pressurized water reactor primary water chemistry guidelines · epri -3412 hillview avenue, palo...

297
Pressurized Water Reactor Primary Water Chemistry Guidelines Volume 1, Revision 6 1014986 Final Report, December 2007 NON-PROPRIETARY EPRI Project Manager K. Fruzzetti EPRI - 3412 Hillview Avenue, Palo Alto, California 94304 PO Box 10412, Palo Alto, California 94303 - USA 800.313.3774 650.855.2121 [email protected] ° www.epri.com

Upload: others

Post on 14-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Pressurized Water Reactor PrimaryWater Chemistry GuidelinesVolume 1, Revision 6

1014986

Final Report, December 2007

NON-PROPRIETARY

EPRI Project ManagerK. Fruzzetti

EPRI - 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 - USA800.313.3774 • 650.855.2121 • [email protected] ° www.epri.com

Page 2: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Pressurized Water Reactor PrimaryWater Chemistry GuidelinesVolume 1, Revision 6

1014986

Final Report, December 2007

NON-PROPRIETARY

EPRI Project ManagerK. Fruzzetti

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 - PO Box 10412, Palo Alto, California 94303 - USA800.313.3774 • 650.855.2121 ° [email protected] • www.epri.com

Page 3: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS ANACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCHINSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THEORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I)WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, ORSIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESSFOR A PARTICULAR PURPOSE, OR (11) THAT SUCH USE DOES NOT INFRINGE ON ORINTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUALPROPERTY, OR (111) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'SCIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER(INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVEHAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOURSELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD,PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT

PWR Primary Water Chemistry Guidelines Committee

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at (800) 313-3774, oremail askepri.com.

Electric Power Research Institute, EPRI, and TOGETHER.. SHAPING THE FUTURE OFELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2007 Electric Power Research Institute, Inc. All rights reserved.

Page 4: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

CITATIONS

This report was prepared by

PWR Primary Water Chemistry Guidelines Committee

Ameren UE ExelonJ. Carter, G. Gary J. Golich, D. Morey, B. Walton

American Electric Power First EnergyD. Faulkner, T. Andert, B. Hershberger G. Gillespie, V. Linnenbom

AREVA NP Inc. Florida Power & Light

W. AIlmon, B. Cyrus, J. Riddle D. Frey, P. Skinner

Arizona Public Service INPOJ. Santi, D. Fuller B. Burke

British Energy KEPCOJ. C. Bates, K. Garbett, K. Hinds H. lkorna

COG LaborelecK. Bagli E. Girasa

Constellation Energy R. Lecocq

E. Eshelman NMC

Dominion Engineering, Inc. E. Baker, C. Jones, J. McElrath, R.

J. Gorman, C. Marks Richards

Dominion Resources NWT Corp.

E. Frese, B. McDonald, L. Miller S. Sawochka

Duke Energy OPPD i

A. Breland, R. Eaker, K. Johnson, D. . Dukarski

Rochester, L. Wilson Pacific Gas & Electric

Electricit6 dle France K. Bieze, J. Gardner

J. Audiard, M. Bachet, A. Tigeras Progress Energy

Entergy N. Bach, K. Brown, P. Cross, B.

B. Cullen, G. Dolese, D. Wilson Goncarovs

PSEG Nuclear LLCG. Rich, S. Robitzski

RinghalsP.-O. Andersson, B. Bengtsson, S.

LarssonSouth Carolina Electric & Gas

F. Bacon

Southern California EdisonJ. Muniga, T. Sarette

Southern NuclearV. Beavers, R. Collins, D. Rickertsen,

J.R Robinson

STPNOCD. Bryant, R. Ragsdale

TXU EnergyK. Cooper, D. Rebstock

TVAD. Adams, W. Clontz

WestinghouseS. Barshay, J. lyer, N. Vitale

WCNOCJ. Truelove

ELECTRIC POWER RESEARCH INSTITUTEK. Fruzzetti, Chain-nan; A. Ahluwalia, A. Demma, J. Deshon, D. Hussey, A. Kucuk, D. Perkins

This report describes research sponsored by EPRI.

This report desctibes research sponsored by the Electric Power Research Institute (EPRI).

The report is a corporate document that should be cited in the literature in the following manner:

Pressurized Water Reactor Primary Water Chemistry Guidelines: Volume 1, Revision. EPRI,Palo Alto, CA: 2007. 1015018.

iii

Page 5: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

REPORT SUMMARY

State-of-the-art water chemistry programs help ensure the continued integrity of reactor coolantsystem (RCS) materials of construction and fuel cladding, ensure satisfactory core performance,and support the industry trend toward reduced radiation fields. These revised Pressurized WaterReactor Primary Water Chemistry Guidelines, prepared by a committee of industry experts,reflect the recent field and laboratory data on primary coolant system corrosion and performanceissues. Volume 1 covers operating chemistry and Volume 2 covers startup and shutdownchemistry in a pressurized water reactor (PWR).

BackgroundEPRI periodically updates the PWR water chemistry guidelines as new information becomesavailable and as required by NEI 97-06 (Steam Generator Program Guidelines) and NET 03-08(Guideline for the Management of Materials Issues). The last revision of the PWR waterchemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This revision provides further detailswith regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdowndose rates.

ObjectiveTo update the Pressurized Water Reactor Primary Water Chemistry Guidelines, Revision 5,published in 2003.

ApproachA committee of industry experts, including utility specialists, nuclear steam supply system andfuel vendor representatives, Institute of Nuclear Power Operations representatives, consultants,and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactorwater coolant system materials issues, fuel integrity and performance issues, and radiation doserate issues. From these data, the committee generated water chemistry guidelines that all PWRnuclear plants should adopt. Recognizing that each nuclear plant owner has a unique set ofdesign, operating, and corporate concerns, the guidelines committee has retained a method forplant-specific optimization.

ResultsRevision 6 of the Pressurized Water Reactor Primary Water Chemistry Guidelines-whichprovides guidance for PWR primary systems of all manufacture and design-includes thefollowing updates:

The guidelines continue to emphasize plant-specific optimization of water chemistry to addressindividual plant circumstances. The committee revised guidance with regard to optimization to

v

Page 6: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

reflect industry experience gained since the publication of Revision 5. This revision incorporatesthe terminology of NEI 03-08 and NEI 97-06 to distinguish between guidance elements that are"mandatory", "shall", and "recommended". Chapter 5 of Volume 1 has been added to callattention to the elements within these guidelines that fall into these three classifications. Thecommittee considers Volume 2 to be for information only and to be outside the framework ofNEI 03-08 and NEI 97-06.

The revised Chapters 2 and 3 of Volume 1 address the latest information on PWSCC of RCSmaterials, fuel cladding integrity and core performance, and radiation field control. Bothvolumes of the guidelines emphasize optimization of pH control programs with regard tomaintaining system integrity, minimizing the potential for axial offset anomaly and excessivefuel deposits, adding zinc to minimize shutdown dose rates and mitigate PWSCC concerns, andensuring that pH programs do not adversely impact PWSCC or fuel cladding integrity.

The committee reviewed and revised shutdown and startup chemistry coverage in Volume 2 toreflect industry experience gained in this area since issuance of Revision 5. In particular, thediscussion regarding removal of corrosion products during shutdown maneuvers was updated toreflect recent laboratory testing, reevaluation of fuel scraping deposit analyses, chemicalthermodynamic considerations, and plant experience suggesting that reductive decomposition ofnickel ferrite is not a major factor in shutdown chemistry.

The committee also updated the appendices to Volumes 1 and 2.

EPRI PerspectiveThis sixth revision of the Pressurized Water Reactor Primary Water Chemistry Guidelines,endorsed by the utility executives of the EPRI PWR Materials Management Program (PMMP),represents another step in the continuing use of proactive chemistry programs to limit or controldegradation of steam generator tubes, fuel cladding, and other structural parts. This revisiondocuments the increased consideration of state-of-the art water chemistry programs, taking intoaccount recent field and laboratory data on primary coolant system corrosion and performanceissues, which PWR operators can use to update their primary water chemistry programs.

KeywordsPWRsWater chemistryPrimary Water Stress Corrosion CrackingGuidelinesReactor coolant systemFuel

vi

Page 7: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

ABSTRACT

Ensuring continued integrity of RCS materials of construction and fuel cladding and maintainingthe industry trend toward reduced radiation fields requires continued optimization of reactorcoolant chemistry. Optimization of coolant chemistry to meet site-specific demands becomesincreasingly important in light of the movement toward extended fuel cycles, higher duty cores,increasingly stringent dose rate control, decreased refueling outage duration, and reducedoperating costs. This document is the seventh in a series of industry Guidelines on PWR primarywater chemistry. Like each of the others in the series, it provides a template for development ofa plant-specific water chemistry program.

vii

Page 8: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI FOREWORD

Chemistry optimization of pressurized water reactor (PWR) primary systems in recent times hasbeen complicated by the demands of longer fuel cycles (typically requiring higher initial boronconcentrations), increased fuel duty (more subcooled boiling) and material/fuel corrosionconcerns. Current utility concerns focus on minimizing costs without sacrificing materialsintegrity or safety. These Guidelines provide a template for a responsive chemistry program forPWR primary systems and the technical bases/supporting information for the program. It is thesixth revision of the Guidelines and considers the most recent operating experience andlaboratory data. The Guidelines will be of interest to plant chemists, plant managers, chemicalengineers, and engineering managers within utilities owning PWRs.

The Guidelines were prepared by a committee of experienced industry personnel through aneffort sponsored by EPRI. Participation was obtained from chemistry, materials, steamgenerator, and fuels experts to ensure the Guidelines present chemistry parameters that areoptimum for each set of operating and material conditions. Each EPRI-member utility operatinga PWR participated in generation or review of these Guidelines. Therefore, this document servesas an industry consensus for PWR primary water chemistry control. In essence, it is a reportfrom industry specialists to the utilities documenting an optimized water chemistry program.

Special acknowledgment is given to the following organizations for submitting first-handexperience through committee participation:

* Ameren UE

* American Electric Power

* AREVA NP Inc.

" Arizona Public Service

* British Energy

* CANDU Owner's Group

" Constellation Energy

* Dominion Resources

* Duke Energy

* Electricit6 de France (EDF)

" Entergy

* Exelon

" First Energy

* Florida Power & Light

ix

Page 9: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

" INPO

* KEPCO

* Laborelec (Belgium)

" Nuclear Management Company (NMC)

* Omaha Public Power District

" Pacific Gas & Electric Company

* Progress Energy

" Public Service Electric & Gas

* Ringhals (Sweden)

* South Carolina Electric & Gas

" Southern California Edison

* Southern Nuclear Operating Co.

