presentazione standard di powerpoint series and...pwh-20 14 2500 206 x 328x 256 24 pwh-24 8-16 1250...

29

Upload: others

Post on 30-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e
Page 2: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

0 25 50 75 100

PW3-100-SA/80

PW3-50-SA/80

PW3-25-SA/80

Generator Power [kW]

Page 3: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

25-SA/80 and 50-SA/80 Generator

Overall Dimensions 100-SA/80 Generator

Page 4: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Capacity Output Power Dimensions (mm) Weight

Model (uF) (KVAR) (W x L x H) (Kg)

PWH-22 19-42 5000 336 x 328 x 266 34

PWH-20 14 2500 206 x 328x 256 24

PWH-24 8-16 1250 120 x 285 x 200 15

PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80

Magnetic Metals i.e. Carbon Steel C40, C45, AISI 420, Nickel PWH-20 PWH-24 PWH-24

Non Magnetic Metals i.e. Stainless Steel, Aluminum, Brass Copper PWH-22 PWH-20 PWH-20

PWH-22 PWH-20 PWH-24

Page 5: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Main Features SA Series Generators • Automatic tracking and best optimization to load • Constant, repeatable power generation via microprocessor control • Continuous generation • Minimum cooling water flow required • High Safety: output isolated from the mains • Highly integrated with a small footprint • User Friendly Operations through graphical touch-screen interface • Stainless Steel casing • State-of-the-art electronics • Built-in Self-diagnosis • Compliant with the Regulations on Electrical Safety and Electromagnetic Compatibility • Data Log System and built-in Web server • Overall efficiency greater than 96% and maximum operational flexibility

Page 6: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Main Features SA Series Generators Maximum operational Flexibility • Automatic tracking and best optimization to load The Auto-Learn Function allows Generator parameters automatic tuning for low medium or high impedance loads

• Extended Working Frequency Range: 25÷80 kHz Very wide coil admitted inductance range

• Output Power Set: from 2% to 100% (linear) Resolution: - Digital 1% - Analog 0,1% Output Power Stability : ± 0,1 %

• Power Cable can be disconnected from Heating Head Standard Cable Length: 3meter Custom Length: Upon Request

• Touch-screen interface (Web server) Continuous monitoring of:

- Inductor Current - Inductor Voltage - Output Power - Working frequency - Heating Temperature

Page 7: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Main Features SA Series Generators

Overall Efficiency greater than 96%

• New “Stand Alone” Generator Hardware Layout • New Heating Head hardware layout To minimize the power loss on the capacitor block

• Automatic Best optimization to load In order to maximize the power transferred to the workpiece

• Minimum cooling water flow required Independent Generator+Heating Head and Coil cooling circuits. Two independent circuits with specific water flow and water temperature monitoring on each one)

Focus on Generator and Coil Efficiency …

Page 8: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Coil Efficiency Calculation

Test Resume:

The comparison will be carried out using different coils , and different metals.

Coil used for the test

Coil # Ø internal

[mm] Loops

number Copper

Tubing [mm]

Coil 1 140 3 10/8

Coil 2 118 3 10/8

Coil 3 95 3 10/8

Coil 4 95 3 8/6

Coil 5 95 1 30x6

95 mm

118 mm

140 mm

Coil Øint Comparison Scale 1:20

Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

Page 9: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Coil Efficiency Calculation

Each Coil have been connected to a Heating Head (Capacitor Block) and fed by a Function Generator

The Frequency of the Sine Wave Signal, provided by the Function Generator is manually tuned up to the resonant frequency of the L-C system (Head + Coil) In resonant condition the two signals: • V coil • V1 = V Function Generator are in phase

R 500 Ω

V1

V coil

Measured Value:

• Resonant Frequency • V1 (provided by Function Generator)

• V coil

Page 10: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Equivalent Circuit of Heating Head+Coil with no load (1)

The capacity of the Heating Head is known (i.e. 19 μF) The resonant frequency is determined when the system is in resonant condition (i.e. 28 kHz) So the coil inductive value is calculated by the equation:

𝑓𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 =1

2𝜋 𝐿𝐶

19 μ

𝐿 =1

4𝜋2𝑓2𝐶=

1

4 ∙ 3,14 2 ∙ 28.000 2 ∙ (19 ∗ 10−6)= 1,7 𝑢𝐻

V coil

Page 11: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Using the simulator LTSpice, we insert in the model the R resistor to calculate the losses on coil. The value of R is manually adjusted until the simulator calculates the same V coil as the measured one. We find R= 3,95 m ohm

R

Equivalent Circuit of Heating Head+Coil with no load (2)

3.95 m

Page 12: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

The head cooling water temperature increment (ΔT1) and the coil cooling water (ΔT2) are measured, by running the generator with the water connection indicated below.

