presulfiding

5
Chemistry and Technology of Fuels and Oils. Ibl. 34. No. 6. 1998 PRESULFIDi]qG OF HYDROTREATING CATALYST BY ELEMENTAL SULFUR OUTSIDE OF THE REACTOR R. K. Nasirov, S.A. Dianova, N.A. Koval'chuk, and L R. Nasirov UDC 665.658.2.097.3 The ecological safety of petroleum products is the most important factor in the steady development of the oil processing industry. To lower the content of sulfur, nitrogen, a nd aromatic hydrocarbons in petroleum fuels the capacities of hydrogenating processes have been stepped up by reconstruction and modernization of existing units for hydrotreating and hydrocracking, on the one hand, and construction of new ones, on the other. At the sam e time great consideration has been given to developing and bringing into use new catalytic systems of high effectiveness because even small improvements in catalyst characteristics increase the total profitability of the process. The most widespread industrial catalysts for petroleum distillate hydrotreating are alumina-cobalt-molybdenum and alumina-nickel-molybdenum systems in the form of oxides. Their optimal activity is provided by total sulfiding. Sulfiding insufficiency results in a decrease in the activity and selectivity of the catalyst, reduction of its service life, increase in the initial temperature of the process and therefore reduction of the interregeneration cycle. There are five industrial processes of sulfidi ng: using a gas m ixture of hydrogen sulfide and hydrogen; a feedstock; a mixture of feed and sulfating agents; elemental sulfur; preimpregnation with organosulfur compounds (presulfiding) outside the technological plant. The most well investigated method is sulfiding by hydrogen sulfide. With this sulfiding agent, the catalyst coking i s excluded. Long processing in the atmosphere of hydrogen, however, results in overreduction of its active components and decreases its hydrodesulfurization activity. Sulfiding in the gas phase proceeds much more rapidly than in the liquid phase but is accom panied by local overheating due to the low heat capacity of the gas and high exothermicity of the reaction. Local overheating and deficit of hydrogen sulfide may result in catalyst spoiling. Moreover, hydrogen sulfide is remarkable for its high toxicity and pungent unpleasant smell. In industry this method is generally used in the USA. Sulfiding in the liquid phase by a feedstock is more widespread in Japan, and that by a mixture of a feed and sulfuring agents - in the West and the USA . There is no possibility to achieve total sulfiding by nonrefined oil distillates; in this case the catalyst is coked. The process of sulfiding by a feedstock may be recom mended at low temperatures only. It takes a long time to realize this process in industry. Experience in hydrotreating plants has shown that catalysts sulfided by a feedstock with addition of a sulfuring agent are more active than those sulfided by a feed or a mixture of hydrogen sulfide and hydrogen. In the first case sulfiding is mostly provided by sulfur of a sulfuring agent added at a concentration in a feedstock of I wt. %. Cheap organic compounds decomposing at low temperatures have been chosen as sulfuring agents (Table 1). Carbon disulfide was used for presulfiding before. It is quite dangerous, however, for the environment, so its application is rather limited despite of its high sulfur content. Mercaptans are good sulfuring agents, but their pungent unpleasant smell has forced users to look for other variants. At present dimethylsulfide and dimethyldisulfide are successfully used as sulfuring agents. Dimethylsulfide, however, is diffi cult to transport and pipe due to its high volatil ity, inflammability, and pungent smell. The advantages ofdim ethyldisulfide are its lower vapor pressure, which reduces its concentration in the atmosphere and decreases the risk of poisoning to personnel, and its lower decomposition temperature and higher flash point (18~ Organic polysulfides, specifically di-tert-nonylpolysulfide, are effective presulfiding agents, but it is very Open-Type Joint Stock Company "SoyuzNefteEKologiya." Translated from Khimiya i Tekhnologiya Topliv i Masei, No. 6, pp. 19 - 22, November - Decem ber, 1998. 344 0009-3092/98/3406-0344520.00 @1999 Kluwer Acadenfic/Plenum Publishers