" South Texas Project Nuclear Operating Company

* Tennessee Valley Authority (TVA)

" TXU Energy

* Westinghouse Electric

" Wolf Creek Nuclear Operating Corp.

This committee was significantly assisted in its work by C. Marks and J. Gorman of DominionEngineering, Inc. and S. Sawochka of NWT Corporation. In addition, the Committee would liketo acknowledge the support and input of fuel specialists from EPRI-member utilities.

This document is intended to be a set of Guidelines which describe an effective, state-of-the-artprogram from which a utility can develop an optimized program for their plant. The philosophyembodied in this document has generic applicability, but can be adapted to the particularconditions of the utility and the site. The detailed guidance presented in Chapters 3 and 4 of thisvolume and of Volume 2 on startup and shutdown chemistry comprise a program that shouldserve as a model for the development of site-specific chemistry plans.

Relative to Rev. 5 of these Guidelines, the major changes in Volume 1 of this document are asfollows:

X

Page 10: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

xi

Page 11: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

xii

Page 12: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

xiii

Page 13: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Keith Fruzzetti, ChairmanPWR Primary Water Chemistry Guidelines Revision 6 CommitteeEPRI Nuclear Power GroupDecember 2007

xiv

Page 14: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

ACRONYMS

AOA Axial offset anomalyBAST Boric acid storage tankBOC Beginning of cycleBRS Boron recovery system.BTRS Boron thermal regeneration systemBWR Boiling water reactorCT Compact TensionCVCS Chemical and volume control system. The term makeup system (MU) is

used at some plants for the same system.DEI Dose equivalent iodine- 131DF Decontamination factorDHC Debye-Huckel limiting slopeDRP Discrete radioactive particleF E-bar, average disintegration energyEBA Enriched boric acidECP Electrochemical potentialEFPY Effective Full Power YearsEPRI Electric Power Research InstituteEOC End of cycleEZ Expansion ZoneHDCI High duty core indexHUT Holdup tank.IFBA Integral Fuel Burnable AbsorbersIGSCC Intergranular stress corrosion crackingINPO Institute of Nuclear Power OperationsLTCP Low temperature crack propagationLTOP Low temperature overpressureMUT Makeup TankNDE Non-Destructive ExaminationNEI Nuclear Energy InstituteNSSS Nuclear steam system supplierNTU Nephelometric turbidity unitsNUPEC Nuclear Power Engineering CorporationPRT Pressurized relief tankPWR Pressurized water reactorPWSCC Primary water stress corrosion crackingRCP Reactor coolant pumpRCS Reactor coolant system. For purposes of these Guidelines, the RCS

xv

Page 15: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

includes the pressurizer.RFO Refueling outageRHR Residual heat removal system. The terms decay heat (DH) system and

shutdown cooling (SDC) system are used at some plants for the same system.RUB Reverse U-bendRWST Refueling water storage tank. The term borated water storage tank

(BWST) is used at some plants for the same tank.SCC Stress corrosion crackingSFP Spent fuel pool system. The term spent fuel cooling (SFC) system is

used at some plants for the same system.STP Standard temperature and pressureTOC Total organic carbonTS Tube SheetTSS Total suspended solidsVCT Volume control tank. The term makeup tank (MUT) is used at some

plants for the same tank.WABA Wet Annular Burnable Absorbers

xvi

Page 16: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

CONTENTS

1 INTRODUCTION AND MANAGEMENT RESPONSIBILITIES .................................. 1-1

1.1 Introduction.................................................................................... 1-1

1 .2 Generic Management Considerations ...................................................... 1-3

1.3 Communication and Training ................................................................ 1-3

1.4 Outage Planning and Coordination.......................................................... 1-4

2 TECHNICAL BASIS FOR THE NEED TO CONTROL THE COOLANT CHEMISTRYIN PWRS................................................................................................. 2-1

2.1 Introduction.................................................................................... 2-1

2.2 Discussion of Chemistry Regimes........................................................... 2-2

2.2.1 Guiding Principles for Selection of Operating pHT............................... 2-6

2.3 Materials Integrity in the Reactor Coolant System ......................................... 2-7

2.3.1 Corrosion Modes of Structural Materials .............................................. 2-7

2.3.2 Effects of Chemistry Parameters ...................................................... 2-9

2.3.2.1 PWSCC Mechanisms ............................................................ 2-10

2.3.2.2 Dissolved Oxygen................................................................ 2-1 1

2.3.2.3 Dissolved Hydrogen - Effects at Operating Temperatures.................... 2-12

2.3.2.4 Dissolved Hydrogen - Low Temperature Considerations..................... 2-18

2.3.2.5 pH ................................................................................. 2-20

2.3.2.6 Lithium and Boron................................................................ 2-23

2.3.2.7 Plant Experience Regarding Effects of Lithium and pH on PWSCC ......... 2-26

2.3.2.8 Chloride........................................................................... 2-27

2.3.2.9 Fluoride ........................................................................... 2-27

2.3.2.10 Sulfate ........................................................................... 2-27

2.3.2.11 Organics ......................................................................... 2-29

2.3.2.12 Lead.............................................................................. 2-29

2.3.2.13 Zinc .............................................................................. 2-30

2.3.2.14 Effect of pH (Li, B) on Steam Generator Leak Rate.......................... 2-39

xvii

Page 17: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

2.4 Fuel Integrity Considerations ...................................................................................... 2-40

2.4.1 Chem istry Effects on Fuel Reliability ................................................................... 2-41

2.4.1.1 Cladding Corrosion ..................................................................................... 2-41

2.4.1.2 Fuel Crud Deposition ................................................................................... 2-44

2.4.2 Effects of Chem istry Parameters ........................................................................ 2-46

2.4.2.1 Dissolved Oxygen ....................................................................................... 2-46

2.4.2.2 Dissolved Hydrogen .................................................................................... 2-46

2 .4 .2 .3 F lu o rid e ....................................................................................................... 2 -4 7

2.4.2.4 Aluminum, Calcium , Magnesium , and Silica ................................................ 2-47

2.4.2.5 Suspended Solids ....................................................................................... 2-50

2 .4 .2 .6 p H ............................................................................................................... 2 -5 0

2 .4 .2 .7 L ith iu m ........................................................................................................ 2 -5 1

2 .4 .2 .8 Z in c ............................................................................................................. 2 -5 5

2.4.3 PW R Axial Offset Anomaly ................................................................................. 2-58

2.5 Radiation Field Control ............................................................................................... 2-60

2.5.1 Sources of Radiation Fields ................................................................................ 2-60

2.5.2 Effects of Chem istry Parameters ........................................................................ 2-61

2.5.2.1 Corrosion Product Release ......................................................................... 2-62

2.5.2.2 Particulate Transport ................................................................................... 2-63

2.5.2.3 Soluble Transport ........................................................................................ 2-64

2.5.2.4 Verification Tests ......................................................................................... 2-69

2 .5 .2 .5 P la n t D a ta ................................................................................................... 2 -7 0

2.5.2.6 Effects of End-Of-Cycle Boron Concentration ............................................. 2-77

2 .5 .2 .7 Z in c ............................................................................................................. 2 -7 7

2 .5 .3 S u m m a ry ............................................................................................................ 2 -7 9

2.6 Sum mary of Chemistry Considerations ....................................................................... 2-80

2.6.1 Considerations for pH (Lithium ) .......................................................................... 2-80

2.6.2 Considerations for Dissolved Hydrogen ........................................................... 2-81

2.6.2.1 Effect of Hydrogen on PW SCC ................................................................... 2-81

2.6.2.2 Effect of Hydrogen on Iron and Nickel Solubility in the RCS ........................ 2-83

2.6.2.3 Effect of Hydrogen on Iron and Nickel Solubility Through the Core ............. 2-83

2.6.3 Conclusion of Chemistry Considerations ......................................................... 2-84

3 POW ER OPERATION CHEMISTRY CONTROL .................................................................. 3-1

3 .1 In tro d u c tio n .................................................................................................................. 3 -1

xviii

Page 18: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

3.2 Reactor Coolant System (RCS) pH Optimization........................................... 3-1

3.2.1 Operation................................................................................. 3-1

3.3 Control and Diagnostic Parameters ......................................................... 3-4

3.4 Guideline Philosophy ......................................................................... 3-5

3.4.1 Philosophy ............................................................................... 3-5

3.4.2 Corrective Actions....................................................................... 3-5

3.5 Definitions of Terms Used in the Guidelines................................................ 3-6

3.5.1 Plant Status.............................................................................. 3-6

3.5.2 Action Levels ............................................................................ 3-6

3.5.2.1 Action Level 1...................................................................... 3-6

3.5.2.2 Action Level 2...................................................................... 3-7

3.5.2.3 Action Level 3...................................................................... 3-7

3.6 Guideline Values for Chemistry Parameters During Power Operation ................... 3-8

3.6.1 Reactor Coolant System Guidelines................................................... 3-8

3.6.2 Special Considerations................................................................ 3-10

3.6.2.1 Axial Offset Anomaly............................................................. 3-10

3.6.2.2 Zinc Addition...................................................................... 3-1 1

3.6.2.3 Extended Fuel Cycles ........................................................... 3-12

3.6.2.4 Operation With Unusual Levels of Lithium ..................................... 3-12

3.6.3 Primary System Makeup Water ...................................................... 3-13

3.7 Control and Diagnostic Parameters, Frequencies, and Limits for StartupChemistry ......................................................................................... 3-14

4 METHODOLOGY FOR PLANT-SPECIFIC OPTIMIZATION .................................... 4-1

4.1 Introduction.................................................................................... 4-1

4.2 Primary Water Chemistry Variables and Options........................................... 4-2

4.2.1 Program Objectives..................................................................... 4-2

4.2.2 Parameters Impacting Pressure Boundary or Fuel Cladding Integrity .............. 4-3

4.2.2.1 ........................................................................................ 4-3

4.2.2.2 ........................................................................................ 4-4

4.2.2.3 ........................................................................................ 4-4

4.2.2.4 ........................................................................................ 4-4

4.2.2.5 ........................................................................................ 4-5

4.2.2.6 ........................................................................................ 4-6