R

Equivalent Circuit of Heating Head+Coil with no load (3)

ΔT1

ΔT2

We calculate ΔT1= 2,0 °C ΔT2= 17,8 °C

Running the same current on L1 and C1 (resonant condition) it means that the losses on the coil are nearly 9 times higher than the losses on the head,

𝑖𝑛 𝑓𝑎𝑐𝑡 ΔT1

ΔT2= 8,9

3.95 m

Page 13: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Final Equivalent Circuit of Heating Head+Coil with no load (4)

This is the Mathematic Model of the system, with the coil empty.

We add the resistor R3 to take in consideration the losses on the heating head.

The resistor R2 allow the calculation of the losses on the coil only. The two resistors are in series so: 𝑅 = 𝑅2 + 𝑅3 = 3,95 𝑚 𝑜ℎ𝑚

and 𝑅2

𝑅3= 8,9 We obtain:

𝑅2 = 3,55 𝑚 𝑜ℎ𝑚 𝑅3 = 0,40 𝑚 𝑜ℎ𝑚 𝑅2

𝑅3=

ΔT1

ΔT2 = 8,9

Page 14: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Equivalent Circuit of Heating Head + Coil with Load (1)

Now, following exactly the same procedure as before, we insert a metallic piece into the coil (i.e. carbon steel) and we calculate the new mathematic model, the new equivalent circuit

Of course, compared with the previous case (empty coil) , now the system works with: - Different Resonant Frequency (a new L value has to be calculated; This is taken in account by paralleling the inductor L2) - Lower V coil (a new R2 value has to be calculated, we add R4 ) To simplify the calculation we consider that R3 remains constant In fact could be slightly affected by the different resonant frequency

Page 15: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Equivalent Circuit of Heating Head + Coil with Load (2)

This is final the equivalent circuit of the system:

Heating Head + Coil + Work Piece

We underline that the Mathematic model depends on the coil shape and heating head used. It is independent from the Induction Heating Generator used The same procedure has been carried out placing into the coil metallic rods , with exactly the same diameter (Ø85mm) made of: - Carbon Steel

- Stainless Steel AISI 304 - Copper - Brass

Head+ Coil + WorkPiece

Page 16: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Resuming Table Coil Efficiency Calculation

Coil ParametersEmpty

Carbon

Steel

Stainless

SteelCopper Brass

Coil ParametersEmpty

Carbon

Steel

Stainless

SteelCopper Brass

Frequency [Hz] 27.550 28.550 30.430 30.380 30.340 Frequency [Hz] 18.600 19.000 20.480 20.510 20.470

V coil [V rms] 2,42 0,35 0,84 1,64 1,46 V coil [V rms] 1,44 0,21 0,49 0,95 0,85

L tot [H] 1,76 E-06 1,64 E-06 1,44 E-06 1,45 E-06 1,45 E-06 L tot [H] 1,75 E-06 1,67 E-06 1,44 E-06 1,44 E-06 1,44 E-06

L2 L Workpiece [H] 2,39 E-05 8,00 E-06 8,00 E-06 8,32 E-06 L2 L Workpiece [H] 3,99 E-05 8,20 E-06 8,09 E-06 8,28 E-06

R2 R coil [mΩ] 3,55 3,55 3,55 3,55 3,55 R2 R coil [mΩ] 2,85 2,85 2,85 2,85 2,85

R4 R Workpiece [mΩ] 22,25 5,6 0,7 1,55 R4 R Workpiece [mΩ] 17,65 4,35 0,7 1,2

Power coil [KW] 100,0 13,8 38,8 83,5 69,6 Power coil [KW] 100,0 13,9 39,6 80,3 70,4

Powe Workpiece [KW] 0,0 86,2 61,2 16,5 30,4 Powe Workpiece [KW] 0,0 86,1 60,4 19,7 29,6

Frequency [Hz] 30.860 32.440 36.440 36.410 36.270 Frequency [Hz] 20.820 21.620 24.550 24.650 24.450

V coil [V rms] 2,21 0,20 0,41 1,15 0,98 V coil [V rms] 1,29 0,13 0,28 0,66 0,57

L tot [H] 1,40 E-06 1,27 E-06 1,01 E-06 1,01 E-06 1,01 E-06 L tot [H] 1,39 E-06 1,29 E-06 1,00 E-06 9,94 E-07 1,01 E-06

