primer sequence mirnascloning (forward)cloning (reverse)...

10
Primer Sequence miRNAs Cloning (Forward) Cloning (Reverse) miR-7-1 TAATACGACTCACTATAGGGTTGGATGTTG CTGTAGAGGCATGGCCTGTGC miR-7-2 TAATACGACTCACTATAGGGCTGGATACAG TGCGATGGCTGGCACCATTAG miR-218-1 TAATACGACTCACTATAGGGGTGATAATGTA TGTAGAAAGCTGCGTGACGTTCC miR-218-2 TAATACGACTCACTATAGGGGACCAGTCGC TGCAGGAGAGCACGGTGCTTTCCG miR-21 TAATACGACTCACTATAGGTGTCGGGTAGC TGTCAGACAGCCCATCGACT let-7f-1 TAATACGACTCACTATAGGGTCAGAGTGAG TCAGGGAAGGCAATAGATTGTATAGTTATCTCC let-7f-2 TAATACGACTCACTATAGGGTGTGGGATGA CGTGGGAAAGACAGTAGACTGTATAGTTATC let-7g TAATACGACTCACTATAGGGAGGCTGAGGT TGGCAAGGCAGTGGCCTGTACAGTT let-7i TAATACGACTCACTATAGGGCTGGCTGAGG TAGCAAGGCAGTAGCTTGCGCAGTTATCTC Supplemental Table 1. Primer sequences for cloning and real-time RT-PCR of miRNA precursors. Supplemental Table 1

Upload: meadow-carradine

Post on 14-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Primer Sequence

miRNAs Cloning (Forward) Cloning (Reverse)

miR-7-1 TAATACGACTCACTATAGGGTTGGATGTTG CTGTAGAGGCATGGCCTGTGC

miR-7-2 TAATACGACTCACTATAGGGCTGGATACAG TGCGATGGCTGGCACCATTAG

miR-218-1 TAATACGACTCACTATAGGGGTGATAATGTA TGTAGAAAGCTGCGTGACGTTCC

miR-218-2 TAATACGACTCACTATAGGGGACCAGTCGC TGCAGGAGAGCACGGTGCTTTCCG

miR-21 TAATACGACTCACTATAGGTGTCGGGTAGC TGTCAGACAGCCCATCGACT

let-7f-1 TAATACGACTCACTATAGGGTCAGAGTGAG TCAGGGAAGGCAATAGATTGTATAGTTATCTCC

let-7f-2 TAATACGACTCACTATAGGGTGTGGGATGA CGTGGGAAAGACAGTAGACTGTATAGTTATC

let-7g TAATACGACTCACTATAGGGAGGCTGAGGT TGGCAAGGCAGTGGCCTGTACAGTT

let-7i TAATACGACTCACTATAGGGCTGGCTGAGG TAGCAAGGCAGTAGCTTGCGCAGTTATCTC

Supplemental Table 1. Primer sequences for cloning and real-time RT-PCR of miRNA precursors.