Upload: cooldd

Post on 07-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Presulfiding

8/4/2019 Presulfiding

http://slidepdf.com/reader/full/presulfiding 1/5

Chemistry an d Technology o f Fuels and O ils . Ibl . 34. No. 6. 19 98

P R E S U L F I D i] q G O F H Y D R O T R E AT I N G C ATA LY ST B Y E L E M E N TA LS U L F U R O U T S ID E O F T H E R E A C T O R

R. K. Nasirov, S .A . Dianova, N .A. Ko val 'chuk,and L R. Nasi rov U D C 6 6 5 . 6 5 8 . 2 . 0 9 7 . 3

T h e e c o l o g i c a l s a f e t y o f p e t r o l e u m p r o d u c t s i s t h e m o s t i m p o r t a n t f a c t o r i n t h e s t e a d y d e v e l o p m e n t op r o c e s s i n g i n d u s t r y. To l o w e r t h e c o n t e n t o f s u lf u r, n i t ro g e n , a n d a r o m a t i c h y d r o c a r b o n s i n p e t r o l e u m f u e l s t h e o f h y d r o g e n a t i n g p r o c e s se s h a v e b e e n s t e p p e d u p b y r e c o n s t r u c t i o n a n d m o d e r n i z a t i o n o f e x i s t in g u n i t s f o r h y da n d h y d r o c r a c k i n g , o n t h e o n e h a n d , a n d c o n s t r u c t i o n o f n e w o n e s , o n t h e o t h e r. A t t h e s a m e t i m e g r e a t c o n sh a s b e e n g i v e n t o d e v e l o p i n g a n d b r i n g i n g i n t o u s e n e w c a t a l y t ic s y s t e m s o f h i g h e f f e c t i v e n e s s b e c a u s e e vi m p r o v e m e n t s i n c a t a l y s t c h a r a c t e r i s t i c s i n c r e a s e t h e t o t a l p r o f i t a b i l i t y o f t h e p r o c e s s .

T h e m o s t w i d e s p r e a d i n d u s t r ia l c a t a l y st s f o r p e t r o l e u m d i s t i l l a te h y d r o t r e a t i n g a r e a l u m i n a - c o b a l t - m o la n d a l u m i n a - n i c k e l - m o l y b d e n u m sy s t e m s i n t h e f o r m o f o x i d e s . T h e i r o p t i m a l a c t i v i t y i s p r o v i d e d b y t o t a l S u l f i d i n g i n s u f f i c i e n c y r e s u l t s i n a d e c r e a s e i n t h e a c t i v i t y a n d s e l e c t iv i t y o f t h e c a t a l y st , r e d u c t i o n o f i t s s ei n c r e a s e i n t h e i n i t i a l t e m p e r a t u r e o f t h e p r o c e s s a n d t h e r e f o r e r e d u c t i o n o f th e i n t e r r e g e n e r a t i o n c y c l e .

T h e r e a r e f i v e i n d u s t r ia l p r o c e s s e s o f s u l f i d in g : u s i n g a g a s m i x t u r e o f h y d r o g e n s u l f i d e a n d h y d r o g e n ; a fa m i x t u r e o f fe e d a n d s u l f a t i n g a g e n t s ; e l e m e n t a l s u l fu r ; p r e i m p r e g n a t i o n w i t h o rg a n o s u l f u r c o m p o u n d s ( p r e so u t s i d e t h e t e c h n o l o g i c a l p l a n t .

