presentation qhjt 1final

Upload: meer-ashwin-kumar

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Presentation Qhjt 1final

    1/24

    Quantum Hamilton Jacobi Theory

    April 15, 2013

    Quantum Hamilton Jacobi Theory April 15, 2013 1 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    2/24

    IntroductionClassical Canonical Transformations

    Classical canonical transformations are useful for finding a suitable set ofdynamical variables for a particular problem.

    qQ

    pPH(q, p, t)K(Q,P, t)

    Canonical transformations are induced by a generating function, F.

    F can be a function of any two independent variables e.g. (q,Q), (q,P),(Q,p) and (p,P), corresponding to the different types of generatingfunction.

    Quantum Hamilton Jacobi Theory April 15, 2013 2 / 24

    http://goforward/http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    3/24

    IntroductionType-I Generating Functions

    pi=

    qiF1(q,Q, t)

    Pi=

    QiF1(q,Q, t)

    K(Q,P, t) =H(q, p, t) +

    tF1(q,Q, t)

    Quantum Hamilton Jacobi Theory April 15, 2013 3 / 24

    http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    4/24

    IntroductionHamilton-Jacobi Equation

    If we manage to find a canonical transformation which gives us

    K(Q,P,t)=0, then we get the Hamilton-Jacobi equation

    0= H(q,F1

    q , t) +

    tF1(q,Q, t)

    Quantum Hamilton Jacobi Theory April 15, 2013 4 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    5/24

    Quantum Canonical Transformations

    There also exist Quantum Canonical Transformations, which are similar totheir classical counterparts

    q Q

    p P

    H(q, p, t)K(Q,P, t)

    Quantum Hamilton Jacobi Theory April 15, 2013 5 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    6/24

    Quantum Canonical TransformationsType-I QCT

    For a type-I quantum canonical transformation we would have

    pi=

    qiF1(q,Q, t)

    Pi=

    QiF1(q,Q, t)

    K(Q,P, t) =H(q, p, t) +

    t

    F1(q,Q, t)

    Quantum Hamilton Jacobi Theory April 15, 2013 6 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    7/24

    Quantum Canonical TransformationsWell-ordering

    However the quantum generating function may contain noncommutingoperators, so we must enforce well-ordering: operators with upper-case

    letters should always be to the right of operators with lower-case letters, or

    F1(q,Q, t) =

    f(q, t)g(Q, t)

    From here we shall refer to F1(q,Q, t) as W(q,Q, t).

    Quantum Hamilton Jacobi Theory April 15, 2013 7 / 24

    http://goforward/http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    8/24

  • 8/13/2019 Presentation Qhjt 1final

    9/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    Roncadelli and Schulman proved that we can find solutions to the operatorQuantum Hamilton-Jacobi Equation by a simple prescription from thesolutions of the Schrdinger equation for the same Hamiltonian. To provethis, we use a fairly general Weyl-ordered Hamiltonian :

    H(q, p, t) =1

    2aij(q) pipj+ piaij(q) pj+

    1

    2pipjaij(q)+bi(q) pi+ pibi(q)+c(q)

    where aij(), bi(), and c() are functions ofqk.

    Quantum Hamilton Jacobi Theory April 15, 2013 9 / 24

    http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    10/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    Using pi= Wqi

    , the Quantum Hamilton-Jacobi Equation is :

    12aij(q)W

    qiWqj

    + Wqi

    aij(q)Wqj

    + 12Wqi

    Wqj

    aij(q)

    +bi(q)W

    qi+W

    qibi(q) +c(q) +

    W

    t =0

    Quantum Hamilton Jacobi Theory April 15, 2013 10 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    11/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    We sandwich this equation between the eigenstates q| and |Q, and aftera long derivation, we arrive at the c-number Quantum Hamilton Jacobiequation

    2aij(q)W(q,Q, t)

    qiW(q,Q, t)

    qji

    2

    W(q,Q, t)qiqj

    +

    2

    bi(q)i

    aij(q)

    qj

    W(q,Q, t)

    qi+c(q)i

    bi(q)

    qi

    2

    22aij(q)qiqj

    + W(q,Q, t)t

    =0

    Quantum Hamilton Jacobi Theory April 15, 2013 11 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    12/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    But if we set

    (q,Q, t)exp{iW(q,Q, t)}

    in the Schrdinger equation, we find the exact same c-number QuantumHamilton Jacobi equation!

    Quantum Hamilton Jacobi Theory April 15, 2013 12 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    13/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    Thus the wavefunction (q,Q, t) gives us the solution, W(q,Q, t), to the

    c-number Quantum Hamilton Jacobi equation. From this solution we candirectly find the solution, W(q,Q, t) to the Quantum Hamilton-Jacobiequation by replacing variables by operators, since well-ordering eliminatesany possibility of ambiguity.

    Quantum Hamilton Jacobi Theory April 15, 2013 13 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    14/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    We can show that the wavefunction (q,Q, t) is just the quantumpropagator K(q,Q, t). Since both functions obey the same equation, all

    we need to show is that they have the same boundary conditions at t=0.

    For the propagator K(q,Q, t) =(qQ) at t=0.

