prezentacja programu powerpointszczytko/ldsn/2_ldsn_2017_tight_binding_print.pdf2017-06-05 3 the...

65
Tight-Binding Approximation Faculty of Physics UW [email protected]

Upload: others

Post on 20-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Tight-Binding Approximation

Faculty of Physics UW

[email protected]

Page 2: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

The band theory of solids.

2017-06-05 2

Page 3: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 3

The solution of the one-electron Schrödinger equation for a periodic potential has a form of modulated plane wave:

𝑢𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 + 𝑅

𝜑𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

We introduced coefficient 𝑛 for different solutions corresponding to the same 𝑘 (index). 𝑘-vector is an element of the first Brillouin zone.

Bloch wave,Bloch function

Bloch amplitude,Bloch envelope

𝑢𝑛,𝑘 Ԧ𝑟 =

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑒𝑖 Ԧ𝐺 Ԧ𝑟

Bloch theorem

Periodic potential

Page 4: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

6/5/2017 4

Bloch theoremProof:

𝑇𝑅 𝑓 Ԧ𝑟 = 𝑓 Ԧ𝑟 + 𝑅

Periodic potential

Translation operator 𝑇𝑅

Perodic potential of the crystal lattice: 𝑇𝑅 𝑉 Ԧ𝑟 = 𝑉 Ԧ𝑟 + 𝑅

Hamiltonian with periodic potential

𝑇𝑅𝐻 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐻 Ԧ𝑟 + 𝑅 𝜓 Ԧ𝑟 + 𝑅 = 𝐻 Ԧ𝑟 𝜓 Ԧ𝑟 + 𝑅 = 𝐻 Ԧ𝑟 𝑇𝑅 𝜓 Ԧ𝑟

operators are commutative!𝑇𝑅𝑇𝑅′𝜓 Ԧ𝑟 = 𝜓 Ԧ𝑟 + 𝑅 + 𝑅′ = 𝑇𝑅′

𝑇𝑅𝜓 Ԧ𝑟

Eigenfunctions 𝜓𝑛,𝑘 Ԧ𝑟 of the translation operator 𝑇𝑅:

𝑇𝑅𝜓𝑛,𝑘 Ԧ𝑟 = 𝐶 𝑅 𝜓𝑛,𝑘 Ԧ𝑟 = 𝑒𝑖𝑓 𝑅 𝜓𝑛,𝑘 Ԧ𝑟 𝐶 𝑅2= 1

𝑓 𝑅 + 𝑅′ = 𝑓 𝑅 + 𝑓 𝑅′where

𝑓 0 = 0 ⇒ 𝑓 𝑅 = 𝑘𝑅

Page 5: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

6/5/2017 5

Bloch theoremProof:

𝑇𝑅 𝑓 Ԧ𝑟 = 𝑓 Ԧ𝑟 + 𝑅

Periodic potential

Translation operator 𝑇𝑅

𝑢𝑛,𝑘 = 𝜓𝑛,𝑘 Ԧ𝑟 𝑒−𝑖𝑘 Ԧ𝑟

We denote our eigenfunction 𝜓𝑛,𝑘 Ԧ𝑟 where 𝑛 distinguishes the

different functions of the same 𝑘. Let us define:

The eigenstates of the electron in a periodic potential are characterized by two quantum

numbers 𝑘 and 𝑛

Thus:

periodic function

𝑘 – wave vectorn – describes the energy bands (for a moment!)

𝑇𝑅 𝑢𝑛,𝑘 = 𝑇𝑅 𝜓𝑛,𝑘 Ԧ𝑟 𝑒−𝑖𝑘 Ԧ𝑟 = 𝑒𝑖𝑘𝑅𝜓𝑛,𝑘 Ԧ𝑟 𝑒−𝑖𝑘 Ԧ𝑟+𝑅 = 𝜓𝑛,𝑘 Ԧ𝑟 𝑒−𝑖𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘

Eigenfunctions 𝜓𝑛,𝑘 Ԧ𝑟 of the operator 𝑇𝑅

𝑇𝑅𝜓 Ԧ𝑟 = 𝐶 𝑅 𝜓𝑛,𝑘 Ԧ𝑟 = 𝑒𝑖𝑘𝑅𝜓𝑛,𝑘 Ԧ𝑟

𝜓𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘𝑒𝑖𝑘 Ԧ𝑟

Page 6: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

xa

kx

k

ax

62017-06-05

8𝜋

𝑎−𝜋

𝑎

6𝜋

𝑎

𝜋

𝑎

4𝜋

𝑎−2𝜋

𝑎

2𝜋

𝑎

The nearly free-electron approximation

Periodic potential

band

band

band

Page 7: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

72017-06-05

The electronic band structure

• It is convenient to present the energies only in the 1st Brillouin zone.• The electron state in the solid state is given by the wave vector of the 1st Brillouin zone, band number and a spin.