Supplemental Table 1

Page 2: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Primer Sequence

miRNAs RT PCR Forward PCR Reverse

let-7a GCTCAGACAGAAGTCACACTGAGCAACTAT GGGCGGTGAGGTAGTAGG GAAGTCACACTGAGCAACTATACAAC

let-7b GCTCAGACAGAAGTCACACTGAGCAACCAC Same to let-7a CACACTGAGCAACCACACAAC

let-7c GCTCAGACAGAAGTCACACTGAGCAACCAT Same to let-7a TCACACTGAGCAACCATACAAC

let-7d GCTCAGACAGAAGTCACACTGAGCACTATG GCGGGCGGAGAGGTAGT GTCACACTGAGCACTATGCAAC

let-7e GCTCAGACAGAAGTCACACTGAGCACTATA CGGGCGGTGAGGTAGG AGAAGTCACACTGAGCACTATACAAC

let-7f Same to let-7a CGGGCGGTGAGGTAGTAGA AGAAGTCACACTGAGCAACTATACAAT

let-7g GCTCAGACAGAAGTCACACTGAGCACTGTA CGGGCGGTGAGGTAGTAGT AAGTCACACTGAGCACTGTACAAA

let-7i GCTCAGACAGAAGTCACACTGAGCACAGCA CGGGCGGTGAGGTAGTAGT CACACTGAGCACAGCACAAA

miR-24 CACCGTTCCCCGCCGTCGGTGCTGTTC CCCGCCTGGCTCAGTTC CCGTCGGTGCTGTTCCTG

miR-92 CACCGTTCCCCGCCGTCGGTGCAGGCC CCCGCCTATTGCACTTGTC GTCGGTGCAGGCCGGG

miR-10b GACCGTTCCCCGCCGTCGGTCCACAAA CCGCCGTACCCTGTAGAA CGTCGGTCCACAAATTCG

miR-221 CACCGTTCCCCGCCGTCGGTGGAAACC CGGGCAGCTACATTGTCTG CGTCGGTGGAAACCAGCA

miR-222 CACCGTTCCCCGCCGTCGGTGACCCAG CGGGCAGCTACATCTGG CGTCGGTGACCCAGTAGC

miR-21 CACCGTTCCCCGCCGTCGGTGTCAACA CCCGCCTAGCTTATCAGACTG GCCGTCGGTGTCAACATCA

miR-486-5p CACCGTTCCGCGCCGTCGGTGCTCGGG CGCCGTCCTGTACTGAGCT GTCGGTGCTCGGGGCAG

miR-451 CACGGAACCCCGCCGACCGTGAACTCA CGCCGAAACCGTTACCAT GCCGACCGTGAACTCAGTAAT

miR-15b CACCGTTCCCCGCCGTCGGTGTGTAAA CCGCCGTAGCAGCACATC CCGTCGGTGTGTAAACCATG

miR-146b-5p CACCGTTCCCCGCCGTCGGTGAGCCTA CGGGCGTGAGAACTGAATT CGTCGGTGAGCCTATGGA

miR-128 CACGGAACCCCGCCGACCGTGAAAGAG GGCGTCACAGTGAACCG CGACCGTGAAAGAGACCG

miR-181c CACGGAACCCCGCCGACCGTGACTCAC CCGCCGAACATTCAACCT CGACCGTGACTCACCGAC

miR-181a Same to miR-181c CGCCGAACATTCAACGC Same to miR-181c

miR-181b CACGGAACCCCGCCGACCGTGACCCAC CCGCCGAACATTCATTGC GACCGTGACCCACCGAC

miR-425 GACCGTTCCCCGCCGTCGGTCTCAACG GGGCGAATGACACGATCAC CGTCGGTCTCAACGGGAG

miR-7 CACCGTTCCCCGCCGTCGGTGACAACA CGCCCTGGAAGACTAGTGAT CCGTCGGTGACAACAAAAT

miR-124 CACCGTTCCGCGCCGTCGGTGGGCATT CATACCTAAGGCACGCGG GTCGGTGGGCATTCACC

miR-137 CACCGTTCCCCGCCGTCGGTGCTACGC CCGCCGTTATTGCTTAAGAA CGTCGGTGCTACGCGTAT

miR-139-5p CACCGTTCCCCGCCGTCGGTGCTGGAG CCGCCTCTACAGTGCACGT CGTCGGTGCTGGAGACAC

miR-218 CACCGTTCCCCGCCGTCGGTGACATGG TCGGGCTTGTGCTTGATCT CCGTCGGTGACATGGTTAG

Supplemental Table 2. Primer sequences for detection of mature miRNAs.

Supplemental Table 2

Page 3: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

miRNA RT Oligonucleotide Sequence Tm (°C) ∆GRT (kcal/mol) ∆GPCR (kcal/mol)

