primordial nucleosynthesis standard big-bang nucleosynthesis of 4 he, d, 3 he, 7 li compared with...

43
Primordial Nucleosynthesis Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations The SBBN “lithium problem”: nuclear aspects ( 6 Li, 9 Be , 10,11 B) and CNO in extended SBBN network Conclusions Alain Coc (Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay)

Upload: jocelin-brown

Post on 13-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Primordial Nucleosynthesis

Standard Big-Bang Nucleosynthesis of 4He, D, 3He, 7Li compared with observations

The SBBN “lithium problem”: nuclear aspects

(6Li, 9Be , 10,11B) and CNO in extended SBBN network

Conclusions

Alain Coc (Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay)

Page 2: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Three observational evidences for the Big-Bang Model

1. The expansion of the Universe

2. The Cosmic Microwave Background radiation (CMB)

3. Primordial nucleosynthesis

Reproduces the light-elements 4He, D, 3He, 7Li primordial abundances over a range of nine orders of magnitudes.

First determination of the baryonic density of the Universe, (1-3)×10-31g/cm3 [Wagoner 1973], need for baryonic dark matter

First determination of the number of light neutrino families, Nν ≤ 3 [Yang, Schramm, Steigman, Rood 1973]

Page 3: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Number of neutrino families Nν = 2.984±0.008 [LEP experiments]

Determination of the baryonic density of the Universe

Baryonic density B ≈ 4.5×10-31g/cm3 from the anisotropies in the Cosmic Microwave Background radiation, ...., WMAP, Planck (2014?)

bh2=0.022490.00057 =(6.160.16)×10-10

[WMAP: Komatsu et al. (2011)]

/C with C the critical density The number of baryons per photon, nb/n and bh2= 3.65107

Page 4: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

BBN: a probe of physics of the early Universe

Why BBN after WMAP?Key questions in Cosmology: Nature of dark matter Nature of dark energy Gravitation = General Relativity ? Variation of constants

G→G(1+α2(t))

[Coc, Olive, Uzan & Vangioni 2009]

(Tensor-Scalar gravity)

Page 5: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

The 12 reactions of standard BBN

Standard BBN No convection No diffusion No mixing Known physics <12 reactions

Simple nucleosynthesis (?)

10 thermonuclear reaction rates deduced from experimental data

First 2 from theory: weak np rate and p(n,)d

Additional 400 reactions up to CNO

T>10GK

T<1GK

Page 6: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Sensitivity to thermonuclear reaction rates

ln(Y) / ln(NA<v>) E0(E0/2)

(MeV @ 1GK)Reaction 4He D 3He 7Li

n (np) 0.73 0.42 0.15 0.401H(n,)2H 0 -0.20 0.08 1.33 0.025

2H(p,)3He 0 -0.32 0.37 0.57 0.11(0.11)2H(d,n)3He 0 -0.54 0.21 0.69 0.12(0.12)2H(d,p)3H 0 -0.46 -0.26 0.05 0.12(0.12)

3H(d,n)4He 0 0 -0.01 -0.02 0.13(0.12)3H(,)7Li 0 0 0 0.03 0.23(0.17)

3He(n,p)3H 0 0.02 -0.17 -0.273He(d,p)4He 0 0.01 -0.75 -0.75 0.21(0.15)3He(,)7Be 0 0 0 0.97 0.37(0.21)7Li(p,)4He 0 0 0 -0.05 0.24(0.17)7Be(n,p)7Li 0 0 0 -0.71

At WMAP baryonic density

[Coc & Vangioni 2010]

Page 7: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

np weak reaction rates

The neutron lifetime is still a matter of debate (but not essential to BBN)

n = 885.70.8 s [PDG 2008] or n=878.50.7 0.3 s [Serebrov et al. 2005] 881.5 ± 1.5 s [PDG 2011] ; 880–884 s [Wietfeldt & Greene 2011]

np ∝ n-1

å (phase space)(e distribution)(e distribution) dE

+ small corrections

• Weak rate change mostly affects n/p ratio at freeze out and hence 4He abundance• Change in expansion rate gives similar effect (n/p freezeout when weak rate

expansion rate)

Page 8: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

1H(n,)D : theory versus experiments

Rate calculated from Effective Field theory with (theoretical) uncertainties of 4% [Chen & Savage (1999)] or 1% [Rupak (2000)] compared to experiments [Arenhovel & Sanzone (1991) review]

BBN energy ~ 25 keV

Additional check with polarized beam E1 and M1measurements [Tornow et al. (2000)], e-scattering [Ryezaveva et al. 2006] and new (>1991) cross section measurements [Suzuki et al. (1995), Tomyo et al. (2003)]

Chen & Savage (1999)

Boltzmann

Page 9: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

10 rates deduced from experimental data

Compilations and evaluations for/including BBN thermonuclear rates

Smith, Kawano & Malaney 1999 (with uncertainties)

NACRE, Angulo et al. 1999 (7/10, tabulated rates and uncertainties)