T h e m o s t w e l l i n v e s t i g a t e d m e t h o d i s s u l f i d i n g b y h y d r o g e n s u lf i d e . Wi t h t h i s s u l f i d i n g a g e n t , t h e c a t a l yis e x c l u d e d . L o n g p r o c e s s i n g i n t h e a t m o s p h e r e o f h y d r o g e n , h o w e v e r, r e s u l t s i n o v e r r e d u c t i o n o f it s a c ti v e c o ma n d d e c r e a s e s i t s h y d r o d e s u l f u r i z a t io n a c t iv i ty. S u l f i d i n g i n t h e g a s p h a s e p r o c e e d s m u c h m o r e r a p i d l y t h al i q u i d p h a s e b u t i s a c c o m p a n i e d b y lo c a l o v e r h e a t i n g d u e t o t h e l o w h e a t c a p a c i t y o f th e g a s a n d h i g h e x o t h e rt h e r e a c t i o n . L o c a l o v e r h e a t i n g a n d d e f i c it o f h y d r o g e n s u l f id e m a y r e s u l t i n c a t a l y s t s p o i l in g . M o r e o v e r, hs u l f i d e is r e m a r k a b l e f o r i ts h i g h t o x i c i t y a n d p u n g e n t u n p l e a s a n t s m e l l . I n i n d u s t r y t h i s m e t h o d i s g e n e r a l l y uU S A .

S u l f i d i n g i n t h e l i q u i d p h a s e b y a f e e d s t o c k i s m o r e w i d e s p r e a d i n J a p a n , a n d t h a t b y a m i x t u r e o f a fs u l f u r i n g a g e n t s - i n t h e W e s t a n d t h e U S A . T h e r e i s n o p o s s i b il i t y t o a c h i e v e t o t a l s u l f i d i n g b y n o n r e f i n e d o i l di n t h i s c a s e t h e c a t a l y s t is c o k e d . T h e p r o c e s s o f s u l f i d i n g b y a f e e d s t o c k m a y b e r e c o m m e n d e d a t l o w t e m po n l y. I t t a k e s a l o n g t i m e t o r e a l i z e t h i s p r o c e s s i n i n d u s t ry.

E x p e r i e n c e i n h y d r o t r e a t i n g p la n t s h a s s h o w n t h a t c a t a l ys t s s u l f i d e d b y a f e e d s t o c k w i t h a d d i t i o n o f a sa g e n t a r e m o r e a c t i v e t h a n t h o s e s u l f i d e d b y a f e e d o r a m i x t u r e o f h y d r o g e n s u l f i d e a n d h y d r o g e n . I n t h e fs u l f i d i n g i s m o s t l y p r o v i d e d b y s u l f u r o f a s u l f u r i n g a g e n t a d d e d a t a c o n c e n t r a t i o n i n a f e e d s t o c k o f I w t . %o rg a n i c c o m p o u n d s d e c o m p o s i n g a t l o w te m p e r a t u r e s h a v e b e e n c h o s e n a s s u l f u r i n g a g e n t s ( Ta b le 1 ).

C a r b o n d i s u l f i d e w a s u s e d f o r p r e s u l f i d i n g b e fo r e . I t i s q u i te d a n g e r o u s , h o w e v e r, f o r t h e e n v i r o n m e na p p l i c a t i o n i s r a t h e r l i m i t e d d e s p i t e o f it s h i g h s u l f u r c o n t e n t . M e r c a p t a n s a r e g o o d s u l f u r i n g a g e n t s , b u t t h e i ru n p l e a s a n t s m e l l h a s f o r c e d u s e r s t o l o o k f o r o t h e r v a r ia n t s . A t p r e s e n t d i m e t h y l s u l f i d e a n d d i m e t h y l d i s u

s u c c e s s f u l ly u s e d a s s u l f u r i n g a g e n t s .D i m e t h y l s u l f i d e , h o w e v e r, is d i f f ic u l t t o t r a n s p o r t a n d p i p e d u e t o i t s h i g h v o l a t i li t y, i n f l a m m a b i l i t y, a n d

s m e l l . T h e a d v a n t a g e s o f d i m e t h y l d i s u l f i d e a r e i t s l o w e r v a p o r p r e ss u r e , w h i c h r e d u c e s i t s c o n c e n t r a t i o n i n t h e a ta n d d e c r e a s e s t h e r i s k o f p o i s o n i n g t o p e r s o n n e l , a n d i t s l o w e r d e c o m p o s i t i o n t e m p e r a t u r e a n d h i g h e r f l a( 1 8 ~