4.2.3 Parameters With Negligible Impact on Pressure Boundary or Fuel CladdingIntegrity ......................................................................................... 4-6

XiX

Page 19: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

4.2.3.1 Organics ............................................................................ 4-6

4.2.3.2 Suspended Solids ................................................................. 4-6

4.2.4 Chemistry Control During Shutdowns and Startups.................................. 4-7

4.2.4.1 Shutdown Chemistry Program .................................................... 4-7

4.2.4.2 Startup Chemistry Program....................................................... 4-7

4.3 Optimization Methodology ................................................................... 4-7

4.3.1 Optimization Process ................................................................... 4-7

4.3.2 NEI 03-08 and NEI 97-06 Checklist................................................... 4-8

5 MANDATORY, SHALL AND RECOMMENDED ELEMENTS.................................. 5-1

5.1 Introduction .................................................................................... 5-1

5.2 Mandatory, Shall and Recommended Elements............................................ 5-1

5.2.1 Mandatory Element ...................................................................... 5-1

5.2.2 Shall Elements ........................................................................... 5-1

5.2.3 Recommended Elements................................................................ 5-2

6 REFERENCES...................................................................................... 6-I

A CALCULATION OF PHT AND DATA EVALUATION METHODOLOGIES................... A-1

A.1 Calculation of pHT............................................................................ A-i

A.2 Low Temperature pH, Boron, Lithium Calculations and Data........................... A-13

Mathematical Development ................................................................. A-14

Numerical Method Commentary ............................................................ A-i5

A.3 Data Consistency (pH at 250 C/Conductivity at 250 C/Boron/Lithium).................. A-1 8

Calculation of Equivalent Conductance of 250C........................................... A-19

Pentaborate conductivity contribution ...................................................... A-20

A.4 Verification and Validation of the EPRI ChemWorkSTM Primary System pHCalculator......................................................................................... A-20

A.5 Temperature and Pressure Dependence of pH.......................................... A-20

pHTmve as a Convention ...................................................................... A-20Pressure and Temperature Variations in pKw.............................................. A-20

A.6 References................................................................................. A-20

B CHEMISTRY CONTROL OF SUPPORTING SYSTEMS...................................... B-20

B.1 Introduction ................................................................................. B-20

B.2 Letdown Purification System .............................................................. B-20

xx

Page 20: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

B.2.1 System Description ........................................................................................... B-20

B.2.2 Selection Criteria for Purification Filters and Ion Exchange Resins .................... B-20

B.2.3 Performance Monitoring .................................................................................... B-20

B.2.4 Selected Industry Experiences .......................................................................... B-20

B.2.4.1 Resin Intrusions ......................................................................................... B-20

B.2.4.2 Chloride Elution ......................................................................................... B-20

B.2.4.3 Leachable Impurities .................................................................................. B-20

B.2.4.4 Boron/Power Excursions ............................................................................ B-20

B.2.4.5 Lithium Excursions/Power Effects .............................................................. B-20

B.2.4.6 Shutdown Sulfate Increases ...................................................................... B-20

B.2.4.7 Makeup W ater Contamination .................................................................... B-20

B.3 Volume Control Tank or Makeup Tank ...................................................................... B-20

B.3.1 System Description ........................................................................................... B-20

B.3.2 Chem istry Control and Technical Basis ............................................................. B-20

B.3.3 Selected Industry Experiences .......................................................................... B-20

B.3.3.1 VCT Vapor Space Composition ................................................................. B-20

B .4 P re s s u riz e r ................................................................................................................ B -2 0

B.4.1 System Description ........................................................................................... B-20

B.4.2 Chem istry Control and Technical Basis ............................................................. B-20

B.4.3 Industry Experience ........................................................................................... B-20

B.4.3.1 Corrosion Observations ............................................................................. B-20

B.4.3.2 RCS Hydrogen Control .............................................................................. B-20

B.4.3.3 Chloride Contam ination ............................................................................. B-20

B.5 Boric Acid Storage .................................................................................................... B-20

B.5.1 System Description ........................................................................................... B-20

B.5.2 Chem istry Control and Technical Basis ............................................................. B-20

B.5.3 Industry Experience ........................................................................................... B-20

B.5.3.1 Silica Transport .......................................................................................... B-20

B.5.3.2 Boric Acid Crystallization ........................................................................... B-20

B.5.3.3 Chloride Contamination ............................................................................. B-20

B.5.3.4 Magnesium Contam ination ........................................................................ B-20

B.5.3.5 Sulfate Contam ination ................................................................................ B-20

B.6 Refueling W ater Storage Tank .................................................................................. B-20

B.6.1 System Description ........................................................................................... B-20

B.6.2 Chem istry Control and Technical Basis ............................................................. B-20

Xxi

Page 21: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

B.6.3 Industry Experience ........................................................................................... B-20

B.6.3.1 Reactor W ater Clarity ................................................................................. B-20

B.6.3.2 Resin Contam ination ................................................................................. B-20

B.6.3.3 Silica Control ............................................................................................. B-20

B.6.3.4 Chloride / Fluoride Contam ination Due to Freon Intrusion .......................... B-20

B.7 Spent Fuel Pool Cooling and Cleanup System .......................................................... B-20

B.7.1 System Description ........................................................................................... B-20

B.7.2 Chem istry Controls and Technical Basis ........................................................... B-20

B.7.3 Industry Experience ........................................................................................... B-20

B.7.3.1 Failure of Bundle Top Nozzles ................................................................... B-20

B.7.3.2 Silica Control ............................................................................................. B-20

B.8 References ............................................................................................................... B-20

C STATUS OF ENRICHED BORIC ACID (EBA) APPLICATION ......................................... C-20

C.1 Introduction ............................................................................................................... C-20

C.2 Sum m ary of EPRI Studies ........................................................................................ C-20

C.3 Plant Demonstrations of EBA ................................................................................... C-20

C.4 References ............................................................................................................... C-20

D AOA AND ULTRASO NIC FUEL CLEANING .................................................................... D-20

D.1 Background .............................................................................................................. D-20

D.2 Ultrasonic Fuel Cleaning Technology ........................................................................ D-20

D.3 System Description ................................................................................................... D-20

D.4 Fuel Cleaning Efficacy .............................................................................................. D-20

D.5 Full-Reload Cleaning Results ................................................................................... D-20

D.6 Fuel Cleaning Performance ...................................................................................... D-20

D.7 Conclusions .............................................................................................................. D-20

D.8 References ............................................................................................................... D-20

E OXYGEN AND HYDROGEN BEHAVIOR IN PWR PRIMARY CIRCUITS ......................... E-20

E .1 S u m m a ry .................................................................................................................. E -2 0

E.2 Radiation Chem istry .................................................................................................. E-20

E.3 Minim um Hydrogen Concentrations at Full Power ..................................................... E-20

E.4 The Effect of Voidage on M inim um Hydrogen Levels ................................................ E-20

E.4.1 Metal Ion Chem istry ....................................................................................... E-20

E.5 Oxygen Ingress ......................................................................................................... E-20

xxii

Page 22: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

E.5.1 Im pact of Oxygen on Corrosion Product Transport ............................................ E-20

E.6 Startup Deoxygenation ............................................................................................. E-20

E.7 Spent Fuel Pool ........................................................................................................ E-20

E.8 Hydrogen Diffusion through the Steam G enerators ................................................... E-20

E.8.1 M odeling Hydrogen Concentration Decreases ............................................... E-20

E.8.2 Equilibrium Hydrogen Concentration during Loss-of-Letdown ........................ E-20

E.9 Conclusions .............................................................................................................. E-20

E.10 References ............................................................................................................. E-20

F SAMPLING CONSIDERATIONS FOR MONITORING RCS CORROSIONPRO DUCTS .......................................................................................................................... F-20

F.1 Background to RCS Corrosion Product Sam pling Issues ........................................... F-20

F.2 RCS Hot Leg Sam pling Practices ............................................................................... F-20

F.3 CVCS Letdown Line Sam pling ................................................................................... F-20

F.4 Experience ....................................................................................................... F-20

F.5 Analysis M ethods ....................................................................................................... F-20

F.6 Conclusions ............................................................................................................... F-20

F.7 References ................................................................................................................. F-20

G REACTO R CO O LANT RADIO NUCLIDES ....................................................................... G-20

G .1 Form ation of Radionuclides in the RCS .................................................................... G-20

G .1.1 Radionuclides Form ed by Fission ..................................................................... G-20

Fuel Clad Intact ....................................................................................................... G-20

G .1.2 Fission Product Speciation ................................................................................ G-20

G .1.3 Radionuclides Form ed by Activation ................................................................. G-20

Fuel Activation Products ......................................................................................... G-20

Activation of W ater .................................................................................................. G-20

Tritium Production ................................................................................................... G-20

Activation of Dissolved Species in W ater ................................................................ G-20

Corrosion Products ................................................................................................. G-20

O verall Activation Product Behavior ........................................................................ G-20

G .2 Measurem ent of Radionuclides in the Reactor Coolant System ................................ G-20

G.2.1 Examples of Measurement of Radionuclides by Adjusting Sample/CountingParam eters .................................................................................................................. G -20

G .2.2 Identifying Unknown Gam m a Ray Peaks .......................................................... G-20

G .3 Expected Concentrations and Trends of RCS Radionuclides ................................... G-20

Xxiii

Page 23: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

G.3.1 Fission Products ............................................................................................... G-20

G.3.2 Activation Product Trends ................................................................................. G-20

G .4 R e fe re n ce s ............................................................................................................... G -2 0

xxiv

Page 24: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

LIST OF FIGURES

Figure 2-1 Schematic of the Problems with Optimizing RCS pH Control .................................. 2-2

Figure 2-2 Schematic of an Example Coordinated Chemistry Regime (at 300'C) .................... 2-4Figure 2-3 Schematic of an Example Elevated Chemistry Regime (at 300'C) ......................... 2-4

Figure 2-4 Schematic of an Example Modified Chemistry (at 300'C) ...................................... 2-5

Figure 2-5 Schematic of an Example Coordinated Chemistry at pHT 7.2 Consistent withLithium at 3.5 ppm (at 300'C ) ........................................................................................... 2-5

Figure 2-6 The Effects of Oxygen and Chloride on the Stress Corrosion Cracking ofAustenitic Stainless Steel in High Temperature Water (2) ................................................ 2-8