L2 L Workpiece [H] 1,33 E-05 3,54 E-06 3,57 E-06 3,67 E-06 L2 L Workpiece [H] 1,79 E-05 3,56 E-03 3,46 E-03 3,67 E-06

R2 R coil [mΩ] 3,03 3,03 3,03 3,03 3,03 R2 R coil [mΩ] 2,47 2,47 2,47 2,47 2,47

R4 R Workpiece [mΩ] 33,97 10,47 1,47 2,34 R4 R Workpiece [mΩ] 24 6,73 1,175 1,86

Power coil [KW] 100,0 8,2 22,4 67,3 56,4 Power coil [KW] 100,0 9,3 26,8 67,8 57,0

Powe Workpiece [KW] 0,0 91,8 77,6 32,7 43,6 Powe Workpiece [KW] 0,0 90,7 73,2 32,2 43,0

Frequency [Hz] 34.650 37.750 48.550 48.510 47.610 Frequency [Hz] 23.440 24.340 32.440 32.720 32.120

V coil [V rms] 1,84 0,11 0,18 0,52 0,44 V coil [V rms] 1,07 0,10 0,11 0,31 0,26

L tot [H] 1,11 E-06 9,36 E-07 5,66 E-07 5,67 E-07 5,89 E-07 L tot [H] 1,10 E-06 1,02 E-06 5,74 E-07 5,64 E-07 5,85 E-07

L2 L Workpiece [H] 5,90 E-06 1,15 E-06 1,15 E-03 1,25 E-06 L2 L Workpiece [H] 1,49 E-05 1,20 E-06 1,16 E-06 1,26 E-03

R2 R coil [mΩ] 2,9 2,9 2,9 2,9 2,9 R2 R coil [mΩ] 2,4 2,4 2,4 2,4 2,4

R4 R Workpiece [mΩ] 48,1 15,1 2,8 4,2 R4 R Workpiece [mΩ] 24,6 11,4 2,11 3,2

Power coil [KW] 100,0 5,7 16,1 50,9 40,8 Power coil [KW] 100,0 8,9 17,4 53,2 42,9

Powe Workpiece [KW] 0,0 94,3 83,9 49,1 59,2 Powe Workpiece [KW] 0,0 91,1 82,6 46,8 57,1

Frequency [Hz] 33.860 36.670 49.270 49.270 48.170 Frequency [Hz] 22.880 23.750 32.650 33.310 32.360

V coil [V rms] 1,73 0,10 0,14 0,43 0,36 V coil [V rms] 1,01 0,07 0,09 0,25 0,21

L tot [H] 1,16 E-06 9,92 E-07 5,50 E-07 5,50 E-07 5,75 E-07 L tot [H] 1,15 E-06 1,07 E-06 5,66 E-07 5,44 E-07 5,77 E-07

L2 L Workpiece [H] 6,69 E-06 1,04 E-06 1,04 E-03 1,14 E-06 L2 L Workpiece [H] 1,54 E-05 1,12 E-03 1,05 E-06 1,16 E-03

R2 R coil [mΩ] 3,35 3,35 3,35 3,35 3,35 R2 R coil [mΩ] 2,6 2,6 2,6 2,6 2,6

R4 R Workpiece [mΩ] 56,65 18,85 3,4 5,35 R4 R Workpiece [mΩ] 39,4 14,2 2,65 4,1

Power coil [KW] 100,0 5,6 15,1 49,6 38,5 Power coil [KW] 100,0 6,2 15,5 49,5 38,8

Powe Workpiece [KW] 0,0 94,4 84,9 50,4 61,5 Powe Workpiece [KW] 0,0 93,8 84,5 50,5 61,2

Frequency [Hz] 85.050 94.750 110.450 108.750 107.450 Frequency [Hz] 57.050 62.350 72.870 72.280 71.600

V coil [V rms] 0,65 0,07 0,12 0,28 0,25 V coil [V rms] 0,35 0,05 0,09 0,16 0,15

L tot [H] 1,84 E-07 1,49 E-07 1,09 E-07 1,13 E-07 1,16 E-07 L tot [H] 1,85 E-07 1,55 E-07 1,14 E-07 1,16 E-07 1,18 E-07

L2 L Workpiece [H] 7,66 E-07 2,68 E-07 2,90 E-07 3,09 E-07 L2 L Workpiece [H] 9,51 E-07 2,93 E-07 3,06 E-07 3,22 E-07

R2 R coil [mΩ] 1,18 1,18 1,18 1,18 1,18 R2 R coil [mΩ] 1,143 1,143 1,143 1,143 1,143