O rg a n i c p o l y s u l f i d e s , s p e c i f i c a l l yd i - t e r t - n o n y l p o l y s u l f i d e ,a r e e f f e c t i v e p r e s u l f i d i n g a g e n t s , b u t i t i s v e r

O p e n - Ty p e J o i n t S t o c k C o m p a n y " S o y u z N e f t e E K o l o g i y a . " Tr a n s l a t e d f r o mK h i m i y a i Te k h n o l o g i y a To p l i v iM a s e i , No. 6 , pp . 19 - 22 , Nov em ber - Decem ber, 1998.

3 4 4 0 0 0 9 - 3 0 9 2 /9 8 / 3 4 0 6 - 0 34 4 5 2 0 . 0 0 @ 1 9 9 9 K l u w e r A c a d e n f i c / P l e n u m P u b l i s h e rs

Page 2: Presulfiding

8/4/2019 Presulfiding

http://slidepdf.com/reader/full/presulfiding 2/5

TA B L E 1

] Tem perature, *CSulfur ing agent Content of sulfur, wt .% decompo si t ion [ presulfidin8

Carbon disulfide 84.2 175 240 - 260Dirnethy ldisulfide 68.1 200 250Dim ethylsu lfide 51.1 250 270n-Butylmeresptane 34.7 225 260Di-tert-non ylpolys ulfide 37.0 160 250

TABLE 2

Index

LG-I I /300-95

JSCOdessa

PetroleumR e f m e r yGO-70

CK)-30-7

L - 3 5 - I I I 3 0 0N o v o p o l o t s k -

n e f t e o r g -sintez

Hydrotreat in8 a t the uni tLC-24/7 LK-6u

JSC JSCUkrtatnef t Shimkent-

nef teorg-sintez

LK-6uM S E

Nefiegas

L C - 2 4 / 5JS C

M o s c o wPetroleumRefmery

C a ta l yt ic y s t e m G O - 7 0 A C M - M G O - 7 0 G P - 5 3 4 G K D - 2 0 20 0 - 3 0 - 7 G K D - 2 0 2 p I S - 6 8 s h G O - 7 0 G K D - 2 0 5

special (regenerated) GO - 117 GO -70agent ( regenerated) DT-005N

Feedstock characteristicsD e ns i t y a t 2 0 " C , k g / m s 7 3 8 7 3 4 8 3 6 8 3 7 8 4 3 8 4 9C o n t e n t o f s u lf ur , t . % 0 . 0 3 9 0 . 0 1 9 1 . 2 0 . 2 4 0 . 9 1 1 . 0

Distillation, *CIBP 87 83 189 210 204 16910~ 102 100 221 230 228 24050% 119 120 255 277 277 28490% 1 5 3 1 5 6 2 9 0 3 5 0 3 6 0 3 4 7EP 192 179 308 360 368 377

Product characteristicsContent of sulfur,

wt. % - - 0.0105 0.01 0.03 0.064ppm 0.26 0.23 . . . .

Process parameterspressure, M Pa 2.9 2.9 3.2 4.5 4.6 3.1

Tem perature, *C 320 330 367 350 355 357Feed stock space 5.2 5.0 3.0 4.0 3.4 2.5v d o d t y, h aHy drogen c ieh gas" 310 330 320 346 230feedstoc k, m3/m3Hy drogen concenVation, 91.5 89 72 79 86 80vol. %

expens ive to ge t su l fu r f rom th em [1] . The p rocess o f su l f id ing by these agen t s i s opera t ive ly checked and con t rTo exc lude ca ta lys t cok ing , th e p rocess t em pera tu re shou ld be l e s s than 3400C.