Figure 2-7 Normalized 330'C (626°F) PWSCC Initiation Data vs. HydrogenConcentration, based on long term test data (1) ............................................................. 2-14

Figure 2-8 Normalized 330'C (626°F) PWSCC Initiation Data vs. HydrogenConcentration for Short Term Tests (characteristic life < 1000 hours) (1) ....................... 2-15

Figure 2-9 The Effects of Hydrogen Concentration and Temperature on Ni/NiO PhaseStability and Peak Crack Growth Rate for PWSCC in Alloy 600 ..................................... 2-16

Figure 2-10 PWSCC Crack Growth Rate Variation for Alloy 600 with HydrogenConcentration at 320'C (608'F) and 3600C (6800F) (1 ppm = 11.2 scc/kg) (49) ............ 2-17

Figure 2-11 Time to PWSCC vs. pH310oc Showing Cycled and Constant Chemistry Dataa nd S tatistica l F it to D ata (1 ) .......................................................................................... 2-2 1

Figure 2-12 Time to PWSCC vs. pH 310oc Showing Cycled and Constant Chemistry Dataand Short Term Tests (characteristic life < 1000 hours) (1) ............................................ 2-22

Figure 2-13 Measured Crack Growth Rate in Alloy X-750 vs. pH 360oc (61) .............................. 2-23

Figure 2-14 Variation in Crack Initiation Time vs. Lithium Concentration for Fixed BoronC o n c e n tra tio n s ............................................................................................................... 2 -2 4

Figure 2-15 Variation of Crack Growth Rate in Two Heats of Alloy 600 at 325°C (617'F)vs. Lithium C o ncentration (60) ........................................................................................ 2-25

Figure 2-16 Variation in Crack Initiation Time vs. Boron Concentration for Fixed LithiumC o n c e n tra tio n s ............................................................................................................... 2 -2 6

Figure 2-17 Number of New Tubes Affected by TSP PWSCC per Outage ...... 2-34

Figure 2-18 - All SGs - TS EZ (WEXTEX) PWSCC (axial and circ.) -T u b e s A ff e cte d ............................................................................................................... 2 -3 6

Figure 2-19 - All SGs - TS EZ (WEXTEX) PWSCC (axial and circ.) -T u b e s A ff e cte d ............................................................................................................... 2 -3 7

Figure 2-20 Zircaloy Corrosion Versus Core Burn-Up - Industry Experience .......................... 2-42

xxv

Page 25: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Figure 2-21 ZIRLO TM and Zircaloy-4 Cladding Corrosion vs. Fuel Duty Index (Note:Fuel Duty Index is a term used by Westinghouse that integrates the effect of in-coreresidence time and fuel thermal duty (108). It is not the same as the High DutyC ore Index (H D C I) defined in (98)) ................................................................................. 2-43

Figure 2-22 M5TM and Zircaloy-4 Cladding Corrosion vs. Rod Average Burn-up (datathrough July 2007 and provided by AREVA NP Inc. (205)) ............................................. 2-44

Figure 2-23 Cycle Maximum [Full Power, Xenon-equilibrated] Lithium Trend for U.S.PWRs Reporting Refueling Outages in FRED for the Years 2001 - 2006 ...................... 2-53

Figure 2-24 Reactor Coolant Lithium Trends for Comanche Peak Unit 2 Cycles 6T h ro u g h 9 ....................................................................................................................... 2 -5 4

Figure 2-25 Radiation Field Trends in PWRs ......................................................................... 2-61

Figure 2-26 Relative Corrosion Rate for Alloy 600 and Stainless Steel as a Function ofthe at-temperature pH (adapted from (203)) ................................................................... 2-63

Figure 2-27 Variations in Iron Solubility from Core Inlet to Outlet as a Function of pHT at300°C (Boron = 600 ppm, H2 = 35 cc/kg H20) (135) ....................................................... 2-66,

Figure 2-28 Variations in Iron Solubility from Core Inlet to Outlet as a Function of pHT at300'C (Boron = 600 ppm, H2 = 0 cc/kg H20) (135) ........................................................ 2-67

Figure 2-29 Variations in Nickel Solubility from Core Inlet to Outlet as a Function of pHTat 300°C (B = 600 ppm, H2 = 35 cc/kg H20) (135) .......................................................... 2-68

Figure 2-30 Variations in Nickel Solubility from Core Inlet to Outlet as a Function of pHTat 300°C (B = 600 ppm, H2 = 0 cc/kg H20) (135) ............................................................ 2-69

Figure 2-31 Variation with pH of Average Activities of Co-60 and Co-58 on SteamGenerator Tubing at the End of MIT in-Pile Loop Tests .................................................. 2-70

Figure 2-32 Steam Generator Channel Head Dose Rates (Comparison of Trends ofPlants in Group 3 - Plant Startup after 1981) Data for Four Plants are Shown asT hree-Y ear M oving M ean ............................................................................................... 2-73

Figure 2-33 RCS Co-58 concentrations before and after implementing an elevatedco nstant pH prog ra m for ................................................................................................. 2-74

Figure 2-34 RCS Co-60 concentrations before and after implementing an elevatedco nstant pH prog ram fo r ................................................................................................. 2-75

Figure 2-35 Average Hot and Cold Leg Channel Head Center Dose Rates for....................................................................................................................................... 2 -7 5

Figure 2-36 Average Hot and Cold Leg Channel Head Center Dose Rates for....................................................................................................................................... 2 -7 6

Figure 2-37 Average Loop Piping Dose Rates for .................................................................. 2-76

Figure 2-38 Average Loop Piping Dose Rates for .................................................................. 2-77

Figure 2-39 Cumulative Dose Rate Reduction Fraction vs Cumulative Zinc Exposure ........... 2-78

Figure 2-40 Comparison of initiation trend for H2 dependency (at 330°C) with scaledinverse ratios of CGR data (at 338°C) obtained from Morton et al. (22) for Alloy 600.(1 ) .................................................................................................................................. 2 -8 2

Figure 3-1 Schematic Representation of the PWR Primary Chemistry OptimizationP ro b le m ........................................................................................................................... 3 -2

xxvi

Page 26: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Figure 3-2 Variation of pH Due to Tolerance Band for Lithium as Function of BoronConcentration, for Target pH 300oc......................................................................................................................................... 3 -4

Figure A-1 Lithium-Boron Relationships for Various pH at 2750C ........................................... A-4

Figure A-2 Lithium additions for historical "modified" chemistry control programillustrating difference calculated for pH(Tave=310 0 C) vs. pH(Tref=300 0 C) ................... A-20

Figure D-1 Schematic of EPRI's ultrasonic fuel cleaning system .......................................... D-20

Figure D-2 . Cycle 12 (no AOA) and Cycle 11 (with AOA) ................ D-20

Figure E-1 Concentrations of 02 and H20 2 Around the Main Reactor Loop During FullPower Operation. 25 cc/kg H2, 1800 ppm Boron. Two Transits Around the MainC ircu it a re S how n . ( ) .................................................................................... E -2 0

Figure E-2 Steady-state 02 and H20 2 Concentrations at 1800 ppm Boron,Corresponding to the Start of an 18 Month Fuel Cycle (pH(300 0 C) 6.9) ........................ E-20

Figure E-3 Steady-state 02 and H 20 2 Concentrations at 0 ppm Boron, Corresponding tothe End of an 18 Month Fuel Cycle (pH(300 0 C) 7.4) ..................................................... E-20

Figure E-4 Concentrations of 02 and H20 2 Around the Main Reactor Loop. 25cc/kg H2,1800 ppm B, Full Power Operation, Oxygen Ingress from the CVCS. Two TransitsAround the Main Circuit are Shown. ( ) ......................................................... E-20

Figure E-5 Variation of 02 and H 20 2 Concentrations Through the Core for DifferentHydrogen Levels, 02 Ingress, 1 Day After Shut down, 1770C ....................................... E-20

Figure E-6 Henry's Law Constant as a Function of Temperature .......................................... E-20

Figure E-7 Permeability of Hydrogen in Alloy 600 ................................................................. E-20

Figure E-8 Loss-of-Letdown at , Data and Model Predictions ............... E-20

Figure E-9 Loss-of-Charging at I Data and Model Predictions .............................. E-20

Figure F-1 Changes in Soluble Nickel and Cobalt Concentrations at Doel 1 due toC ha ng e s in F low R ate .................................................................................................... F -20

Figure F-2 RCS Particulate Concentrations at following Start-up afterRefueling in 1995 caused by Control Rod Tests (Red - 0.5 to 1.0 pm, Blue - 1.0 to5 .0 p m ) ........................................................................................................................... F -2 0

Figure F-3 Co-58 and Co-60 Concentrations at from Cycle 3 to Cycle 7measured using Filtered RCS Hot Leg "Grab" Samples ................................................. F-20

Figure F-4 Iron (Top), Nickel (Middle) and Cobalt (Lower) concentrations atParticulate data (>0.45 pm) in closed symbol, Soluble in open symbol, and Totalconcentrations in solid line. IS=Integrated samples (200-300 liters during 3-4 days) ...... F-20

Figure F-5 Iron-59 (Top), Cobalt-58 (Middle) and Cobalt-60(Lower) concentrations at. Particulate data (>0.45 pm) in closed symbol, Soluble in open symbol, and Totalconcentrations in solid line. IS=lntergrated samples (200-300 liters during3 -4 d a y s ) ........................................................................................................................ F -2 0

Figure F-6 Corrosion Product Radionuclide Concentrations at Measured usingthe C V C S S am ple P anel ................................................................................................ F-20

Figure F-7 Elemental and Radionuclide Corrosion Product Concentrations at inCycles 13 to 15 Measured using either the RCS Hit-Leg or CVCS Sample Lines ........... F-20

Figure G-1 Fission Product Curve for Slow-Neutron Fissioning of U-235 (from Reference(1 )) ................................................................................................................................ G -2 0

xxvii

Page 27: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Figure G-2 Example of Grid-to-Rod Fretting and RCS Radionuclides at ............................... G-20

Figure G-3 Activity Decay Curve. Two different radionuclides contributing at the samegamma ray energy. Note that after decay correction that the semi-log plots of bothactivities, individually, are straight lines ......................................................................... G -20

Figure G-4 Noble Gas and Iodine Ratio Changes with a Tight Fuel Defect ........................... G-20

Figure G-5 Noble Gas and Iodine Concentrations for Tight Fuel Defect ................................ G-20

