Dr. Yujun Wang 1 April 7 th , 2016 2016 CLEERS

Upload: others

Post on 11-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

PREDICTING  DPF  PERFORMANCE  BASED  ON  3D  MICROSCOPIC  STRUCTURE  FROM  CT-­‐SCAN

Yujun  Wang1,  Paul  Folino2,  Carl  J.  Kamp2,  Rakesh  K.  Singh1,  Amin  Saeid1,  Bachir  Kharraja1 ,  Victor  W.  Wong2

1. Rypos,  Inc.,  Franklin,  MA,  USA2.  Massachusetts  Institute  of  Technology,  Cambridge,  MA,  USA

Presenter:  Dr.  Yujun  Wang

1

April  7th,  2016

2016  CLEERS

Page 2: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

§ Sintered  Metal  Fiber  DPF  Introduction

§ Digital  Structure  from  CT-­‐Scan

§ Micro-­‐Fluid  Flow  Simulation

§ Filtration  Efficiency  Prediction

§ Summary  &  Future  Work

A G E NDA

2

Page 3: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

q Onboard  computer  to  control  and  monitor  the  DPF

q The  system  is  tolerant  with  high  sulfur  fuel,  low  exhaust  temperature,  and  high  PM  emission  rate

S i n t e r e d   M e t a l   F i b e r   D P F  q Sintered  metal  fiber  (SMF)  filtero Clean  media  porosity  is  85%  o Clean  media  permeability   is  1.6×10-­‐10  m2

o Cumulative   filtration  efficiency   is    >  85%  

q Sintered  metal  fiber  medium  is  used  as  an  electrical  resistance  heater  to  oxidize  the  soot

Active  Filter  Cartridges

Base  Material

Sizes  3”  – 13”  Dia.  Cartridges  of  Multiple  Diameter  

Application  in  a  2MW  Engine3

q Onboard  computer  to  control  and  monitor  the  DPF

q The  system  is  tolerant  with  high  sulfur  fuel,  low  exhaust  temperature,  and  high  PM  emission  rate

Page 4: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Mo d e l i n g   o f   F i b r o u s / G r a n u l a r   M e d i u m

• Complexities come from the irregular structure of porous media.

• Analytical approach (Cell Model) does not meet most of the practical engineering needs.

• Recent modeling work based on 3D filter structure.

Rypos Fibrous  Media

Simplified  Geometry  in  Analytical  Model

q Fibrous  Filtero 1996,  Simple  3D  geometry  to  

model  fibrous  media,  Lawrence  Livermore  National   Laboratory

o 2007,  Soot  filtration  in  fibrous  media,  Warsaw  University  of  Technology

o 2010,  3-­‐D  simulation  of  particle  filtration  in  nanofibrous filters,  Virginia  Commonwealth  University

q Ceramic  DPFo 2006,  Digital  materials  

method  for  DPF  development,  Aerosol  &  Particle  Technology  Laboratory

o 2007,  Microstructure  study  of  DPF,  Pacific  Northwest  National  Laboratory

4

Page 5: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

3D   D i g i t a l   S t r u c t u r e   f r om   C T -­‐ S c a n

Micro-­‐CT  at  Harvard University

A  5.0  mm  x  10.0  mm  x  1.5  mm  SMF  DPF  coupon  is  placed  less  

than  15  mm  away  from  the  X-­‐Ray  source  to  give  high-­‐magnification  

scans.

§ X-Ray Computed Tomography (X-Ray CT) is a non-destructive way to generate porous media 3D digital structure.

§ Numerous 2-D slices of the sample are stacked into a 3-D volume using reconstruction algorithms.

§ Samples can be scanned in less than 30 minutes and can provide µm-scale resolution of the sintered metal fiber (SMF) DPF, while allowing for mm-scale imaging and analysis.

5

Page 6: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Va l i d a t i o n   o f   D i g i t a l   S t r u c t u r e

Grayscale  Intensity  Histogram

Media  Image

o Each Pixel has a grayscale value between black (0) and white (65536).

o Need to input the grayscale threshold to identify the solid region.

o The grayscale threshold is chosen based on known porosity of SMF media.

The  distribution  of  fiber  diameters  in  the  SMF  DPF

q Parameter  Check

o Fiber  diameter  agrees  with  FIB/SEM  observations.

o Media  thickness  agrees  with  previous  measurements.

6

Page 7: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

M i c r o -­‐ F l u i d   S im u l a t i o n

Air  Normalized  Density10-­4 10-­2 100 102

CharacterLength(micron)

10-­3

10-­2

10-­1

100

101

102

103

Kn=1Kn=0.01

SlipFlow

ContinuumFlow

Kn=0.1

Kn=10Navier-­StokesEquationTransitional

Flow

Diluted  Gas

Dense  Gas

Reference:  MicroFlows and  NanoflowsFundamentals   and  Simulation.  