Ma ny pa ten t s o f the l a s t 15 yea rs have sugges ted d i ffe ren t ways to p resu l f ide the hydrop rocess ca ta lys t s outhe ca ta ly t i c r eac to r [2 - 10]. S ince 1986 more tha n 30 ,000 tons o f hydro t rea t ing ca ta lys t s were success fu l ly wh ich had bee n p resu l f ided ou t s ide the t echno log ica l un i t s accord ing to the Su l f i ca t me thod o f the f i rm Euroca t

In accord ance wi th tha t t echno logy, the ca ta lys t is impreg na ted by an o rgan ic po lysu l f ide comp ound and keh igh er t empera tu re . The amo unt o f su l fu r adsorbed by the ca ta lys t co r responds to the s to ich iomet r i c quan t i ty nto conver t the ac t ive compo nen t s in to the ac t ive fo rm of su l fide . The ac t ive meta l s (m olybdenu m, cobal t , n icke l ) ca ta lys t su l fided in such a way a re in th e fo rm of a s t ab le in te rmedia te oxysu l f ide .

Ac t iva t ion o f the p resu l f ided ca ta lys t i s rea l i zed us ing hydro gen in a ca ta ly t ic r eac to r a t 300-350~ In conto the usua l w ay o f su l f id ing ins ide the t echno log ica l un it , t h i s m e thod m akes i t poss ib le to ob ta in a ca ta lys t o fac t iv i ty, speeds up and s impl i f i e s b r ing ing a un i t in to opera t ion and does no t r equ i re add i t iona l am ounts o f s

345

Page 3: Presulfiding

8/4/2019 Presulfiding

http://slidepdf.com/reader/full/presulfiding 3/5

3 0 0 ~ " ~ 7

250

150

100

2

//

0 2 4 6 8

Height o f the catalyst iayeg m.

Fig . 1 . Tem pera tu re p ro f il e 4 h a~er s t a r t o f su l f id ing : 1 ,2) in the f i rs t and second reactors , respect ively.

~ g s

3 2 0 3 3 0 3 4 0 3 5 0 3 6 0

Temperature, ~

F i g . 2 . I n f l u e n c e o f t e m p e r a t u r e o n f e e d s t o cc o n v e r s io n i n h y d m s u l f u r a t io n w i t h t h e c a t a l y st G O70: 1 ) su lf ided by e lem enta l su l fu r ins ide the reac to2) p resu l f ided by e lem enta l su l fu r ou t s ide the reac to

c o m p o u n d s . T h e p r o b l e m s o f d e v e l o p i n g a n d a p p l y i n g t h e p r e s u l f i d e d c a ta l y s ts h a v e b e e n t h o r o u g h l y d i s c u s16].

T h e p r o c e s s o f s u l f i d i n g h y d r o t r e a t i n g c a t a l y s t s b y e l e m e n t a l s u l f u r i s w i d e l y u s e d a t o i l p r o c e s s i n g pRuss ia . The re i s no d i sadv an tage in l~ren t in su l f id ing by hydroge n su l f ide o r a f eeds tock wi th add i t ion o f su l fu r iT h e r i s k o f f ir e a n d t o x i c i ty a re l o w e r i n t h i s c a s e a n d t h i s m e t h o d t ak e s l e ss t i m e a n d i s t e s s e x p e n s iv e . W h e n uop t imal cond i t ions th i s m e tho d makes i t poss ib le to ach ieve 100% su l f id ing , wh ich p rov ides h igh ac t iv i ty and good oproper t ies of th e cata lyst [ 17 - 20] .

In in dus tw 15 wt . % e leme nta l su l fu r fo r ca ta lys t su l f id ing i s charged in to the reac to r e i the r over the l aymix ing wi th the top l ayer. In th i s p rocess su l fu r occup ies some space , wh ich becom es f ree o f the ca ta lys t a ft e r su l freduces i ts cha rge in the reac to r and m ay resu l t in uneven pack ing o f the l ayer and the re fo re i t s non-op t im al con tafeeds tock ; wh en a gas - f iqn id mix tu re i s cha rged , the l iqu id feeds tock in f il t r a tes th roug h m ore open cha nne l s , c rleast res is tance to f low.