Figure G-6 Noble Gas and Iodine Activities with an Open Fuel Defect .................................. G-20

Figure G-7 Noble Gas and Iodine Ratios with an Open Fuel Defect ...................................... G-20

Figure G-8 Changes in Corrosion Products and Lithium During CRDM Surveillance ............ G-20

xxviii

Page 28: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

LIST OF TABLES

Table 2-1 Calculated Factor of Improvement Due to Zinc Injection (TS EZ PWSCC) ............. 2-35

T able 2-2 Industry Experience w ith ........................................................................................ 2-38

Table 2-3 Variation in CVCS pHT as a function of boron concentration (T = 50'C,p H n(5 00C ) = 6 .6 2 ) ........................................................................................................... 2 -6 5

Table 3-1 Generic Principles for Optimization of Primary System pH(1) ................... . . . . . . . . . . . . . . . . . 3-3

Table 3-2 O perational Status M odes ........................................................................................ 3-6Table 3-3 Reactor Coolant System Power Operation Control Parameters (Reactor

C ritic a l) ............................................................................................................................. 3 -8Table 3-4 Reactor Coolant System Power Operation Diagnostic Parameters (Reactor

C ritic a l) ........................................................................................................................... 3 -1 0Table 3-5 Source Water for Reactor Makeup(1 ) Diagnostic Parameters -- All Modes .............. 3-14

Table 3-6 Reactor Coolant System Cold Shutdown Control Parameters (Reactor <250'F(1 2 1 °0 CC )) ......................................................................................................................... 3 -1 5

Table 3-7 Reactor Coolant System Startup Control Parameters (Reactor Subcritical and> 2 5 0 ° F (1 2 10 C )) ........................................................................................................... 3 -1 5

Table 3-8 Reactor Coolant System Startup Chemistry Diagnostic Parameters (FromInitiation of Continuous RCP Operation to Reactor Critical) ............................................ 3-16

Table 4-1 Key Design and Operating Parameters (EXAMPLE) ................................................. 4-9

Table 4-2 Chemistry Milestones / Activities (EXAMPLE) .......................................................... 4-9

Table 4-3 Chemistry Control Program Approaches ................................................................ 4-10

Table A-1 Relation of pH at 2750C to Lithium and Boron Concentrations ........................... A-5Table A-2 Relation of pH at 2800C to Lithium and Boron Concentrations .............................. A-6

Table A-3 Relation of pH at 2850C to Lithium and Boron Concentrations .............................. A-7

Table A-4 Relation of pH at 2900C to Lithium and Boron Concentrations .............................. A-8Table A-5 Relation of pH at 2950C to Lithium and Boron Concentrations .............................. A-9

Table A-6 Relation of pH at 300°C to Lithium and Boron Concentrations ........................ A-1 0Table A-7 Relation of pH at 305 0 C to Lithium and Boron Concentrations ........................ A-i 1Table A-8 Relation of pH at 3100 C to Lithium and Boron Concentrations ............................ A-12

Table A-9 Relation of pH at 3150C to Lithium and Boron Concentrations ........................ A-13Table A-10 Variables and equations for solving the Li-B system ....................................... A-15Table A-11 Constants used for Table A-10 equations ...................................................... A-16Table A-12 pH of Boric Acid - Lithium Hydroxide Solutions at 25°C ..............C................. A-1 7

xxix

Page 29: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Table A-13 Equivalent Conductance of 250C ...................................................................... A-19

Table A-14 Conductivity of Boric Acid - Lithium Hydroxide Solutions at 25°C ...................... A-20

Table B-1 Solubility In Water For Various Gases (1) ............................................................ B-20

Table B-2 Partial Pressure of Water Vapor at Various Temperatures .................................. B-20

Table D-1 Ultrasonic Fuel Cleaning Applications at PWRs through July 2007 ..................... D-20

Table E-1 PWR Crud Incidents Attributable to Oxidizing Conditions (24) ............................. E-20

Table G-1 Radionuclides Found in the Reactor Coolant System and Potential Sources ...... G-20

Table G-2 Radionuclides Not Identified Directly by Gamma Spectroscopy or Determinedby Other Means (Refer to Chart of Nuclides for Half Lives) ........................................... G-20

Table G-3 Theoretical and Actual Iodine Activity Ratios Relative to 1-131 (No fueld e fe c ts ) ......................................................................................................................... G -2 0

Table G-4 Tritium Source Percentages for a High Duty PWR that Uses IFBA and WABAR o d s ( ) ............................................................... G -2 0

Table G-5 Gamma Ray Peaks of Nuclides Which Can be Obscured ................................... G-20

XXX

Page 30: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

1INTRODUCTION AND MANAGEMENTRESPONSIBILITIES

1.1 Introduction

The purpose of this document is to provide guidance on primary chemistry control to continue tomaximize the long-term availability of PWR plants. The nuclear power industry has compiledan excellent performance history in maintaining PWR primary system component integrity. Inaddition, primary water chemistry control can and has been effectively used to control radiationfield buildup on ex-core surfaces.

It is important that all levels of utility management understand that operation outside thechemistry limits provided in these Guidelines can increase the probability of reduced unitavailability. Such losses may be limited by controlling the magnitude and frequency ofabnormal reactor coolant system (RCS) chemistry conditions. A principal goal has been tominimize corrosion of RCS components. Effectively implementing these Guidelines willsupport this goal, thereby maximizing the cumulative availability of the unit.

The US nuclear power industry established a framework for increasing the reliability of steamgenerators by adopting NEI 97-06, Steam Generator Program Guidelines, and re-affirmed thiscommitment by adopting Revision 1 in 2001 and Revision 2 in 2005. This initiative adoptedEPRI's Water Chemistry Guidelines, including this document, as the basis for an optimizedchemistry program. Specifically, the initiative required that US utilities meet the intent of theEPRIPWR Primary Water Chemistry Guidelines. The focus of the NEI initiative is steamgenerator integrity. It recognizes that steam generators comprise a major portion of the primarysystem pressure boundary.

The U.S. nuclear power industry has more recently produced a policy that commits each nuclearutility to adopt the responsibilities and processes on the management of materials aging issuesdescribed in NEI 03-08, Guideline for the Management of Materials Issues. NEI 03-08 wasestablished in May 2003, and the addenda to NEI 03-08, Materials Initiative Guidance, wasissued in July 2005. The scope of NEI 03-08 extends to "PWR and BWR reactor pressurevessel, reactor internals and primary pressure boundary components", "PWR steam generators(SG)", and "nuclear fuels materials issues to the extent that they impact or are impacted by plantmaterials management strategies (e.g., chemistry/corrosion control strategies)". In addition, NEI03-08 states, "as deliverables or guidelines are developed, actions should be classified as torelative level of importance: "mandatory" - to be implemented at all plants where applicable;"needed" - should be implemented whenever possible but alternative approaches are acceptable,

1-1

Page 31: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Introduction and Management Responsibilities

and "good practice" - implementation is expected to provide significant operational andreliability benefits, but the extent of use is at the discretion of the individual plant/utility.

1-2

Page 32: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Introduction and Management Responsibilities

1.2 Generic Management Considerations

1.3 Communication and Training

1-3

Page 33: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Introduction and Management Responsibilities

1.4 Outage Planning and Coordination

1-4

Page 34: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

2TECHNICAL BASIS FOR THE NEED TO CONTROL THECOOLANT CHEMISTRY IN PWRS

2.1 Introduction

The purposes of PWR primary coolant chemistry Guidelines are:

" To assure primary system pressure boundary integrity,

* To assure fuel-cladding integrity and achievement of design fuel performance, and

• To minimize out-of-core radiation fields.

2-1

Page 35: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-1Schematic of the Problems with Optimizing RCS pH Control

2.2 Discussion of Chemistry Regimes

2-2

Page 36: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-3

Page 37: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-2Schematic of an Example Coordinated Chemistry Regime (at 3000C)

Figure 2-3Schematic of an Example Elevated Chemistry Regime (at 300 0C)

2-4

Page 38: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-4Schematic of an Example Modified Chemistry (at 3000C)

Figure 2-5Schematic of an Example Coordinated Chemistry at pHT 7.2 Consistent with Lithium at 3.5ppm (at 300°C)

2-5

Page 39: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.2.1 Guiding Principles for Selection of Operating pHT

The following guiding principles should be considered when evaluating and selecting theoperating pHT program for the cycle.

2-6

Page 40: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3 Materials Integrity in the Reactor Coolant System

2.3.1 Corrosion Modes of Structural Materials

2-7

Page 41: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-6The Effects of Oxygen and Chloride on the Stress Corrosion Cracking of AusteniticStainless Steel in High Temperature Water (2)

2-8

Page 42: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2 Effects of Chemistry Parameters

2-9

Page 43: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.1 PWSCC Mechanisms

2-10

Page 44: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.2 Dissolved Oxygen

2-11

Page 45: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.3 Dissolved Hydrogen - Effects at Operating Temperatures

2-12

Page 46: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-13

Page 47: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-7Normalized 330 0C (6260F) PWSCC Initiation Data vs. Hydrogen Concentration, based onlong term test data (1)

2-14

Page 48: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-8Normalized 330'C (6260F) PWSCC Initiation Data vs. Hydrogen Concentration for ShortTerm Tests (characteristic life < 1000 hours) (1)

2-15

Page 49: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-9The Effects of Hydrogen Concentration and Temperature on Ni/NiO Phase Stability andPeak Crack Growth Rate for PWSCC in Alloy 600

2-16

Page 50: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-10PWSCC Crack Growth Rate Variation for Alloy 600 with Hydrogen Concentration at 320 0C(608°F) and 360'C (6800F) (1 ppm = 11.2 scc/kg) (49)

2-17

Page 51: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.4 Dissolved Hydrogen - Low Temperature Considerations

2-18

Page 52: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-19

Page 53: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.5 pH

2-20

Page 54: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-11Time to PWSCC vs. pH 3 10oc Showing Cycled and Constant Chemistry Data and StatisticalFit to Data (1)

2-21

Page 55: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-12Time to PWSCC vs. pH310oc Showing Cycled and Constant Chemistry Data and Short TermTests (characteristic life < 1000 hours) (1)

2-22

Page 56: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Figure

2-13

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-13Measured Crack Growth Rate in Alloy X-750 vs. pH 360oc (61)

2.3.2.6 Lithium and Boron

2-23

Page 57: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-14Variation in Crack Initiation Time vs. Lithium Concentration for Fixed BoronConcentrations