Page 8: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 8

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

The electronic band structure

Page 9: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 9

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

The electronic band structure

Page 10: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Tight-Binding Approximation

2017-06-05 10

We describe the crystal electrons in terms of a linear superposition of atomic eigenfunctions(LCAO – Linear Combination of Atomic Orbitals) 𝐻 = 𝐻𝐴 + 𝑉′:

𝐻𝐴 Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 = 𝐸𝑗𝜑𝑗 Ԧ𝑟 − 𝑅𝑛

𝐻 = 𝐻𝐴 + 𝑉′ = −ℏ2

2𝑚Δ + 𝑉𝐴 Ԧ𝑟 − 𝑅𝑛 +

𝑚≠𝑛

𝑉𝐴 Ԧ𝑟 − 𝑅𝑚

Perturbation: the influence of atoms in the neighborhood of 𝑅𝑚 :

𝑉′ Ԧ𝑟 − 𝑅𝑛 =

𝑚≠𝑛

𝑉𝐴 Ԧ𝑟 − 𝑅𝑚

Good for valence band of covalent crystals, 𝑑-orbital bands etc.

𝑗-th state 𝑒 Atom in position 𝑅𝑛Equation for the free atoms thatform the crystal

𝐻𝐴 = −ℏ2

2𝑚Δ + 𝑉𝐴 Ԧ𝑟 − 𝑅𝑛

Page 11: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 11

Approximate solution in the form of the Bloch function:

Φ𝑗,𝑘 Ԧ𝑟 =

𝑛

𝑎𝑛𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 =

𝑛

exp 𝑖 𝑘𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛

Check:Φ𝑗,𝑘+ Ԧ𝐺 Ԧ𝑟 = Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 + 𝑇 = exp 𝑖 𝑘𝑇 Φ𝑗,𝑘 Ԧ𝑟

Energies determined by the variational method:

𝐸 𝑘 ≤Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 Φ𝑗,𝑘 Ԧ𝑟

Expression

Φ𝑗,𝑘 Ԧ𝑟 Φ𝑗,𝑘 Ԧ𝑟 =

𝑛,𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚 න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

can be easily simplify assuming a small overlap of wave functions for 𝑛 ≠ 𝑚

Φ𝑗,𝑘 Ԧ𝑟 Φ𝑗,𝑘 Ԧ𝑟 =

𝑛

න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉 = ⋯

Tight-Binding Approximation

Page 12: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 12

Approximate solution in the form of the Bloch function:

Φ𝑗,𝑘 Ԧ𝑟 =

𝑛

𝑎𝑛𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 =

𝑛

exp 𝑖 𝑘𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛

Check:Φ𝑗,𝑘+ Ԧ𝐺 Ԧ𝑟 = Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 + 𝑇 = exp 𝑖 𝑘𝑇 Φ𝑗,𝑘 Ԧ𝑟

Energies determined by the variational method:

𝐸 𝑘 ≤Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 Φ𝑗,𝑘 Ԧ𝑟

𝐸 𝑘 ≈1

𝑁Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟 =

=

𝑛,𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚 න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝐸𝑗 + 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

Tight-Binding Approximation

Page 13: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 13

Approximate solution in the form of the Bloch function:

Φ𝑗,𝑘 Ԧ𝑟 =

𝑛

𝑎𝑛𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 =

𝑛

exp 𝑖 𝑘𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛

Check:Φ𝑗,𝑘+ Ԧ𝐺 Ԧ𝑟 = Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 + 𝑇 = exp 𝑖 𝑘𝑇 Φ𝑗,𝑘 Ԧ𝑟

Energies determined by the variational method:

𝐸 𝑘 ≤Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟

Φ𝑗,𝑘 Ԧ𝑟 Φ𝑗,𝑘 Ԧ𝑟

𝐸 𝑘 ≈1

𝑁Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟 =

=

𝑛,𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚 න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝐸𝑗 + 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

Tight-Binding Approximation

Only diagonal terms 𝑅𝑛 = 𝑅𝑚 in 𝐸𝑗

Only the vicinity of 𝑅_𝑛

Page 14: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 14

𝐸 𝑘 ≈1

𝑁Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟 =

=

𝑛,𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚 න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝐸𝑗 + 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

When the atomic states 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 are spherically symmetric (𝑠-states), then overlap

integrals depend only on the distance between atoms:

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 𝐵𝑗

𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚

𝐴𝑗 = −න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑛 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

𝐵𝑗 = −න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

Restricted to only the nearest neighbours of 𝑅𝑛

Tight-Binding Approximation

Only diagonal terms 𝑅𝑛 = 𝑅𝑚 in 𝐸𝑗

Only the vicinity of 𝑅_𝑛

Page 15: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 15

When the atomic states 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 are spherically symmetric (𝑠-states), then overlap

integrals depend only on the distance between atoms:

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 𝐵𝑗

𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚

𝐴𝑗 = −න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑛 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

𝐵𝑗 = −න𝜑𝑗∗ Ԧ𝑟 − 𝑅𝑚 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

The result of the summation depends on the symmetry of the lattice:

For 𝑠𝑐 structure: 𝑅𝑛 − 𝑅𝑚 = ±𝑎, 0,0 ; 0, ±𝑎, 0 ; 0,0, ±𝑎 ;

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 2𝐵𝑗 cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎

For 𝑏𝑐𝑐 structure :

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 8𝐵𝑗 cos𝑘𝑥𝑎

2cos

𝑘𝑦𝑎

2cos

𝑘𝑧𝑎

2

For𝑓𝑐𝑐 structure :

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 4𝐵𝑗 cos𝑘𝑥𝑎

2cos

𝑘𝑦𝑎

2+ 𝑐. 𝑝.

Tight-Binding Approximation

Page 16: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 16

For 𝑠𝑐 structure: 𝑅𝑛 − 𝑅𝑚 = ±𝑎, 0,0 ; 0, ±𝑎, 0 ; 0,0, ±𝑎 ;

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 2𝐵𝑗 cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

𝐵𝑗=−න𝜑𝑗∗Ԧ𝑟−𝑅𝑚

𝑉′Ԧ𝑟−𝑅𝑛

𝜑𝑗Ԧ𝑟−𝑅𝑛

𝑑𝑉

Tight-Binding Approximation

Page 17: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 17

For 𝑠𝑐 structure: 𝑅𝑛 − 𝑅𝑚 = ±𝑎, 0,0 ; 0, ±𝑎, 0 ; 0,0, ±𝑎 ;

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 2𝐵𝑗 cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

𝐵𝑗=−න𝜑𝑗∗Ԧ𝑟−𝑅𝑚

𝑉′Ԧ𝑟−𝑅𝑛

𝜑𝑗Ԧ𝑟−𝑅𝑛

𝑑𝑉

Tight-Binding Approximation

Page 18: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 18

Landolt-Boernstein

Expanding 𝐸𝑛 𝑘 = 𝐸𝑛 −ℏ2𝑘2

2𝑚near extremum, e.g. 𝑘 = 0:

bands

The electronic band structure

Page 19: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 19

Landolt-Boernstein

Expanding 𝐸𝑛 𝑘 = 𝐸𝑛 −ℏ2𝑘2

2𝑚near extremum, e.g. 𝑘 = 0:

The electronic band structure

Page 20: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 20

Linear dispersion relation in graphene:

Tight binding approach with the only nearest neighbors interaction [P. R. Wallace, „The Band Theory of Graphite”, Physical Review 71, 622 (1947).] gives:

𝐸 𝑘 = ± 𝛾02 1 + 4 cos2

𝑘𝑦𝑎

2+ 4 cos

𝑘𝑦𝑎

2⋅ cos

𝑘𝑥 3𝑎

2≈ ℏ ǁ𝑐 𝑘 − 𝑘𝑖

Tight-Binding Approximation

Page 21: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 21

Linear dispersion relation in graphene:

Tight binding approach with the only nearest neighbors interaction [P. R. Wallace, „The Band Theory of Graphite”, Physical Review 71, 622 (1947).] gives:

𝐸 𝑘 = ± 𝛾02 1 + 4 cos2

𝑘𝑦𝑎

2+ 4 cos

𝑘𝑦𝑎

2⋅ cos

𝑘𝑥 3𝑎

2≈ ℏ ǁ𝑐 𝑘 − 𝑘𝑖

Tight-Binding Approximation

Page 22: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 22

Linear dispersion relation in graphene:

Tight binding approach with the only nearest neighbors interaction [P. R. Wallace, „The Band Theory of Graphite”, Physical Review 71, 622 (1947).] gives:

𝐸 𝑘 = ± 𝛾02 1 + 4 cos2

𝑘𝑦𝑎

2+ 4 cos

𝑘𝑦𝑎

2⋅ cos

𝑘𝑥 3𝑎

2≈ ℏ ǁ𝑐 𝑘 − 𝑘𝑖

Tight-Binding Approximation

Page 23: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 23

The number of states in the volume of 𝜋𝑘2:

𝑁 𝐸 =2

2𝜋 2𝜋𝑘2 =

2

2𝜋 2𝜋 𝑘 − 𝑘𝑖

2=

2

2𝜋 2𝜋

𝐸

ℏ ǁ𝑐

2

𝜌 𝐸 =𝜕𝑁 𝐸

𝜕𝐸=

𝐸

𝜋 ℏ ǁ𝑐 2

Linear dispersion relation in graphene:

Tight binding approach with the only nearest neighbors interaction [P. R. Wallace, „The Band Theory of Graphite”, Physical Review 71, 622 (1947).] gives:

𝐸 𝑘 = ± 𝛾02 1 + 4 cos2

𝑘𝑦𝑎

2+ 4 cos

𝑘𝑦𝑎

2⋅ cos

𝑘𝑥 3𝑎

2≈ ℏ ǁ𝑐 𝑘 − 𝑘𝑖

Tight-Binding Approximation

Page 24: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 24

The existence of the band structure arising from the discrete energy levels of isolated atoms due to the interaction between them. We can classify the electronic states as belonging to the electronic shells 𝑠, 𝑝, 𝑑 etc.

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

The existence of a forbidden gap is not tied to the periodicity of the lattice! Amorphous materials can also display a band gap.

If a crystal with a primitive cubic lattice contains 𝑁 atoms and thus 𝑁 primitive unit cells, then an atomic energy level 𝑬𝒊 of the free atom will split into 𝑁 states (due to the interaction with the rest of 𝑁 − 1 atoms).

Each band can be occupied by 2𝑁 electrons.

Tight-Binding Approximation

Page 25: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 25

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

An odd number of electrons per cell(metal)

An even number of electrons per cell(non-metal)

An even number of electrons per cell but overlapping bands(metals of the II group, e.g. Be → next slide!)

If a crystal with a primitive cubic lattice contains 𝑁 atoms and thus 𝑁 primitive unit cells, then an atomic energy level 𝑬𝒊 of the free atom will split into 𝑁 states (due to the interaction with the rest of 𝑁 − 1 atoms). Each band can be occupied by 𝟐𝑵 electrons.

Tight-Binding Approximation

Page 26: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 26

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

Be

C, Si, Ge

Tight-Binding ApproximationThe states can mix: for instance 𝑠𝑝3 hybridization.

Page 27: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 27

Tight-Binding Approximation

Page 28: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 28

Michał Baj

Tight-Binding Approximation

Page 29: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Fermi surfaces of metals

2017-06-05 29

Ashcroft, Mermin

Cu

Page 30: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Fermi surfaces of metals

2017-06-05 30

http://physics.unl.edu/tsymbal/teaching/SSP-927/Section%2010_Metals-Electron_dynamics_and_Fermi_surfaces.pdf

Page 31: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Fermi surfaces of metals

2017-06-05 31

Michał Baj

Page 32: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Tight-Binding Approximation

2017-06-05 32

Page 33: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 33

Michał BajSzm

ulo

wic

z, F

., S

egal

l, B

.: P

hys

. Rev

. B2

1, 5

62

8 (

19

80

).

Tight-Binding Approximation

Page 34: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 34

Michał BajSzm

ulo

wic

z, F

., S

egal

l, B

.: P

hys

. Rev

. B2

1, 5

62

8 (

19

80

). Density of states

like for freeelectrons!