G.  Karniadakis,  et  al.  

v CFD  tool  -­‐ OpenFOAM is  employed  to  solve   the  flow  field  throughout  fibrous   region.  

q SMF  Fiber  Media  Study

Fiber  diameter   (D):  10-­‐40  micronAir  mean  free  path  (λ):  68  nm  @  20  oC

Knudsen  Number  :  Kn=λ/DIn  the  range  of  (0.0017  – 0.004)  

GuidelineWhen  Knudsen   Number  <  0.01,  Navier-­‐Stokes  Equation   and  no-­‐slip   flow  condition   are  still  valid.

7

Page 8: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

S o l v e   t h e   F l ow

Computation  Domain

Boundary  Conditions  in  the  Simulations

q Flow  Solver  – Incompressible   Flow  Solver  in  OpenFOAM

o low flow velocity compared to the speed of soundo Relatively small pressure changeq Computational   Domaino Overall size is 0.9mm×0.9mm× 1.8mm (depth)o Width is 0.05 mm smaller than digital sample sizeo Distance between inlet/outlet surface and fibrous region is

5×df

q Boundary   ConditionsInlet:  fixed   inlet  velocity  and  zero  pressure  gradientOutlet:  zero  velocity  gradient  and  fixed  pressure.Symmetry:   reasonable  approximation   due  to  relatively  small   lateral  flow  in  fibrous  media.

8

Page 9: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

G r i d   C o n v e r g e n c e   S t u d y

Base  grid  size=25  µm

Base  grid  size=10  µm

§ The  mesh  pre-­‐processor   gives  similar  internal  geometry  with  different   sizes  of  base  grid.

§ With  current  computation  resource,   need   to  check  whether  the  study  is  grid  size  independent  or  not.

Base  grid  size=16  µm

9

Page 10: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

G r i d   C o n v e r g e n c e   S t u d y

y  =  -­‐0.3247Δh  +  23.578R²  =  0.995

0

5

10

15

20

25

0 10 20 30

Pressure  Drop  [Pa}

Grid  Size  [Micron}

Predicted  Medium  Pressure  Drop  with  Grid  Size  

sample  2

Linear    (sample  2)

§ The  order  of  convergence   in  CFD  simulations   is  about  1.  

§ At  the  finest  base  grid  size  (8    micron),  the  CFD  results  are  not  mesh  independent.   The  relative  change  of  predicted  ΔP  is  within  4%.  

q According  to  Roache’s work,  the  simulation  results  at  different   grid  size  can  be  used  to  estimate   the  predicted  ΔP  at  grid  size  Δh=0.  

i.e.,  sample  2  results 578.233247.02 +Δ⋅−=Δ hPsample

Pa 578.23 ,0when 2 →Δ→Δ samplePh

10

20  million  cellsComputing  limit

Page 11: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Va l i d a t i o n   o f   P r e d i c t e d   P e r m e a b i l i t y

+12%-­‐3%

-­‐58%

§ SMF  medium  permeability  was  measured   at  in-­‐house   flow  bench§ CFD  results  are  average  values  of  5  computed  samples§ Kuwabara equation   represents   the  accuracy  of  classical  analytical  

approach

11

0.00E+00

4.00E-­‐11

8.00E-­‐11

1.20E-­‐10

1.60E-­‐10

2.00E-­‐10

Experiment CFD  Δh=8  micron

CFD  Δh=0 Kuwabara

Med

ium  Permeability

REF:  ASME  ICEF  2015-­‐1170

Page 12: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

F i e l d   I n f o rm a t i o n   f r om   C F D

q CFD  studies   provide  detailed  information   of  flow  field

• Pressure• Velocity• Shear  Stress• Streamlines

12

Pressure  Field

Velocity  Field

Flow  Streamlines

Page 13: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

P r e d i c t   F i l t r a t i o n   E f f i c i e n c y

13

q Particle  trajectory  can  be  tracked  based  on  flow  field,  particle   inertia,  and  Brownian  dynamics.

q Once  the  particle   touches  the  fiber   surface,   it  is  captured  by  the  medium.q Filtration  efficiency  can  be  determined   by  counting  upstream  downstream  

particle  number.  

CFD  Solved  Flow  Field Particle  Tracking  Approach

Page 14: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

S t o c h a s t i c   E q u a t i o n   o f   P a r t i c l e  M o t i o n

14

§ Langevin Equation

extBdragp FFFtvm ++=dd

( )vuCcd

F pdrag −=

πµ3

tdTCck

Ccd

Fgp

BpgB Δ=

µπ

ξµ

323

Flow  Dragu  is  fluid  velocityv  is  particle  velocity

Brownian  motion(              is  zero  mean,  unit  variance  Gaussian  variable)ξ

The  simulation   continues   until  the  particle  deposits  on  fiber  surface  or  leaves  the  pre-­‐defined  region.  