2-24

Page 58: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-15Variation of Crack Growth Rate in Two Heats of Alloy 600 at 3250C (617 0F) vs. LithiumConcentration (60)

2-25

Page 59: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-16Variation in Crack Initiation Time vs. Boron Concentration for Fixed LithiumConcentrations

2.3.2.7 Plant Experience Regarding Effects of Lithium and pH on PWSCC

2-26

Page 60: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.8 Chloride

2.3.2.9 Fluoride

2.3.2.10 Sulfate

2-27

Page 61: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-28

Page 62: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.11 Organics

2.3.2.12 Lead

2-29

Page 63: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.13 Zinc

2-30

Page 64: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-31

Page 65: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-32

Page 66: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-33

Page 67: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-17Number of New Tubes Affected by TSP PWSCC per Outage

2-34

Page 68: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Table 2-1Calculated Factor of Improvement Due to Zinc Injection (TS EZ PWSCC)

2-35

Page 69: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Figure 2-18- All SGs - TS EZ (WEXTEX) PWSCC (axial and circ.) - Tubes Affected

2-36

Page 70: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis/for the Need to Control the Coolant Chemistry in PWRs

Figure 2-19- All SGs - TS EZ (WEXTEX) PWSCC (axial and circ.) - Tubes Affected

2-37

Page 71: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Table 2-2Industry Experience with

2-38

Page 72: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.3.2.14 Effect of pH (Li, B) on Steam Generator Leak Rate

2-39

Page 73: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4 Fuel Integrity Considerations

2-40

Page 74: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.1 Chemistry Effects on Fuel Reliability

2.4.1.1 Cladding Corrosion

2-41

Page 75: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-20Zircaloy Corrosion Versus Core Burn-Up - Industry Experience

2-42

Page 76: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-21ZIRLO TM and Zircaloy-4 Cladding Corrosion vs. Fuel Duty Index (Note: Fuel Duty Index is aterm used by Westinghouse that integrates the effect of in-core residence time and fuelthermal duty (108). It is not the same as the High Duty Core Index (HDCI) defined in (98))

2-43

Page 77: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-22M5TM and Zircaloy-4 Cladding Corrosion vs. Rod Average Burn-up (data through July 2007and provided by AREVA NP Inc. (205))

2.4.1.2 Fuel Crud Deposition

2-44

Page 78: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-45

Page 79: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.2 Effects of Chemistry Parameters

2.4.2.1 Dissolved Oxygen

2.4.2.2 Dissolved Hydrogen

2-46

Page 80: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.2.3 Fluoride

2.4.2.4 Aluminum, Calcium, Magnesium, and Silica

2-47

Page 81: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-48

Page 82: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-49

Page 83: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.2.5 Suspended Solids

2.4.2.6 pH

2-50

Page 84: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.2.7 Lithium

2-51

Page 85: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-52

Page 86: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-23Cycle Maximum [Full Power, Xenon-equilibrated] Lithium Trend for U.S. PWRs ReportingRefueling Outages in FRED for the Years 2001 - 2006

2-53

Page 87: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-24Reactor Coolant Lithium Trends for Comanche Peak Unit 2 Cycles 6 Through 9

2-54

Page 88: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.2.8 Zinc

2-55

Page 89: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-56

Page 90: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-57

Page 91: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.4.3 PWR Axial Offset Anomaly

2-58

Page 92: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-59

Page 93: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.5 Radiation Field Control

2.5.1 Sources of Radiation Fields

2-60

Page 94: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-25Radiation Field Trends in PWRs

2.5.2 Effects of Chemistry Parameters

2-61

Page 95: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.5.2.1 Corrosion Product Release

2-62

Page 96: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-26Relative Corrosion Rate for Alloy 600 and Stainless Steel as a Function of the at-temperature pH (adapted from (203))

2.5.2.2 Particulate Transport

2-63

Page 97: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.5.2.3 Soluble Transport

2-64

Page 98: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Table 2-3Variation in CVCS pHT as a function of boron concentration (T = 500C, pHn(5 0 °C) = 6.62)

2-65

Page 99: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-27Variations in Iron Solubility from Core Inlet to Outlet as a Function of pHT at 300C (Boron =600 ppm, H2 = 35 cc/kg H20) (135)

2-66

Page 100: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-28Variations in Iron Solubility from Core Inlet to Outlet as a Function of pH, at 300°C (Boron= 600 ppm, H2 = 0 cc/kg H20) (135)

2-67

Page 101: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-29Variations in Nickel Solubility from Core Inlet to Outlet as a Function of pHT at 300*C (B =600 ppm, H2 = 35 cc/kg H20) (135)

2-68

Page 102: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-30Variations in Nickel Solubility from Core Inlet to Outlet as a Function of pH, at 300°C (B =600 ppm, H2 = 0 cc/kg H20) (135)

2.5.2.4 Verification Tests

2-69

Page 103: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-31Variation with pH of Average Activities of Co-60 and Co-58 on Steam Generator Tubing atthe End of MIT in-Pile Loop Tests

2.5.2.5 Plant Data

2-70

Page 104: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-71

Page 105: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-72

Page 106: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-32Steam Generator Channel Head Dose Rates (Comparison of Trends of Plants in Group 3 -Plant Startup after 1981) Data for Four Plants are Shown as Three-Year Moving Mean

2-73

Page 107: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-33RCS Co-58 concentrations before and after implementing an elevated constant pHprogram for

2-74

Page 108: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-34RCS Co-60 concentrations before and after implementing an elevated constant pHprogram for

Figure 2-35Average Hot and Cold Leg Channel Head Center Dose Rates for

2-75

Page 109: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-36Average Hot and Cold Leg Channel Head Center Dose Rates for

Figure 2-37Average Loop Piping Dose Rates for

2-76

Page 110: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-38Average Loop Piping Dose Rates for

2.5.2.6 Effects of End-Of-Cycle Boron Concentration

2.5.2.7 Zinc

2-77

Page 111: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-39Cumulative Dose Rate Reduction Fraction vs Cumulative Zinc Exposure

2-78

Page 112: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.5.3 Summary

2-79

Page 113: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.6 Summary of Chemistry Considerations

As indicated in Section 2.1, the purposes of these PWR primary coolant chemistry Guidelinesare:

" To assure primary system pressure boundary integrity,

* To assure fuel-cladding integrity and achievement of design fuel performance, and

* To minimize out-of-core radiation fields.

Achievement of these objectives can be complex and, often times, plant specific. However,certain chemistry parameters are universal during power operation, including:

2.6.1 Considerations for pH (Lithium)

2-80

Page 114: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.6.2 Considerations for Dissolved Hydrogen

2.6.2.1 Effect of Hydrogen on PWSCC

2-81

Page 115: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

Figure 2-40Comparison of initiation trend for H2 dependency (at 330°C) with scaled inverse ratios ofCGR data (at 338'C) obtained from Morton et al. (22) for Alloy 600. (1)

2-82

Page 116: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.6.2.2 Effect of Hydrogen on Iron and Nickel Solubility in the RCS

2.6.2.3 Effect of Hydrogen on Iron and Nickel Solubility Through the Core

2-83

Page 117: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2.6.3 Conclusion of Chemistry Considerations

2-84

Page 118: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Technical Basis for the Need to Control the Coolant Chemistry in PWRs

2-85

Page 119: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774
Page 120: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

3POWER OPERATION CHEMISTRY CONTROL

3.1 Introduction

3.2 Reactor Coolant System (RCS) pH Optimization

3.2.1 Operation

3-1

Page 121: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Figure 3-1Schematic Representation of the PWR Primary Chemistry Optimization Problem

3-2

Page 122: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Table 3-1Generic Principles for Optimization of Primary System pH(1)

3-3

Page 123: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Figure 3-2Variation of pH Due to Tolerance Band for Lithium as Function of Boron Concentration, forTarget pH 300oc

3.3 Control and Diagnostic Parameters

3-4

Page 124: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.4 Guideline Philosophy

3.4.1 Philosophy

3.4.2 Corrective Actions

3-5

Page 125: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.5 Definitions of Terms Used in the Guidelines

3.5.1 Plant Status

Table 3-2Operational Status Modes

3.5.2 Action Levels

3.5.2.1 Action Level 1

3-6

Page 126: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.5.2.2 Action Level 2

3.5.2.3 Action Level 3

3-7

Page 127: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.6 Guideline Values for Chemistry Parameters During Power Operation

3.6.1 Reactor Coolant System Guidelines

Table 3-3Reactor Coolant System Power Operation Control Parameters (Reactor Critical)

3-8

Page 128: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Corrective Action Guidelinesfor Table 3-3

3-9

Page 129: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Table 3-4Reactor Coolant System Power Operation Diagnostic Parameters (Reactor Critical)

3.6.2 Special Considerations

3.6.2.1 Axial Offset Anomaly

3-10

Page 130: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.6.2.2 Zinc Addition

3-11

Page 131: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.6.2.3 Extended Fuel Cycles

3.6.2.4 Operation With Unusual Levels of Lithium

3-12

Page 132: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

3.6.2.5 Chemistry Program Modification

3.6.3 Primary System Makeup Water

3-13

Page 133: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Table 3-5Source Water for Reactor Makeup(1 ) Diagnostic Parameters -- All Modes

3.7 Control and Diagnostic Parameters, Frequencies, and Limits forStartup Chemistry

3-14

Page 134: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Table 3-6Reactor Coolant System Cold Shutdown Control Parameters (Reactor <250'F (1210C))

Table 3-7Reactor Coolant System Startup Control Parameters (Reactor Subcritical and >250°F (1210 C))

3-15

Page 135: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Power Operation Chemistry Control

Table 3-8Reactor Coolant System Startup Chemistry Diagnostic Parameters (From Initiation ofContinuous RCP Operation to Reactor Critical)

3-16

Page 136: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

4METHODOLOGY FOR PLANT-SPECIFICOPTIMIZATION

4.1 Introduction

The purpose of this section is to provide a framework for plant chemistry personnel to developan optimized primary chemistry program considering plant design, materials of construction, fueldesign and cycle length, corrosion degradation history, regulatory commitments, fuel vendorwarranty requirements, etc.