miR-21Stem-loop CACCGTTCCCCGCCGTCGGTGTCAACA 86.2 -2.37 0.19

Linear GACCCTTCGCGGCCGTCGGTGTCAACA 85.6 -0.16 1.21

miR-7Stem-loop CACCGTTCCCCGCCGTCGGTGACAACA 86.2 -2.98 -0.55

Linear GACCCTTCGCGGCCGTCGGTGACAACA 85.6 -0.16 1.21

miR-218Stem-loop CACCGTTCCCCGCCGTCGGTGACATGG 87.1 -2.98 -0.55

Linear GACCCTTCGCGGCCGTCGGTGACATGG 86.4 -0.16 1.21

let-7fStem-loop GCTCAGACAGAAGTCACACTGAGCAACTAT 71.0 -3.22 -0.20

Linear CGAGAGTCAGAAGTCACACTGAGCAACTAT 70.9 -0.02 1.40

let-7gStem-loop GCTCAGACAGAAGTCACACTGAGCACTGTA 72.8 -3.22 -0.20

Linear CGAGAGTCAGAAGTCACACTGAGCACTGTA 72.8 -0.02 1.40

let-7iStem-loop GCTCAGACAGAAGTCACACTGAGCACAGCA 77.2 -3.22 -0.20

Linear CGAGAGTCAGAAGTCACACTGAGCACAGCA 77.2 -0.50 1.17

Supplemental Table 3. Comparison of stem-loop and linear RT oligonucleotides.

The most stable secondary structure was adopted to calculate ∆G for linear RT oligonucleotides. Sequence differences between stem-loop and linear RT oligonucleotides for each miRNA are underlined.

Supplemental Table 3

Page 4: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Supplemental Fig. 1

Extract mature miRNA sequence (seq)

Design RT oligonucleotide1.5’ stem-loop tag seq (stem: 5-6nt; loop: ~11nt) without significant homology to sequences from species of interest (eg. homo sapiens)2.3’ miRNA-specific seq (6nt, reverse complementary to 3’ of miRNA sequence)3.Optionally, dU residue can be incorporated in the loop region.

Evaluate RT oligonucleotide (mfold)1. Formation of stable stem-loop secondary structure at

RT condition (∆G -0.5 kcal/mol)2. Does not form stable stem-loop secondary structure at

PCR condition (∆G -0.5 kcal/mol)

Reaction ConditionsRT: Na+ = 75 mM, Mg2+ = 3 mM, Temp = 42°CPCR: Na+ = 50 mM, Mg2+ = 2.5 mM, Temp = 60°C

Design hemi-nested real-time PCR primer1. Forward primer (Tm 58°C) with 5’ tag seq to

increase Tm and 3’ miRNA specific seq (~12nt)2. Reverse primer (Tm 58°C) with partial stem-loop tag

seq (8-10nt) and miRNA specific seq (9-11nt, including 6nt used in RT and 3-5nt 3’ protruding seq).

hsa-miR-21: 5’- uagcuuaucagacugauguuga -3’

5’- CACCGTTCCCCGCCGTCGGTGTCAACA -3’

Stem loop Stem

miR-21 specific seq (RT)

RT Oligonucleotide:

5’- CCCGCCTAGCTTATCAGACTG -3’

Tag seq miR-21 specific seq

5’- GCCGTCGGTGTCAACATCA -3’

Partial stem-loop tag seq

miR-21 specific seq

(RT) (Hemi-nested PCR)

Minimum free energy of the structure= -3.82 kcal/mol

C A C C GTT C C

CCG

CCGTCGGTG

TCAA

CA 5’--3’

∆GRT = -2.37 kcal/mol∆GPCR = 0.19 kcal/mol

Forward Primer:

Reverse Primer:

Assay Design Flowchart Example (hsa-miR-21)

(dU)

(dU)

Supplemental Fig. 1. Flow Chart and example for designing hemi-nested real-time RT-PCR assay.

Page 5: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

A

let-7d

B

let-7e

Supplemental Fig. 2. Quantification of synthetic let-7d and let-7e miRNA dilutions with U251 total RNA spike-in. Standard dilutions (109, 108 and 107 copies) of synthetic let-7d (A) or let-7e (B) were spiked with 100 ng of total RNA isolated from U251 cells. Control miRNA dilutions or total RNA spiked-in miRNA dilutions were reverse transcribed with let-7d or let-7e RT primers. The cDNA samples (10% v/v) were amplified by real-time PCR. Standard curves were plotted as Ct versus Log (Copies of miRNA per RT).

Supplemental Fig. 2

Page 6: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Supplemental Fig. 3. Dynamic range and efficiency of miR-24 (A, B), miR-92 (C, D) and miR-218 (E, F) real-time RT-PCR assays. Standard dilutions of synthetic miR-24, -92 and -218 were reverse transcribed with miRNA-specific RT oligonucleotide. The cDNA samples (10% v/v) were amplified by real-time PCR along with non-template control (NTC). Amplification plots (A, C, E) and standard curves (B, D, F) of the assay were shown. Standard curves were plotted as Ct versus Log (Copies of miRNA per RT).