R4 R Workpiece [mΩ] 10,52 3,66 0,73 1 R4 R Workpiece [mΩ] 7,157 1,957 0,457 0,717

Power coil [KW] 100,0 35,7 48,3 68,5 66,5 Power coil [KW] 100,0 13,8 36,9 71,4 61,5

Powe Workpiece [KW] 0,0 64,3 51,7 31,5 33,5 Powe Workpiece [KW] 0,0 86,2 63,1 28,6 38,5

#5

Loops: 1

Ø95mm

30x6mm tubing

19uF

#1

Loops: 3

Ø140mm

10/8mm tubing

42uF

#2

Loops: 3

Ø118mm

10/8mm tubing

42uF

#3

Loops: 3

Ø95mm

10/8mm tubing

42uF

#4

Loops: 3

Ø95mm

8/6mm tubing

42uF

#5

Loops: 1

Ø95mm

30x6mm tubing

42uF

#4

Loops: 3

Ø95mm

8/6mm tubing

19uF

#3

Loops: 3

Ø95mm

10/8mm tubing

19uF

#1

Loops: 3

Ø140mm

10/8mm tubing

19uF

#2

Loops: 3

Ø118mm

10/8mm tubing

19uF

Page 17: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

0,0

20,0

40,0

60,0

80,0

100,0

1 2 3 4 5

Po

we

r to

Wo

rkp

iece

[%

]

Coil #

Coil Efficiency with 19 uF Heating Head

Carbon Steel 19 uF

Stainless Steel 19 uF

Copper 19 uF

Brass 19 uF

Coil # Ø internal

[mm] Loops

number Copper

Tubing [mm]

Coil 1 140 3 10/8

Coil 2 118 3 10/8

Coil 3 95 3 10/8

Coil 4 95 3 8/6

Coil 5 95 1 30x6

Coil Øint Comparison Scale 1:20

Page 18: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Serial vs. Parallel Resonance The Mathematic Models determined are now used to calculate the:

- Voltage - Current on the heading head cable

to be provided by ideal Generators to deliver 100kW of Power:

Parallel Resonance Generator Serial Resonance Generator Ideal Generator Head + Coil + WorkPiece Ideal Generator Head + Coil + WorkPiece

Example Coil 1x95 42uF with Cu workpiece

Simulating the system in order to absorb 100 kW from the Generator , we measure: - Voltage on the Head Cable= 416 V rms - Current on the Head Cable= 7950 A rms

Simulating the system in order to absorb 100 kW from the Generator , we measure: - Voltage on the Head Cable= 415 V rms - Current on the Head Cable= 240 A rms

We add the resistor (R capacitor) to calculate the losses on the capacitors block

It’s absolutely necessary to use a Transformer to reduce the current on the Head’s Cable and on the active component as well

Cab

le

Cab

le

Page 19: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Parallel Resonance Generator Serial Resonance Generator

At the next page is explained how the losses on the Transformer have been calculated

With this configuration: Simulating the system in order to absorb 100 kW from the Generator , we measure: - Voltage on the Head Cable= 390 V rms - Current on the Head Cable= 268 A rms - Current on the Load = 7380 A rms

With this configuration: Simulating the system in order to absorb 100 kW from the Generator , we measure: - Voltage on the Head Cable= 2500 V rms - Current on the Head Cable= 513 A rms

- Current on the Load = 6320 A rms

Page 20: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

The magnetic losses (dispersed field) haven’t been taken in consideration. So we consider: Reactive Power Transfer=100%

Considering Active efficiency = 97% and connecting the transformer to a load that absorbs 6000 A , it means 30kW lost on a 1000 kW load

Series Resonant System : Matching Transformer Mathematic Model

Page 21: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

LT Spice software Running Simulation Example

Page 22: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Results Coil Parameter Parallel Series

Power Workpiece [kW] 25,3 18,3

Power Coil [kW] 63,3 45,6

Power Capacitors [kW] 11,1

Power Tranfromer [kW] 35,9

Resonant Frequency [kHz] 109 72

Voltage on Head Cable [V rms] 391 1700

Current on Head Cable [A rms] 256 526

Power Workpiece [kW] 83,8 77,8

Power Coil [kW] 13,4 12,4

Power Capacitors [kW] 2,4

Power Tranfromer [kW] 9,8

Resonant Frequency [kHz] 62 62

Voltage on Head Cable [V rms] 210 1200

Current on Head Cable [A rms] 480 550

Power Workpiece [kW] 47,8 44,5

Power Coil [kW] 47,1 43,9

Power Capacitors [kW] 5,6

Power Tranfromer [kW] 11,8

Resonant Frequency [kHz] 49 49

Voltage on Head Cable [V rms] 637 3690

Current on Head Cable [A rms] 158 604

Power Workpiece [kW] 93,9 93,3

Power Coil [kW] 5,7 5,7

Power Capacitors [kW] 0,7

Power Tranfromer [kW] 1,5

Resonant Frequency [kHz] 37 37

Voltage on Head Cable [V rms] 304 1200

Current on Head Cable [A rms] 340 320

Coil #6

Loops: 1

Øint=95mm

30x6mm Tubing

(42 uF Head)