The recommended approach for documentation recognizes that nuclear power plants must,consider a variety of issues in developing a primary water chemistry program and that theseissues must be dealt with on a plant specific basis. Optimization of the primary water chemistryprogram is the process of developing a program which appropriately reflects the technical basesprovided in Chapter 2 and the chemistry control guidance in Chapter 3 relative to approaches forinsuring primary system pressure boundary and fuel cladding integrity and minimizing radiationfields. A review of the guidance provided for development of a Strategic Water Chemistry Planfor PWR secondary and the BWR water chemistry were also assessed during revision of thisChapter (216, 217).

4-1

Page 137: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

4.2 Primary Water Chemistry Variables and Options

4.2.1 Program Objectives

As noted in Chapter 2, the purposes of the primary water chemistry control program is to:

* Ensure primary system pressure boundary integrity,

* Ensure fuel cladding integrity and achievement of design fuel performance, and

* Minimize out-of-core radiation fields.

4-2

Page 138: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

4.2.2 Parameters Impacting Pressure Boundary or Fuel Cladding Integrity

4.2.2.1

4-3

Page 139: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

4.2.2.2

4.2.2.3

4.2.2.4

4-4

Page 140: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodolozy for Plant-Specific Optimization

4.2.2.5

4-5

Page 141: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodolojz for Plant-Specific Optimization

4.2.2.6

4.2.3 Parameters With Negligible Impact on Pressure Boundary or Fuel CladdingIntegrity

4.2.3.1 Organics

4.2.3.2 Suspended Solids

4-6

Page 142: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

4.2.4 Chemistry Control During Shutdowns and Startups

4.2.4.1 Shutdown Chemistry Program

4.2.4.2 Startup Chemistry Program

4.3 Optimization Methodology

4.3.1 Optimization Process

4-7

Page 143: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

4.3.2 NEI 03-08 and NEI 97-06 Checklist

4-8

Page 144: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

Table 4-1Key Design and Operating Parameters (EXAMPLE)

Table 4-2Chemistry Milestones / Activities (EXAMPLE)

4-9

Page 145: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodologv for Plant-Specific Optimization

Table 4-3Chemistry Control Program Approaches

4-10

Page 146: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodology for Plant-Specific Optimization

Table 4-3Chemistry Control Program Approaches (continued)

4-11

Page 147: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Methodolov for Plant-Specific Optimization

Table 4-3Chemistry Control Program Approaches

4-12

Page 148: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Mandatory, Shall and Recommended Elements

5MANDATORY, SHALL AND RECOMMENDEDELEMENTS

5.1 Introduction

Chapter 5 captures all of the specific elements contained within these Guidelines that areidentified as mandatory, shall or recommended, consistent with NEI 03-08 and NEI 97-06. Eachelement is captured in Section 5.2, along with any needed supporting information related to theelement. The Guidelines Revision 6 Committee evaluated and concurred with the inclusion ofeach element.

5.2 Mandatory, Shall and Recommended Elements

5.2.1 Mandatory Element

5.2.2 Shall Elements

5-1

Page 149: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Mandatory, Shall and Recommended Elements

5.2.3 Recommended Elements

5-2

Page 150: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

6REFERENCES

6-1

Page 151: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Referenles

6-2

Page 152: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-3

Page 153: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-4

Page 154: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774
Page 155: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Refereflees

6-6

Page 156: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-7

Page 157: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

ReferecflCs

6-8

Page 158: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-9

Page 159: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Refere nces

6-10

Page 160: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-11

Page 161: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

References

6-12

Page 162: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

a5ýLý

Page 163: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Re ere-nces

6-14

Page 164: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

6-15

Page 165: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

ACALCULATION OF PHT AND DATA EVALUATIONMETHODOLOGIES

A.1 Calculation of pHT

To provide a uniform basis for establishing a pHT control program and for comparingobservations at different plants, it is important that industry personnel employ similarexpressions for pertinent chemical equilibria, e.g., the ionization of boric acid. Therecommended relations are given below. Note that in all cases, the pH is defined and should bereported as the negative logarithm (to the base 10) of the molal concentrations of the hydrogen ion.

A-]

Page 166: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A-2

Page 167: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A-3

Page 168: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Figure A-1Lithium-Boron Relationships for Various pH at 2750 C

A-4

Page 169: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-1Relation of pH at 275°C to Lithium and Boron Concentrations

A-5

Page 170: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-2Relation of pH at 280'C to Lithium and Boron Concentrations

A-6

Page 171: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-3Relation of pH at 2850C to Lithium and Boron Concentrations

A-7

Page 172: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-4Relation of pH at 2900C to Lithium and Boron Concentrations

Page 173: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-5Relation of pH at 2950C to Lithium and Boron Concentrations

A-9

Page 174: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-6Relation of pH at 3000C to Lithium and Boron Concentrations

A-10

Page 175: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation of pHT and Data Evaluation Methodologies

Table A-7Relation of pH at 3050C to Lithium and Boron Concentrations

A-1I

Page 176: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-8Relation of pH at 3100C to Lithium and Boron Concentrations

A-12

Page 177: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-9Relation of pH at 315'C to Lithium and Boron Concentrations

A.2 Low Temperature pH, Boron, Lithium Calculations and Data

A-13

Page 178: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Mathematical Development

A-14

Page 179: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Numerical Method Commentary

Table A-l0Variables and equations for solving the Li-B system

A-15

Page 180: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-11Constants used for Table A-10 equations

A-16

Page 181: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-12pH of Boric Acid - Lithium Hydroxide Solutions at 25 0C

A-17

Page 182: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A.3 Data Consistency (pH at 25°C/Conductivity at 25°C/Boron/Lithium)

A-18

Page 183: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-13Equivalent Conductance of 25 0C

Calculation of Equivalent Conductance of 251C

A-19

Page 184: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Pentaborate conductivity contribution

A-20

Page 185: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Table A-14Conductivity of Boric Acid - Lithium Hydroxide Solutions at 25 0C

A-21

Page 186: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A.4 Verification and Validation of the EPRI ChemWorksTM Primary SystempH Calculator

A-22

Page 187: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A.5 Temperature and Pressure Dependence of pH

A-23

Page 188: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation of pHT and Data Evaluation Methodologies

Figure A-2Lithium additions for historical "modified" chemistry control program illustratingdifference calculated for pH(Tave=3100 C) vs. pH(Tref=300° C)

pHTave as a Convention

A-24

Page 189: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

Pressure and Temperature Variations in pKw

A-25

Page 190: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Calculation ofpHT and Data Evaluation Methodologies

A.6 References

A-26

Page 191: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

BCHEMISTRY CONTROL OF SUPPORTING SYSTEMS

B.1 Introduction

Chemistry control practices in systems that interface with the reactor coolant system arediscussed below. Specifically, selected system designs, the rationales for chemistry control,possible impacts on reactor coolant chemistry and industry experiences where impacts on RCSchemistry have been observed are discussed. Suggestions are provided on chemistry andradioactivity parameters to be monitored and the frequency of monitoring.

B.2 Letdown Purification System

B.2.1 System Description

B-1

Page 192: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.2.2 Selection Criteria for Purification Filters and Ion Exchange Resins

B.2.3 Performance Monitoring

B-2

Page 193: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B-3

Page 194: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B-4

Page 195: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.2.4 Selected Industry Experiences

B.2.4.1 Resin Intrusions

B.2.4.2 Chloride Elution

B.2.4.3 Leachable Impurities

B.2.4.4 Boron/Power Excursions

B-5

Page 196: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.2.4.5 Lithium Excursions/Power Effects

B.2.4.6 Shutdown Sulfate Increases

B.2.4.7 Makeup Water Contamination

B-6

Page 197: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.3 Volume Control Tank or Makeup Tank

B.3.1 System Description

B.3.2 Chemistry Control and Technical Basis

B-7

Page 198: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

Table B-1Solubility In Water For Various Gases (1)

Table B-2Partial Pressure of Water Vapor at Various Temperatures

B-8

Page 199: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B-9

Page 200: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.3.3 Selected Industry Experiences

B.3.3.1 VCT Vapor Space Composition

B.4 Pressurizer

B.4.1 System Description

B-1O

Page 201: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.4.2 Chemistry Control and Technical Basis

B.4.3 Industry Experience

B.4.3.1 Corrosion Observations

B.4.3.2 RCS Hydrogen Control

B.4.3.3 Chloride Contamination

B-1I

Page 202: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.5 Boric Acid Storage

B.5.1 System Description

B.5.2 Chemistry Control and Technical Basis

B-12

Page 203: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B-13

Page 204: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.5.3 Industry Experience

B.5.3.1 Silica Transport

B.5.3.2 Boric Acid Crystallization

B.5.3.3 Chloride Contamination

B.5.3.4 Magnesium Contamination

B.5.3.5 Sulfate Contamination

B-14

Page 205: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.6 Refueling Water Storage Tank

B.6.1 System Description

B.6.2 Chemistry Control and Technical Basis

B-15

Page 206: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.6.3 Industry Experience

B.6.3.1 Reactor Water Clarity

B.6.3.2 Resin Contamination

B.6.3.3 Silica Control

B-16

Page 207: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.6.3.4 Chloride / Fluoride Contamination Due to Freon Intrusion

B.7 Spent Fuel Pool Cooling and Cleanup System

8.7.1 System Description

B.7.2 Chemistry Controls and Technical Basis

B-17

Page 208: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B-18

Page 209: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Chemistry Control of Supporting Systems

B.7.3 Industry Experience

B.7.3.1 Failure of Bundle Top Nozzles

B.7.3.2 Silica Control

B.8 References

B-19

Page 210: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774
Page 211: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

CSTATUS OF ENRICHED BORIC ACID (EBA)APPLICATION

C.1 Introduction

Boric acid is used in primary coolant of a PWR as a soluble reactivity control agent. Boron isreferred to as a poison or chemical shim because the 10B isotope has a high cross section forabsorbing thermal neutrons. However, natural boron contains only 20 atom percent of the 10Bisotope. The remaining 80% is l1B, which has a much smaller cross section for thermal neutronabsorption. Enriching natural boric acid with 1°B can reduce the concentration of boric acid inthe coolant while retaining the required reactivity control.

