predictions and wind tunnel - cfd4aircraft · 2007. 7. 12. · pitchup l pitchup lift is also...

24
Comparison of Numerical Predictions and Wind Tunnel Results for a Pitching Uninhabited Combat Air Vehicle Russell M. Cummings, Scott A. Morton, and Stefan G. Siegel Department of Aeronautics United States Air Force Academy USAF Academy, CO

Upload: others

Post on 15-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Comparison of Numerical Predictions and Wind Tunnel 

Results for a Pitching Uninhabited Combat Air Vehicle 

Russell M. Cummings, Scott A. Morton, and Stefan G. Siegel 

Department of Aeronautics United States Air Force Academy 

USAF Academy, CO

Page 2: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Outline 

l  Introduction l Dynamic Stall/Lift l UCAV Configuration l Experimental Results l Numerical Method l Static Results l Pitching Results l Conclusions

Page 3: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Introduction 

l  UCAV’s are playing an important role in current military tactics 

l  Predator and Global Hawk are becoming essential elements of current operations 

l  X­45A represents future configurations

Page 4: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Introduction 

l  Some issues to explore in order to take advantage of a UCAV’s uninhabited state: –  High g maneuvering –  Compact configurations –  Novel control actuation –  Morphing wings –  MEMS­based control systems –  Semi­autonomous flight –  Increased use of composites –  Novel propulsion systems –  Dynamic stall/lift

Page 5: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Dynamic Stall/Lift 

l  Utilizes rapid pitch­up and hysteresis to produce increased lift 

l  A great deal of work has been done on airfoils and simple wings 

l  Very little work has been done on UCAVs 

From http://hodgson.pi.tu­berlin.de/~schatz/PIZIALI/osc.html 

a—separation begins b—leading­edge vortex forms c—full stall d—reattachment and return to static state

Page 6: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

UCAV Configuration 

l  Straight, swept leading edge with 50 o sweep 

l  Aspect ratio of 3.1 l  Round leading edges l  Blended wing & body l  Top/front engine inlet l  B­2­like wing planform l  Low observable shaping 

Boeing 1301 UCAV 

33.27 

62.43  276.15  46.19 ft 

78.78 

33.27 

32.58 ft 

MAC 241.93 BL 92.4

MAC/4 FS 170.63 

24.19 50° 

30° 

30° 

30° 

27.38 sq ft 

21.02 sq ft

Page 7: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Experimental Results 

l  1:46.2 scale model l  Academy 3 ft × 3 ft open return low­speed wind tunnel 

l  Less than 0.05% freestream turbulence levels at all speeds 

l  Freestream velocity of 20 m/s (65.4 ft/s) 

l  Chord­based Reynolds number of 1.42 × 10 5

Page 8: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Static Testing 

l  Linear lift characteristics up to 10 o  to 12 o 

l  Stall occurring at about 20 o 

l  Lift re­established up to 32 o , where an abrupt loss of lift takes place 

l  Effect of leading­edge vortices and vortex breakdown? Angle of Attack, α

Force Coe

fficien

0  10  20  30  40  50  60  70 0 

0.2 

0.4 

0.6 

0.8 

1.2 

1.4 

Lift Coefficient Drag Coefficient

Page 9: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Dynamic Testing 

l  The configuration was pitched at 0.5, 1.0, and 2.0 Hz (k = 0.01, 0.02, and 0.04) 

l Center of rotation at the nose, 35% MAC, and the tail 

l  The pitch cycles were completed for three ranges of angle of attack: –  0 o < α < 20 o 

–  16 o < α < 35 o 

–  25 o < α < 45 o 

)) cos( 1 ( ) (  t m t ω α α − + = o

Page 10: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Pitching About 35% MAC @ 2 Hz 

l  Dynamic lift is greater than static lift during pitchup 

l  Pitchup lift is also greater post stall 

l  Dynamic lift is less than static lift during pitchdown 

l  Little impact on drag Angle of Attack, α (deg) 

Force Coefficien

0  5  10  15  20  25  30  35  40  45 ­0.5 

­0.25 

0.25 

0.5 

0.75 

1.25 

1.5

α(t) = 16 o  to 35 o α(t) = 25 o  to 45 o

α(t) = 0 o  to 20 o 

Static Drag Static Lift

Page 11: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Pitching About Nose @ 2 Hz 

l  Similar results to pitching about 35% MAC 

l  Slightly less effective at producing lift during pitchup 

l  Essentially identical results in post­stall region 

Angle of Attack, α (deg) 

Force Coefficien

0  5  10  15  20  25  30  35  40  45 ­0.5 

­0.25 

0.25 

0.5 

0.75 

1.25 

1.5

α(t) = 25 o  to 45 o

α(t) = 0 o to 20 o

α(t) = 16 o  to 35 o 

Static Drag Static Lift

Page 12: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Pitching About Tail @ 2 Hz 

l  Drastically different than previous results 

l  Much more lift at higher angles of attack in pitching cycle 

l  Reduced lift at lower angles 

l  Significant impact on drag Angle of Attack, α (deg) 