Tight-Binding Approximation

Page 35: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 35

Michał Baj

Cu: [1s22s22p63s23p6] 3d104s1

[Ar] 3d104s1

d-band

Tight-Binding Approximation

Page 36: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 36

Ni: [1s22s22p63s23p6] 3d94s1 [Ar] 3d94s1

ferromagnetic ordering, exchange interaction, different energies for different spins, two different densities of states for two spins ↑ and ↓

Δ – Stoner gap

Page 37: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Semiconductors

2017-06-05 37

Semiconductors of the group IV (Si, Ge) –diamond structure

Semiconductors AIIIBV (e.g. GaAs, GaN) i AIIBVI (np. ZnTe, CdSe) – zinc-blend or wurtzitestructure

Semiconductors AIVBVI (np. SnTe, PbSe) –NaCl structure

SiIndirect bandgap, Eg = 1,1 eV

Conduction band minima in Δ point, constant energy surfaces – ellipsoids (6 pieces), m||=0,92 m0, m⊥=0,19 m0,

The maximum of the valence band in Γ point, mlh=0,153 m0, mhh=0,537 m0, mso=0,234 m0, Δso= 0,043 eV

Page 38: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 38

GeIndirect bandgap, Eg = 0,66 eV

The maximum of the valence band in Γ point, mlh=0,04 m0, mhh=0,3 m0, mso=0,09 m0, Δso= 0,29 eV

Conduction band minima in Δ point, constant energy surfaces – ellipsoids (8 pieces), m||=1,6 m0, m⊥=0,08 m0,

SemiconductorsSemiconductors of the group IV (Si, Ge) –diamond structure

Semiconductors AIIIBV (e.g. GaAs, GaN) i AIIBVI (np. ZnTe, CdSe) – zinc-blend or wurtzitestructure

Semiconductors AIVBVI (np. SnTe, PbSe) –NaCl structure

Page 39: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 39

GaAsDirect bandgap, Eg = 1,42 eV

The maximum of the valence band in Γ point, mlh=0,076 m0, mhh=0,5 m0, mso=0,145 m0, Δso= 0,34 eV

The minimum of the conduction band in Γ point, constant energy surfaces – spheres, mc=0,065 m0

SemiconductorsSemiconductors of the group IV (Si, Ge) –diamond structure

Semiconductors AIIIBV (e.g. GaAs, GaN) i AIIBVI (np. ZnTe, CdSe) – zinc-blend or wurtzitestructure

Semiconductors AIVBVI (np. SnTe, PbSe) –NaCl structure

Page 40: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 40

a-SnDiamond structureZero energy gap, Eg = 0 eV (inverted band-structure) The maximum of the valence band in Γ point, mv=0,195 m0, mv2=0,058 m0, Δso=0,8 eV The minimum of the conduction band in Γ point, constant energy surfaces – spheres, mc=0,024 m0

SemiconductorsSemiconductors of the group IV (Si, Ge) –diamond structure

Semiconductors AIIIBV (e.g. GaAs, GaN) i AIIBVI (np. ZnTe, CdSe) – zinc-blend or wurtzitestructure

Semiconductors AIVBVI (np. SnTe, PbSe) –NaCl structure

Page 41: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

2017-06-05 41

PbSeDirect bandgap in L-point, Eg = 0,28 eV

The maximum of the valence band in L point, constant energy surfaces – ellipsoids , m||=0,068 m0, m⊥=0,034 m0,

The minimum of the conduction band in L point, constant energy surfaces – ellipsoids m||=0,07 m0, m⊥=0,04 m0,

SemiconductorsSemiconductors of the group IV (Si, Ge) –diamond structure

Semiconductors AIIIBV (e.g. GaAs, GaN) i AIIBVI (np. ZnTe, CdSe) – zinc-blend or wurtzitestructure

Semiconductors AIVBVI (np. SnTe, PbSe) –NaCl structure

Page 42: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Photoemission spectroscopy

2017-06-05 42

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

ℏ𝜔 = 𝜙 + 𝐸𝑘𝑖𝑛 + 𝐸𝑏

work function potential barrier

Page 43: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Photoemission spectroscopy