Supplemental Fig. 3

A

109 NTC103

miR-24

109

NTC

103

miR-92

1010

NTC

104

miR-218

B

D

F

C

E

Page 7: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Supplemental Fig. 4. Gel electrophoresis of miRNA real time RT-PCR products. Real time RT-PCR assays were performed with 106 copies of synthetic miRNA (a), 10 ng U251 total RNA (b) or non-template control (c). U6 was amplified from 10 pg of U251 total RNA. The amplified products and the 25bp marker (M) were resolved by 4% agarose gel. Product sizes: miR-7 (37bp), miR-21 (38bp), miR-218 (36bp), let-7f (45bp), let-7g (42bp), let-7i (38bp) and U6 (94bp).

MmiR-7

a b c

miR-21 miR-218 let-7f let-7g let-7iU6

100bp

50bp

25bp

a b c a b c a b c a b c a b c

Supplemental Fig. 4

Page 8: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

miR-21 RT Oligonucleotide Sequence

dT CACCGTTTTCTTTCGGTGTCAACA

dU CACCGUUUUCUUUCGGTGTCAACA

A

+ Pr

– Pr

+ Pr– Pr

B CdT dU

Supplemental Fig. 5. UDG treatment of dU-incorporated RT oligonucleotide prevented it from serving as PCR primer after RT. A) Sequence of standard (dT) and dU-incorporated (dU) RT oligonucleotides for miR-21. Synthetic miR-21 (109 copies) were reverse transcribed with of dT (B) or dU (C) RT oligonucleotides. The cDNA samples (10% v/v) were then treated with (red amplification curves) or without UDG (blue amplification curves) and subjected to real-time PCR with both forward and reverse primers (+ Pr) or forward primer alone (- Pr).

Supplemental Fig. 5

– UDG

+ UDG

– UDG

+ UDG

Page 9: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

0 5 15 30 60 180 360

0 5 15 0 5 15

- - - + + +

Phospho-ERK1/2

Total ERK1/2

Phospho-ERK1/2

Total ERK1/2

GDNF (min)

GDNF (min)

U0126 (5 µM)

A

B

Supplemental Fig. 6. GDNF-induced signaling activation in U251 human glioblastoma cells. Control and GDNF stimulated U251 cells were lysed with 2% SDS. Total protein lysates were quantified using microBCA protein assay (Pierce, Rockford, IL, USA). Total protein (10 µg) were separated by SDS-PAGE and probed with antibodies against phospho-ERK1/2 (Cell Signaling Technologies, Danvers, MA, USA). The blots were striped in Western Blot Stripping Buffer (Pierce) and re-probed with total ERK1/2 (Cell Signaling Technologies) to verify equal loading. Chemiluminescence was imaged and analyzed by ChemiDoc system (Bio-Rad). A) Time-course of ERK1/2 MAPK activation by GDNF (100 ng/ml) in U251 cells. B) GDNF-induced ERK1/2 MAPK activation was inhibited by pre-treatment of MEK inhibitor U0126 (5 µM).

Supplemental Fig. 6

Page 10: Primer Sequence miRNAsCloning (Forward)Cloning (Reverse) miR-7-1TAATACGACTCACTATAGGGTTGGATGTTGCTGTAGAGGCATGGCCTGTGC miR-7-2TAATACGACTCACTATAGGGCTGGATACAGTGCGATGGCTGGCACCATTAG

Supplemental Fig. 7. Quantification of GDNF-regulated miRNAs by single-plexed and multiplexed real-time RT-PCR. Total U251 RNA samples were reverse transcribed by single miRNA-specific RT oligonucleotide (black lines) or 24-plexed RT oligonucleotides (red lines). The cDNA samples were then quantified for expressions of (A) miR-218 and (B) let-7i. Regulation of these miRNAs was expressed as fold changes to non-stimulated control samples.

Supplemental Fig. 7

Time (min) Time (min)

Fo

ld C

ha

ng

e

Fo

ld C

ha

ng

e

miR-218 let-7iA B