( ) viviii GvEv σ+Δ=Δ

( ) ( )( ) LiLiiiivi

Liiii GvEvLEL σρ

σσρ 21−+Δ−Δ+Δ=Δ

Velocity  Change

Position  change

§ Updates  at  Each  Time  Step

Theories  are  well  developed  in  physics  and  filtration  studies.  

Page 15: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

R e a l i s t i c   F i b e r   S t r u c t u r e   f r o m   C T -­‐ S c a n

15

[mm]

Sample  Size:              1.4×1×1  mmFile  Type:  STL;        File  Size:  ~200MB

Page 16: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

F i b e r   S u r f a c e   a n d   P a r t i c l e   D i s t a n c e

16

q STL  file  uses  many  small   triangle   to  describe   the  fiber  surface.

q A  1.4×1×1  mm  size  sample  has

§ 107  points§ 3.5×106 triangle

A  detailed  view  of  fiber  surface  of  the  digital  sample  

particle

[m] q Suitable  algorithm   and  data  structure  to  accelerate  the  calculation.

§ efficiently   store  the  point  data  of  fiber  surface

§ quickly  determine   the  particle  and  fiber   surface   relation

§ support  parallel  computing

Page 17: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

S im u l a t i o n   C o n d i t i o n s

17

q Soot  particle   is  assumed  to  be  spherical.  q Particle  has  a  perfect   reflection  when  it  reaches   the  symmetry  side  boundary.q The  trajectories   of  particles  are  independent.   Thus,  parallel  computing  can  be  

applied.q 1000  particles  are  released   in  the  Monte-­‐Carlo   simulation.   It  needs  6  hours  in  

a  workstation  of  8  CPUs.  

Simulation Inputs

Particle  Density 0.98  g/cm3

Flow  Temperature 300  oC

Face  Velocity 0.125  m/s

Particle  Size 20  – 5000  nm

Particle  Number 1000

Page 18: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Pa r t i c l e   C a p t u r e d   ( d p= 2 0 nm )

18

q 20  nm  particles  have  more  evident  Brownian  motion,  and  the  trajectory  is  very  wavy.  

q The  filtration  efficiency  of  20  nm  particles   is  about  86%.  

Page 19: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Pa r t i c l e   E s c a p e d   ( d p= 5 0 0   nm )

19

q 500  nm  particles   have  less  evident  Brownian  motion,  and  the  trajectory  is  very  smooth.  

q The  filtration  efficiency  of  500  nm  particles   is  about  62%.  

Page 20: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

Mo n t e   C a r l o   S i m u l a t i o n   C o n v e r g e n c e

20

Particle  diameter  =  300  nmT=300  oC,  Face  Velocity   =  0.125  m/s.    

q Particle  is  released   at  a  random  position  of  inlet  patch.

q Initially  particle  has  the  same  velocity  of  local  flow  field.

q Filtration  efficiency  can  be  determined   by  the  number  of  all  investigated  particles  and  the  number  of  captured  particles

q With  enough  particles,   the  filtration  efficiency   from  the  Monte-­‐Carlo   simulation  start  to  converge.   The  variance  of  filtration  efficiency  using  1000  particles   is  within  ±2%.    

within  ±2%  

Page 21: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

F i l t r a t i o n   E f f i c i e n c y   P r e l i m i n a r y   V a l i d a t i o n

21

q Scanning  mobility  particle  sizer   (SMPS)  was  employed   to  measure  the  filtration  efficiency.  

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

DPF  Filtration  Efficiency

Particle  Size,  nm

230KW

400KW

600KW

model

kelly  idle

kelly  40kw

The  experimental  data  was  obtained   from  real  engine  applications.  

(clean  Medium)

Page 22: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

S umm a r y  

22

q CT-­‐Scan   is  an  non-­‐destructive   way  to  obtain  authentic  digital  structure  of  sintered  metal  fiber  medium.  The  fiber   sizes  in  the  digital  materials  are  consistent  with  previous  knowledge.  

q Micro-­‐fluid  CFD  study  based  on  digital  structure   from  CT-­‐Scan  can  accurately  predict  the  permeability.   The  difference   between  model  and  experiment   data  is  within  3%.  

q Particle  tracking  model  includes  more  physics  of  particle   filtration  processes  and  has  the  potentials   to  improve   the  prediction  accuracy  .

§ Obtain  experiment  data  of  SMF  media  filtration  efficiency  vs.  particle  size  at  known  condition

§ Consider   soot  particle   fractal  geometry

FutureWork

Page 23: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

T h a n k   y o u   !

23

Appreciate  your  attention!

Any  questions/comments/suggestions?

Page 24: PREDICTING*DPF*PERFORMANCE*BASED*ON*3D ......o 2010,)33Dsimulation*of*particle* filtration*in*nanofibrous filters, Virginia)Commonwealth) University " Ceramic*DPF o 2006,)Digital*materials*

A p p e n d i x

24

20  nm  Particle  Trajectory