Th e t em pera tu re p ro fi l e o f the e lemen ta l su l fu r su l f id ing p rocess i s ve w complex . F igure 1 shows i t s changthe package o f a lum ina-n icke l -m olybdenu m and a lumina-coba l t -m olybdenum ca ta lyst i s su l f ided a t the L-24 /7 uJo in t S tock Com pany "~ lq izhegorodne~eorgs in tez '.

Indus t r i a l ca ta lyst s d i ffe r one f ro m ano th er no t on ly by the m ethod o f p roduc t ion bu t by the sup por t qucom pos i t ion , i t s t ex tu re charac te r is t i c s, an d the con ten t o f ac t ive com ponen t s and mod i fy ing add i t ives . Thus , w henthe ca ta lys t (base and aux i l i a ry ) packa ge as w e l l a s the me thod o f su l f id ing , the ind iv idua l charac te r i s ti c s o f the feehydro t rea t ing un i t s and the requ i rements o f the p roduc t s a re t aken in to cons ide ra tion .

Th e spec i f ic charac te ri s t i c s o f opera t ing the ca ta ly t ic sys tems have b een ex tens ive ly deve loped and inves t igElec t rogorsk Ins t itu te fo r Pe t ro leum Process ing (E l 1NP). Ca ta ly t i c packages o f domes t i c a lum ina-n icke l -m olybda lumina -coba l t -molybde num ca ta lyst s were charged in to the reac to r s fo r hydro t rea t ing gaso l ine and d iese l d i s tin u m b e r o f oi l p ro c e s s in g p l a n ts o f t h e f o rm e r U S S R . T h e r e s u l t s o f i n d u s t r i a l o p e r a t i o n o f c a t a l y t ic s y s t e m s s ue l e m e n t a l s u l f u r a c c o r d i n g t o th e E l I N P m e t h o d a r e s h o w n i n Ta b le 2 .

I n d u s t r i a l e x p e r i e n c e i n t h e o p e r a t i o n o f c a ta l y t ic s y s t e m s s u l f i d e d by e l e m e n t a l s u l f u r h a s s h o w n t h e i r a dover ind iv idua l ca ta lys t s , wi th respec t to the i r ac t iv i ty, se rv ice l i f e , and re l i ab i l i ty, bu t app l i ca t ion o f these syo i l p r o c e s s i n g u n i t s i n R u s s i a i s l im i t e d . A s t h e o r e t i c a l i n v e s t i g a ti o n s a n d l o n g - t e r m p i l o t t e s ts h a v e s h o wc o n n e c t e d , f i r s t o f a ll , w i t h d i f f i c u lt i e s in c o n t r o l l i n g t h e p r o c e s s o f s u l f i d i n g l a rg e a m o u n t s o f c a t a ly s t a s wl a c k o f t e c h n o l o g i c a l e q u i v a l e n c y b e t w e e n c a t a l y t i c p a c k a g e s a n d t h e i r c o m p o s i t i o n .

A s a r e s u lt , t h e p r o b l e m o f d e v e l o p i n g t h e m e t h o d o f p r e s u l fi d a t i o n o f a h y d r o t r e a t i n g c a t a ly s t b y e ls u l f u r o u ts i d e a c a t a l y ti c r e a c t o r h a s b e e n s e t up . T h i s w o u l d a l l o w u t i l i z i n g t h e o p e r a t i n g s p a c e o f t h e r e a c t o r

3 4 6

Page 4: Presulfiding

8/4/2019 Presulfiding

http://slidepdf.com/reader/full/presulfiding 4/5

as poss ib le and reduc ing exo thermic e ffec t s dur ing ac t iva t ion by hydro gen due to even d is t r ibu t ion o f su l fca ta lys t pores , and i t s p re l imin aq , reac t ion wi th the ac t ive com pone nts resu l t ing in the format ion of oxysul f id rop in the ac t iva t ion tempera ture .