2017-06-05 43

H. I

bac

h, H

. Lü

th, S

olid

-Sta

te P

hys

ics

ℏ𝜔 = 𝜙 + 𝐸𝑘𝑖𝑛 + 𝐸𝑏

work function potential barrier

Page 44: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Photoemission spectroscopy

http://www.physics.berkeley.edu/research/lanzara/research/Graphite.html

Phys. Rev. B 71, 161403 (2005)

2017-06-05 44

Page 45: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Photoemission spectroscopy

http://www.physics.berkeley.edu/research/lanzara/research/Graphite.html

Phys. Rev. B 71, 161403 (2005)

2017-06-05 45

Page 46: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Semiconductor heterostructures

2017-06-05 46

Page 47: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Semiconductor heterostructures

2017-06-05 47

Investigation of high antimony-content gallium arsenic nitride-gallium arsenic antimonide heterostructures for long wavelength application

Page 48: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05 48

How can we change the heterostructure band structure:• selecting a material (eg., GaAs / AlAs)• controlling the composition• controlling the stress

Page 49: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Heterostruktury półprzewodnikowe

2017-06-05 49

Investigation of high antimony-content gallium arsenic nitride-gallium arsenic antimonide heterostructures for long wavelength application

Page 50: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05

50

Valence band offset (Anderson’s rule)

Valence band offset:

(powinowactwo)

htt

p:/

/en

.wik

iped

ia.o

rg/w

iki/

Het

ero

jun

ctio

n

Page 51: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05 51

Valence band offset (Anderson’s rule)

Su-H

uai

Wei

, Co

mp

uta

tio

nal

Mat

eria

ls S

cien

ce, 3

0, 3

37–3

48 (

2004

)

Valence band offset:

(powinowactwo)

htt

p:/

/en

.wik

iped

ia.o

rg/w

iki/

Het

ero

jun

ctio

n

Page 52: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05 52

Valence band offset

Wal

uki

ew

icz

Ph

ysic

aB

302

–303

(20

01)

123

–134

Page 53: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05 53

How can we change the heterostructure band structure:• selecting a material (eg., GaAs / AlAs)• controlling the composition• controlling the stress

Vegard’s law:the empirical heuristic that the lattice parameter of a solid solution of two constituents is approximately equal to a rule of mixtures of the two constituents' (A and B) lattice parameters at the same temperature:

𝑎 = 𝑎𝐴 1 − 𝑥 + 𝑎𝐵𝑥

Page 54: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Bandgap engineering

2017-06-05 54

Vegard’s law:Relationship to band gaps of „binarycompound”:

𝐸 = 𝐸𝐴 1 − 𝑥 + 𝐸𝐵𝑥 − 𝑏𝑥(1 − 𝑥)

b – so-called „bowing” (curvature) of the energy gap

Z D

rid

iet

al.

Sem

ico

nd

. Sci

. Tec

hn

ol.

18N

o9

(Sep

tem

ber

2003

)85

0-85

6

How can we change the heterostructure band structure:• selecting a material (eg., GaAs / AlAs)• controlling the composition• controlling the stress

Page 55: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 55S. Kryszewski Gdańsk 2010

Page 56: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 56

Note that

is a fourrier transform of

Gaussian packet:

S. Kryszewski Gdańsk 2010

Page 57: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 57

Gaussian packet:

S. Kryszewski Gdańsk 2010

Page 58: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 58

Derivation:

S. Kryszewski Gdańsk 2010

Page 59: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 59S. Kryszewski Gdańsk 2010

Page 60: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 60

Ordering expression:

Page 61: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 61

Ordering expression:

S. Kryszewski Gdańsk 2010

Page 62: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

Pakiet falowy

2017-06-05 62

Page 63: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 63

𝑚𝑒 = 9.11 10−31kgℎ = 6.626 10−34 Js = 4.136 10−15 eV sℏ = 1.055 10−34 J s = 6.582 10−16 eV s𝑒 = −1.602 10−19 C

Δ𝑥 Δ𝑝 ≥ℏ

2

Page 64: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 64

Page 65: Prezentacja programu PowerPointszczytko/LDSN/2_LDSN_2017_Tight_Binding_print.pdf2017-06-05 3 The solution of the one-electron Schrödinger equation for a periodic potential has a form

A wave packet

2017-06-05 65

foton

elektron

Mass particle (electron) and massless (photon)