Force Coefficien

0  5  10  15  20  25  30  35  40  45 ­0.5 

­0.25 

0.25 

0.5 

0.75 

1.25 

1.5

α(t) = 25 o to 40 o

α(t) = 0 o  to 20 o

α(t) = 16 o  to 35 o 

Static Drag Static Lift

Page 13: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Numerical Method 

l  Cobalt Navier­Stokes solver –  Unstructured mesh –  Finite volume formulation –  Implicit –  Parallelized –  Second­order spatial accuracy –  Second­order time accuracy with Newton sub­iterations 

l  Run on Academy 64 processor Beowulf cluster, Origin 2000, and USAF HPC computers 

l  Laminar flow with freestream conditions set to match Reynolds number of wind tunnel experiment

Page 14: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Mesh and Boundary Conditions 

l  Three unstructured meshes: –  Coarse (1.3 million cells) –  Medium (2 million cells) –  Fine (4 million cells) 

l  Half­plane model l  No­slip on surface l  Symmetry plane l  Freestream inflow l  Inlet covered to match model l  No sting modeled

Page 15: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Mesh Convergence 

l  Steady results from all three meshes yield identical forces 

l  High angle of attack flowfields will be unsteady 

l  Use 2 million cell mesh for following calculations 

l  Detailed time step study to follow for unsteady flow 

Number of Iterations 

NormalFo

rce 

250  500  750  1000 ­2 

­1 

Fine Mesh (4 million cells) Medium Mesh (2 million cells) Coarse Mesh (1.3 million cells) 

o 20 = α

Page 16: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Steady­State Static Results 

l  Good results in linear angle of attack range 

l  Qualitatively similar results in post­stall region 

l  Lift and drag are significantly over­ predicted in post­stall region Angle of Attack, α

Force Coe

fficien

0  10  20  30  40  50  60  70 0 

0.2 

0.4 

0.6 

0.8 

1.2 

1.4 

Exp. Lift Coefficient Exp. Drag Coefficient CFD Lift Coefficient CFD Drag Coefficient

Page 17: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Steady­State Static Results 

l  Wide shallow vortices l  Vortex breakdown fairly far back on configuration 

l  Vortical structures behind breakdown maintain lift on aft of vehicle 

l  Rounded leading edge creates weaker vortices that breakdown sooner 

o 20 = α

Page 18: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Time­Accurate Static Results 

l  Flowfields in post­stall region are unsteady 

l  Time­accurate results match experiment much more closely 

l  Fairly good modeling of flowfield, including drag, up to α=45 o 

l  Differences in lift from α=20 o  to α=30 o (sting, surface roughness, transition ?) 

Angle of Attack, α (deg) 

Force Coe

fficien

0  10  20  30  40  50  60  70 0 

0.2 

0.4 

0.6 

0.8 

1.2 

1.4 

Exp. Lift Coefficient Exp. Drag Coefficient CFD Lift Coefficient CFD Drag Coefficient

Page 19: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Time­Accurate Static Results 

o5 = α

o 15 = α

o 10 = α

o 20 = α

Page 20: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Time­Accurate Static Results 

o 25 = α

o 35 = α

o 30 = α

o 40 = α

Page 21: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Dynamic Pitching Results 

l  Pitchup doesn’t capture full lift increase at low α 

l  Overprediction of lift also seen in pitchup case 

l  Drag is fairly well modeled during pitchup 

l  More cycles required Angle of Attack, α (deg) 

Force Coe

fficien

0  5  10  15  20  25 ­0.25 

0.25 

0.5 

0.75 

1.25 

Exp. Lift Coefficient Up Exp. Drag Coefficient Up Exp. Lift Coefficient Down Exp. Drag Coefficient Down Exp. Static Lift Coefficient Exp. Static Drag Coefficient CFD Lift Coefficient CFD Drag Coefficient 

Δt*=0.0075, nsub=5

Page 22: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Dynamic Pitching Results 

Static Pressure  Pitching Pressure 

o 15 = α

Page 23: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Conclusions 

l  A generic UCAV configuration has been wind tunnel tested both statically and pitching 

l  The configuration generates increased dynamic lift during pitchup maneuver 

l  Numerical simulation helps to understand causes of wind tunnel results –  Stronger leading­edge vortex during pitchup –  Leading­edge vortex persists to very high angles of attack –  Vortex breakdown causes the non­linearities in lift 

l  Collaboration between experimentalists and computationalists leads to greater understanding of aerodynamics

Page 24: Predictions and Wind Tunnel - CFD4Aircraft · 2007. 7. 12. · pitchup l Pitchup lift is also greater post stall l Dynamic lift is less than static lift during pitchdown A n g le

Questions?