C.2 Summary of EPRI Studies

C-I

Page 212: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Status of Enriched Boric Acid (EBA) Application

C.3 Plant Demonstrations of EBA

C-2

Page 213: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Status of Enriched Boric Acid (EBA) Application

C.4 References

C-3

Page 214: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774
Page 215: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

DAOA AND ULTRASONIC FUEL CLEANING

D.1 Background

The evolving economics of electric generation provide some utilities with incentives to operatePWRs with higher fuel duty and longer cycles. Increased sub-cooled nucleate boiling in theupper fuel spans can be a consequence of core designs which are used to achieve this objective.Thermodynamic and hydraulic factors favor deposition of corrosion products on the boilingsurfaces of the fuel, resulting in axially non-uniform deposition on high-duty fuel. Axiallyvariable distribution of boron compounds in these fuel deposits is an important cause of axialoffset anomaly (AOA), also refered to as crud induced power shift (CIPS).

D-1

Page 216: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

Table D-1Ultrasonic Fuel Cleaning Applications at PWRs through July 2007

D.2 Ultrasonic Fuel Cleaning Technology

D-2

Page 217: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

D.3 System Description

Figure D-1Schematic of EPRI's ultrasonic fuel cleaning system

D-3

Page 218: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

D.4 Fuel Cleaning Efficacy

D.5 Full-Reload Cleaning Results

D-4

Page 219: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

D.6 Fuel Cleaning Performance

D-5

Page 220: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

Figure D-2. Cycle 12 (no AOA) and Cycle 11 (with AOA)

D-6

Page 221: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

AOA and Ultrasonic Fuel Cleaning

D.7 Conclusions

D.8 References

D-7

Page 222: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EOXYGEN AND HYDROGEN BEHAVIOR IN PWRPRIMARY CIRCUITS

E.1 Summary

Oxygen and hydrogen behavior in a PWR primary circuit are linked by the radiolysis reactionsoccurring in the core to the extent that they cannot normally co-exist in the coolant, other thanupstream of the core. In normal operation and during shutdown the important aspects are - (1)what is the minimum hydrogen level to suppress radiolysis in the water phase in the core, (2) willsub-cooled nucleate boiling on fuel assemblies in the core deplete the hydrogen in the waterphase below this minimum hydrogen concentration and (3) what is the effect of oxygen ingressinto the RCS.

The concentrations of oxygen, hydrogen, hydrogen peroxide and other species in a PWR primarycircuit are controlled by approximately 50 radiolytic and thermal reactions, all of which occursimultaneously as the coolant circulates around the circuit. The rate constants of these reactionsare known over the full operating temperature range of the primary circuit and the behavior canbe modeled with reasonable confidence. This appendix describes the overall behavior and isbased on (1) and (2), which model oxygen/hydrogen concentrations in a typical Westinghouse 4-loop PWR.

E.2 Radiation Chemistry

E-1

Page 223: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.3 Minimum Hydrogen Concentrations at Full Power

E-2

Page 224: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-1Concentrations of 02 and H 2 0 2 Around the Main Reactor Loop During Full PowerOperation. 25 cc/kg H 2 , 1800 ppm Boron. Two Transits Around the Main Circuit areShown. (

E-3

Page 225: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-2Steady-state 02 and H20 2 Concentrations at 1800 ppm Boron, Corresponding to the Startof an 18 Month Fuel Cycle (pH(300°C) 6.9)

Figure E-3Steady-state 02 and H20 2 Concentrations at 0 ppm Boron, Corresponding to the End of an18 Month Fuel Cycle (pH(300 0C) 7.4)

E-4

Page 226: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.4 The Effect of Voidage on Minimum Hydrogen Levels

E-5

Page 227: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.4.1 Metal Ion Chemistry

E-6

Page 228: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.5 Oxygen Ingress

E-7

Page 229: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E-8

Page 230: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

[-9

Page 231: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-4Concentrations of 02 and H 2 0 2 Around the Main Reactor Loop. 25cc/kg H 2 , 1800 ppm B,Full Power Operation, Oxygen Ingress from the CVCS. Two Transits Around the MainCircuit are Shown. (

E-1O

Page 232: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-5Variation of 02 and H 2 0 2 Concentrations Through the Core for Different Hydrogen Levels,02 Ingress, 1 Day After Shut down, 177°C

F-1 1

Page 233: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.5.1 Impact of Oxygen on Corrosion Product Transport

E-12

Page 234: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E-13

Page 235: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Table E-1PWR Crud Incidents Attributable to Oxidizing Conditions (24)

E-14

Page 236: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

E.6 Startup Deoxygenation

E-15

Page 237: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.7 Spent Fuel Pool

E.8 Hydrogen Diffusion through the Steam Generators

E-16

Page 238: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primaty Circuits

E.8.1 Modeling Hydrogen Concentration Decreases

E-17

Page 239: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.8.2 Equilibrium Hydrogen Concentration during Loss-of-Letdown

E-18

Page 240: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-6Henry's Law Constant as a Function of Temperature

E-19

Page 241: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-7Permeability of Hydrogen in Alloy 600

Figure E-8Loss-of-Letdown at , Data and Model Predictions

E-20

Page 242: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

Figure E-9Loss-of-Charging at

E.9 Conclusions

, Data and Model Predictions

E-21

Page 243: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E-22

Page 244: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E.1O References

E-23

Page 245: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Oxygen and Hydrogen Behavior in PWR Primary Circuits

E-24

Page 246: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

FSAMPLING CONSIDERATIONS FOR MONITORINGRCS CORROSION PRODUCTS

F-1

Page 247: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F.1 Background to RCS Corrosion Product Sampling Issues

F-2

Page 248: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-3

Page 249: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-4

Page 250: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-IChanges in Soluble Nickel and Cobalt Concentrations at Doel 1 due to Changes in FlowRate

Figure F-2RCS Particulate Concentrations at following Start-up after Refueling in 1995caused by Control Rod Tests (Red - 0.5 to 1.0 pm, Blue - 1.0 to 5.0 pm)

F.2 RCS Hot Leg Sampling Practices

F-5

Page 251: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-6

Page 252: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-3Co-58 and Co-60 Concentrations atFiltered RCS Hot Leg "Grab" Samples

from Cycle 3 to Cycle 7 measured using

F-7

Page 253: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-8

Page 254: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-4Iron (Top), Nickel (Middle) and Cobalt (Lower) concentrations at . Particulate data(>0.45 pm) in closed symbol, Soluble in open symbol, and Total concentrations in solidline. IS=Integrated samples (200-300 liters during 3-4 days)

F-9

Page 255: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-10

Page 256: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-5Iron-59 (Top), Cobalt-58 (Middle) and Cobalt-60(Lower) concentrations at . Particulatedata (>0.45 pm) in closed symbol, Soluble in open symbol, and Total concentrations insolid line. IS=lntergrated samples (200-300 liters during 3-4 days)

F.3 CVCS Letdown Line Sampling

F-i1

Page 257: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F-12

Page 258: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-6Corrosion Product Radionuclide Concentrations atSample Panel

Measured using the CVCS

F-13

Page 259: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

FA4 Experience

F-1 4

Page 260: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

Figure F-7Elemental and Radionuclide Corrosion Product Concentrations at15 Measured using either the RCS Hit-Leg or CVCS Sample Lines

in Cycles 13 to

F-15

Page 261: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F.5 Analysis Methods

F-16

Page 262: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F.6 Conclusions

F-17

Page 263: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

Sampling Considerations for Monitoring RCS Corrosion Products

F.7 References

F-18

Page 264: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

GREACTOR COOLANT RADIONUCLIDES

G.1 Formation of Radionuclides in the RCS

G-1

Page 265: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-2

Page 266: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Table G-1Radionuclides Found in the Reactor Coolant System and Potential Sources

G-3

Page 267: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Table G-1Radionuclides Found in the Reactor Coolant System and Potential Sources

G-4

Page 268: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Table G-2Radionuclides Not Identified Directly by Gamma Spectroscopy or Determined by OtherMeans (Refer to Chart of Nuclides for Half Lives).

G-5

Page 269: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Iodine Specific Activity (DEI- 131)

F - Average Disintegration Energy

G-6

Page 270: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G.1.1 Radionuclides Formed by Fission

Figure G-1Fission Product Curve for Slow-Neutron Fissioning of U-235 (from Reference (1))

G-7

Page 271: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Fuel Clad Intact

Table G-3Theoretical and Actual Iodine Activity Ratios Relative to 1-131 (No fuel defects).

G-8

Page 272: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-9

Page 273: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-2Example of Grid-to-Rod Fretting and RCS Radionuclides at

G-1O

Page 274: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-11

Page 275: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G. 1.2 Fission Product Speciation

G-12

Page 276: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G. 1.3 Radionuclides Formed by Activation

G-13

Page 277: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Fuel Activation Products

Activation of Water

G-14

Page 278: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Tritium Production

Table G-4Tritium Source Percentages for a High Duty PWR that Uses IFBA and WABA Rods( )

G-15

Page 279: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Activation of Dissolved Species in Water

Corrosion Products

G-16

Page 280: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-17

Page 281: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Overall Activation Product Behavior

G-18

Page 282: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-19

Page 283: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G.2 Measurement of Radionuclides in the Reactor Coolant System

G.2.1 Examples of Measurement of Radionuclides by Adjusting Sample/CountingParameters

G-20

Page 284: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G.2.2 Identifying Unknown Gamma Ray Peaks

G-21

Page 285: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Table G-5Gamma Ray Peaks of Nuclides Which Can be Obscured

G-22

Page 286: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Table G-5(continued)Gamma Ray Peaks of Nuclides Which Can be Obscured

G-23

Page 287: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-3Activity Decay Curve. Two different radionuclides contributing at the same gamma rayenergy. Note that after decay correction that the semi-log plots of both activities,individually, are straight lines.

G-24

Page 288: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-4Noble Gas and Iodine Ratio Changes with a Tight Fuel Defect

G-25

Page 289: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G.3 Expected Concentrations and Trends of RCS Radionuclides

G.3.1 Fission Products

G-26

Page 290: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-5Noble Gas and Iodine Concentrations for Tight Fuel Defect

G-27

Page 291: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-6Noble Gas and Iodine Activities with an Open Fuel Defect

G-28

Page 292: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-7Noble Gas and Iodine Ratios with an Open Fuel Defect

G-29

Page 293: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G.3.2 Activation Product Trends

G-30

Page 294: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-31

Page 295: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

Figure G-8Changes in Corrosion Products and Lithium During CRDM Surveillance

G-32

Page 296: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

GA References

G-33

Page 297: Pressurized Water Reactor Primary Water Chemistry Guidelines · EPRI -3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 -USA 800.313.3774

EPRI Licensed Material

Reactor Coolant Radionuclides

G-34