material: COPPER

Coil #6

Loops: 1

Øint=95mm

30x6mm Tubing

(42 uF Head)

material: Carbon STEEL

Coil #4

Loops: 3

Øint=95mm

8/6mm Tubing

(19 uF Head)

material: COPPER

Coil #4

Loops: 3

Øint=95mm

8/6mm Tubing

(19 uF Head)

material: Carbon STEEL

Frequency Limit

Voltage Limit

Coil #6 Inductor holders length= 30mm

Page 23: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

Results Coil Parameter Parallel Series

Power Workpiece [kW] 25,3 18,3

Power Coil [kW] 63,3 45,6

Power Capacitors [kW] 11,1

Power Tranfromer [kW] 35,9

Resonant Frequency [kHz] 109 72

Voltage on Head Cable [V rms] 391 1700

Current on Head Cable [A rms] 256 526

Power Workpiece [kW] 83,8 77,8

Power Coil [kW] 13,4 12,4

Power Capacitors [kW] 2,4

Power Tranfromer [kW] 9,8

Resonant Frequency [kHz] 62 62

Voltage on Head Cable [V rms] 210 1200

Current on Head Cable [A rms] 480 550

Power Workpiece [kW] 47,8 44,5

Power Coil [kW] 47,1 43,9

Power Capacitors [kW] 5,6

Power Tranfromer [kW] 11,8

Resonant Frequency [kHz] 49 49

Voltage on Head Cable [V rms] 637 3690

Current on Head Cable [A rms] 158 604

Power Workpiece [kW] 93,9 93,3

Power Coil [kW] 5,7 5,7

Power Capacitors [kW] 0,7

Power Tranfromer [kW] 1,5

Resonant Frequency [kHz] 37 37

Voltage on Head Cable [V rms] 304 1200

Current on Head Cable [A rms] 340 320

Coil #6

Loops: 1

Øint=95mm

30x6mm Tubing

(42 uF Head)

material: COPPER

Coil #6

Loops: 1

Øint=95mm

30x6mm Tubing

(42 uF Head)

material: Carbon STEEL

Coil #4

Loops: 3

Øint=95mm

8/6mm Tubing

(19 uF Head)

material: COPPER

Coil #4

Loops: 3

Øint=95mm

8/6mm Tubing

(19 uF Head)

material: Carbon STEEL

+88% efficiency

Page 24: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

CEIA Generator structure

Ideal Current Generator connected to load

Matching Network

Automatic Selection of the most suitable: - Generator Output impedance - Working Band

Ideal current generator

Head + Coil + WorkPiece

Matching Network

Galvanic insulator transformer Load Matching and User Safety. The operator is physically isolated from the power supply line

Possible Settings: - 4:2 - 4:3 - 4:4 Low/Medium /High Impedance

Head + Coil + WorkPiece Output Transformer CEIA Generator Schematic layout

Head Cable

Page 25: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Ou

tpu

t P

ow

er

[kW

]

Coil Voltage [V rms]

Impedance Adaption , Output Transformer Setting Generator Output Power vs. Coil Voltage

Trasf Setting 4:4

Trasf Setting 4:3

Trasf Setting 4:2

AUTOLEARN Function

High Impedance

Med Impedance

Low Impedance

Page 26: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

f [kHz] R [Ohm]

P [

kW]

PW3-100-SA/80 Generator Output Power vs. Working Frequency and Load Impedance

Page 27: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e

R [Ohm]

R [Ohm]

f [kHz]

f [kHz]

P [

kW]

P [

kW]

PW3-50-SA/80 vs. PW3-720/50

Very wide Band Adjustment

Generator Output Power vs. : - Working Frequency - Load Impedance

PW3-50-SA/80

PW3-720/50

PW3-720/50 Output transformer setting 16:6

Page 28: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e
Page 29: Presentazione standard di PowerPoint Series and...PWH-20 14 2500 206 x 328x 256 24 PWH-24 8-16 1250 120 x 285 x 200 15 PW3-100-SA/80 PW3-50-SA/80 PW3-25-SA/80 Magnetic Metals i.e