    Then we must focus on (q,Q, t) or W.

    Quantum Hamilton Jacobi Theory April 15, 2013 14 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    15/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    We assume that for a nonsingular potential, the solution W approachesthat of the free particle for t0. Thus, W(q,Q) = m2t(Qq)

    2.To conserve a well-ordered operator, we must have :

    W =m

    2t(Q2

    2qQ+ q2) +g(t)

    With the Quantum Hamilton Jacobi Equation, we have :

    W

    t

    =m

    2t2(Q2 2qQ+ q2) +

    g

    t

    =m

    2t2(Q2 qQ Qq+ q2)

    0= m

    2t2[q,Q] +

    g(t)

    t

    Quantum Hamilton Jacobi Theory April 15, 2013 15 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    16/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    For small t, we can compute the commutator thanks the the relation :

    q= Q+Pt

    m

    Thus, we find :g(t)t

    = 12t

    (QPPQ) = i

    2t

    W =m

    2t

    (Q2 2qQ+ q2) + i

    2

    ln(t) +const

    (q,Q, t) =const

    1

    texp

    i

    m

    2t(Q2 2qQ+q2)

    Quantum Hamilton Jacobi Theory April 15, 2013 16 / 24

    Q H l J b E

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    17/24

    Quantum Hamilton-Jacobi EquationMarco Roncadelli, L.S. Schulman, Phys. Rev. Lett. 99, 170406 (2007)

    Since we can find any solution of the Schdinger equation by convolving anarbitrary wave function with the propagator, it follows that any solution of

    the operator QHJE can ultimately be constructed in terms of the propagator.

    (q) =e iW(q)

    Quantum Hamilton Jacobi Theory April 15, 2013 17 / 24

    Q H il J bi E i E l

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    18/24

    Quantum Hamilton-Jacobi Equation : ExampleSimple Harmonic Oscillator

    H= p2

    2m+

    12m2q2

    aij=ij1

    4bi=0

    c=1

    2m2q2

    The Quantum Hamilton-Jacobi Equation is :

    1

    2m

    W

    q

    2+

    1

    2m2q2 +

    W

    t =0

    Quantum Hamilton Jacobi Theory April 15, 2013 18 / 24

    Q H il J bi E i E l

    http://goforward/http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    19/24

    Quantum Hamilton-Jacobi Equation : ExampleSimple Harmonic Oscillator

    Converting to c-number form :

    1

    2m W

    q 2

    i

    2m

    2W

    q2 +

    1

    2m2q2 +

    W

    t =0

    We have the propagator :

    K(Q, q, t) =

    m

    2isin(t)exp

    im((Q2 +q2) cos(t)2qQ)

    2sin(t)

    which is a known solution in Quantum Mechanics

    Quantum Hamilton Jacobi Theory April 15, 2013 19 / 24

    Q t H ilt J bi E ti E l

    http://goforward/http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    20/24

    Quantum Hamilton-Jacobi Equation : ExampleSimple Harmonic Oscillator

    Since K(q,Q, t) =expiW(q,Q, t)

    , we can easily find the solution :

    W(q,Q, t) =m((q2 +Q2) cos(t)2qQ)

    2sin(t) +

    i

    2 lnsin(t)

    The quantum solution is then :

    W(q, Q, t) =m((q2 +Q2) cos(t)2qQ)

    2sin(t)

    + i

    2

    lnsin(t)

    Quantum Hamilton Jacobi Theory April 15, 2013 20 / 24

    Q t H ilt J bi E ti E l

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    21/24

    Quantum Hamilton-Jacobi Equation : ExampleSimple Harmonic Oscillator

    We can find the time-dependence of the operators :

    p=W

    q =mqcos(t) Qm

    sin(t)

    P=W

    Q=mQcos(t) + qm

    sin(t)

    Quantum Hamilton Jacobi Theory April 15, 2013 21 / 24

    Quantum Hamilton Jacobi Equation : Example

    http://goforward/http://find/http://goback/
  • 8/13/2019 Presentation Qhjt 1final

    22/24

    Quantum Hamilton-Jacobi Equation : ExampleSimple Harmonic Oscillator

    Which then give us the solution to the Quantum harmonic oscillator :

    q(t) = Pm

    sin(t) + Qcos(t)

    p(t) =Pcos(t) +mQsin(t)

    Quantum Hamilton Jacobi Theory April 15, 2013 22 / 24

    http://find/
  • 8/13/2019 Presentation Qhjt 1final

    23/24

    Quantum Hamilton Jacobi Equation

  • 8/13/2019 Presentation Qhjt 1final

    24/24

    Quantum Hamilton-Jacobi EquationConclusion

    We can construct solutions to the operator QHJE using the quantumpropagator K(q,Q,t) for the same Hamiltonian.

    Once K(q,Q,t) is known, we may get its complex phase W(q,Q,t) andby demanding well-ordering, we produce the operator solutionW(Q, q, t).

    Conversely, we can also solve the classical partial differential equation

    for W(q,Q,t) to find the propagator K(q,Q,t).

    Quantum Hamilton Jacobi Theory April 15, 2013 24 / 24

    http://find/