Wi th t he ab no r m a l beh av io r o f t he m e l t e d su l fu r i n m ind , w h ich can be e xp l a ine d b y t h e c hange i n t he mst ruc ture and mu tua l convers io n of i ts mo di f ica t ions because of hea t ing , the tempera ture range of the mel tedcontac t wi th th e ca ta lys t has been cho sen as 120 to 180"C. The ca ta lys t spec imen wi th the ca lcu la ted am oun t- f rom s to ich iom et r ic up to 70 wt . % in the ca talys t - was charged in to a f lask , deaera ted under vacuum, and a n i t rogen s t ream up to the ass igned tempera ture . The f lask was con s tan t ly ro ta ted for even d is tr ibu t ion of sucontac t o f the la t te r wi th the ca ta lys t should be long enough for i t s pene t ra t ion in to the ca talys t pores . Th ecooled in a n i t rogen s t ream. T his techn ology is a l so appl icab le to reg enera ted ca ta lys t s.

Th e ca ta lys t su l f ided in such a w ay inc ludes su l fur in quant i t i es g rea te r than s to ich iomet r ic . I t can be uea ta lys t -ac t iva tor charged in to the reac tor as a top layer. Charg ing the ca ta lys t -ac t iva tor wi th the necessary csu l fur in pores i s m ore promis ing tha n i t s par t ia l un loading a f te r regenera t ion and rep lac ing i t wi th the f resh

Pre su l f i d i ng t he a lu min a - n i ck e l - m o lybd enu m and a lumin a -c ob a l t -mo lybd en u m ca t a l y s t by e l emen tacont r ibu tes to a subs tan t ia l increase in the ca ta lys t s t rength , wh ich m akes i t poss ib le to reduce the leve l o fdur in g charg ing o f a hydro t rea t ing reac tor. Format ion o f smal l ca ta lys t par tic les resu lt s in a n increase in thed i ffe ren t ia l in the reac tor dur in g the process .

To confirm pyrophorici ty the presulf ided catalyst specimen with 30 % content of sulfur in the pores, w hich cooled down to the amb ient temperature, was blasted by air. The temperature in the m iddle of the layer was ch efimcfion of t ime w ith a thermocouple. It remain ed constant as long as 1 h.

Th e resu l t s o f ac t iv i ty tes t s have show n tha t a f te r the ac t iva t ion un der condi t ions equiva len t to those in by e lemen ta l su l fur ins ide the ca ta ly t ic reac tor accord ing to the p rev ious ly deve loped method a l l ca ta lys t s p rby e lemen ta l su l fur were charac te r ized by a comparable or h ig her ac t iv i ty in the reac t ions of hydrodesu l furates t resu lt s o f the indus t r ia l a lumina-cob a l t -molybden um hydro t rea t ing ca ta lys t GO-70 in the o x ide ( samplpresu l f ided ( sample 2) form are presen ted in F igure 2 . The concen t ra t ion of su l fur in the in i t i a l ca ta lys t o f Swas 10 wt . %, w hich was som ewha t h igh er than i t s s to ich iomet r ic amoun t . Su l fur charg ing in the case of ins ide the reac tor was the same.

The t i t ra t i on c on d i t i on s w e r e: h y d rogen p r e s su re 3 M Pa ; f e ed s tock space ve lo c it y 3 h t ; hyd rogen : f e200 m3/m3 (normal condi t ions) ; t empera ture 320 , 330 , 340 , 350 , 360~ The feeds tock used was a st ra igh t d ie

dens i t y 843 kg /m3 at 20~ dist i l la t ion, ~ IBP 179, 50% 286, 90% 360, EP 367; con tent of sulfur 1.2 wt. %.The condit ions of presutf iding and subsequent act ivat ion depend on the method of production (coprecipi

impregnation) , the texture character is t ics of the catalyst , the qual i tat ive and quanti tat ive conten t of act ive comp onas w ell as the support comp osi t ion. A catalyt ic system of high act ivi ty can be achieved only i f the individual characcatalysts are taken into considerat ion.

Th e m ethod o f presu l f ided ca ta lys t p roduct ion can be eas i ly rea l ized a t th e ex is t ing ca ta lys t p lan ts : ero ta t ing furnaces or appara tus for suppor t impregnat ing . Appl ica t ion o f the sa fes t su l fur ing agent - e lemen tashould be regarded as an ad vantage o f the process because th i s agen t i s nonvola t i l e , nonf lammable , nontomoreover, i s ne i ther scarce nor expens ive product (mos t o i l p rocess ing p lan ts a rc provided wi th Claus un i t s fproduct ion ; in 1989 i t s average re ta i l p r ice in the U SA was $78 .8 / ton) .

Elem enta l su l fur eas i ly pene t ra tes the ca ta lys t pores dur ing h ea t ing and remains there a f te r cooling . Theof su l fur incorpora ted depends on po re vo lume and co nten t o f ac t ive meta l s . The ca ta lys t p resu l f ided in suchnot pyrop hor ic and in cont ras t to mos t ca ta lys t s o f s imi la r na tu re does no t requi re pro tec t ion f rom the a i r.

Th e adv antages of appl ica t ion o f such ca ta lys t a re as fo l lows: sh or te r t ime o f ac t iva t ion ; h igh ca ta ly t iclower in i t i a l t empera ture o f the hydro t rea t ing process ; longer in te r reg enera t ion cyc le .

R E F E R E N C E S

1. Ha[lie Ha rman ,O i l a n d G a s J . , 20, No. 51, 69 - 74 (1982).2. U.S. Pat. 3,453,217.3. U.S. Pat. 356,91 2.4. U.S. Pat. 4,177,13 6.

347

Page 5: Presulfiding

8/4/2019 Presulfiding

http://slidepdf.com/reader/full/presulfiding 5/5

5. U.S . Pat. 4,530,91 7.6. U.S. Pat . 4 ,943,547.7. U.S. Pat . 5 ,041,404.8 . 1%F. Pat. 2,584,311 .9. R.E Pat . 2 ,680,704.

10. Pat . of Au str ia 81,308.11. J .H . W i l son and G Ber rebi ,Off-s i te Presuifiding o f Hydro processing Catalyst, Am .Che m. Sac . , Toron to Mee t ing ,

1988 .12. E Dufresne, G Berrebi , and J . H. W ilsonA N ew Way to Star tup Hydrocrackers , A m .Chem. Sac . , San Franc i sco

Meet ing , 1989 .13 . J .H . Wi l son .Innovat ions in O ff-s i te Catalyst Services , Am . InsLChem . Eng . , Spr ing Na t iona l Mee t ing , 1991 .14. M D e Wind, J . J. L. Heinerman, S. L. Lee, e t a l . , Oi l and G as J . , February 24,199 2, pp. 56 - 61.15. S. 1% M u r~ E. A. Carl is le , P. Dufresoe , e t a t , T heSulf icat Presu lf ided Catalyst Experience, A m .C h e m . S a c ., D e n v e r

Mee t ing , 1993 .16. J . G Welch, P. Paym er, and 1% E Skeel ly,O il an d Gas,] . , O ctob er 10, 1994, pp. 56 - 64.17 . US SR Inven to r ' s Cer t i f ica te 701 ,699 .18 . US SR Inven to r ' s Cer t i f ica te 1 ,069 ,415 .19 . US SR Inven to r ' s Cer t i f ica te 1 ,300 ,717 .20. G V. Isagul 'ants , A. A. Greish, V. M. Kogan, e t a l . ,Kinet. Katai.,30, No . 4, 1000 - 1003 (1988).

34 8