Nollett & Burles 2000 (no rates provided)

Cyburt, Fields & Olive 2003 (revaluation of NACRE)

Serpico et al. 2004 (rates and uncertainties provided)

Descouvemont, Adahchour, Angulo, Coc & Vangioni-Flam 2004 [DAACV]

• « R-Matrix » formalism: S-factors fits of data constrained by theory

• Provide also reaction rate uncertainties

Cyburt 2004 (rates provided, uncertainties calculated but not provided)

Update with post 2004 experimental data yet to be done…

Page 10: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Systematic uncertainties : prompt versus activation measurements

The 3He(,)7Be reaction

Sensitivity = 0.97

E0(E0/2) = 0.37(0.21) MeV[DAACV]

New precise measurements : Prompt [Brown et al. 2007,

Confortola et al. 2007, Costantini et al. 2008]

Activation [Nara Singh et al. 2005, Brown et al. 2007, Confortola et al. 2007, Gyürky et al. 2007]

Recoil [Di Leva et al. 2009]

Reanalysis of 3He(,)7Be rate [Cyburt & Davids 2008]: S(0) = 0.580±0.043

keV.b (13% higher than in DAACV04) S(0) = 0.56±0.02±0.02 keV.b [Adelberger et al. 2010]

Page 11: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Determination of primordial abundances

Primordial abundances :

1) Observe a set of primitive objects born when the Universe was young

2) Extrapolate to zero “metallicity” (the heavy elements whose abundance increase with time) e.g. Fe/H, O/H, Si/H,…. 0• 4He in H II (ionized H) regions of blue compact galaxies:

0.245 < Yp < 0.262 [Aver, Olive & Skillman 2011]

• D in remote cosmological clouds (i.e. at high redshift) on the line of sight of quasars: (2.84±0.26)× 10-5 (1-) [Fields & Sarkar 2008]

• 3He in H II regions of our Galaxy: 3He/H ≤ (1.1±0.2)×10-5 [Bania et al. 2002]

• 7Li at the surface of low metallicity stars in the halo of our Galaxy: Li/H = (1.58±0.31)10-10 [Sbordone et al. 2010]

Page 12: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

[Izotov, Thuan & Stasinska 2007]

Burles & Tytler 1998a,b; O’Meara et al. 2001; D’Odorico et al. 2001; Pettini & Bowen 2001; Kirkman

et al. 2003, Crighton et al. 2004, Pettini et al. 2008, Fumagalli et al. 2011, Srianand et al. 2010, Cooke et al.

2011, Pettini et al. 2012

4HeD

[Izotov, Thuan & Stasinska 2007]

4He

© Sbordone in Lithium in the Cosmos 2012

Observations

Beware of systematic uncertainties (4He and Li)

Li

Page 13: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Using most recent Nuclear data Abundance determinations

At given by WMAP Agreement for 4He, D and 3He Difference of a factor of ≈ 3

for Li !

Monte-Carlo BBN versus observations

Monte-Carlo (rate uncertainties) BBN calculation function of or bh2 compared with observations

Page 14: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

BBN calculations Observations

Cyburt et al. 2008

Coc & Vangioni 2010

*

4He 0.2486±0.0002 0.2476±0.0004 0.245-0.262 100

D/H 2.49±0.17 2.68±0.15 2.84±0.26 10-5

3He/H 1.00±0.07 1.05±0.04 (0.9-1.3) 10-5

7Li/H 5.24+0.71-0.62 5.14±0.50 1.58±0.31 10-10

Monte-Carlo BBN versus observations at ηWMAP

*[Aver, Olive & Skillman 2011; Fields & Sarkar 2008; Bania et al. 2002; Sbordone et al. 2010]

Nuclear solution to the Li problem ?

Page 15: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Nuclear solution to the Li problem ?

• At ηWMAP 7Li from 7Be decay• Need extra 7Be destruction

(normally trough 7Be(n,p))Tentatives proposed solutions The 7Be(d,p)8Be*2

reaction [Coc et al. 2004] Unknown Resonances in

7Be + n, p, d, t, 3He and ? [Chakraborty, Fields & Olive 2011]

The 7Be(n,)4He reaction [M. Gai priv. comm.]

Exotic neutron sources Other solutions beyond the

Standard Model

Page 16: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

New 7Be (i.e. 7Li) destruction channels

The 7Be(d,p)8Be*2 reaction• Experiment at Louvain LN [Angulo et al. 2005] : no

(integrated) cross-section enhancement• Hypothetical resonance at ER = 200±100 keV with 40 keV

[Cyburt & Pospelov 2009]; corresponding to ≈16.7 MeV 9B level ?

• No resonance observed at Oak Ridge in D(7Be,d)7Be scattering [O’Malley et al. 2011]

• Measured Ex=16.8 MeV and =81 keV [Scholl et al. 2011] primordial effect on ⇒ 7Li < 4% [Kirsebom & Davids 2011]

The 7Be(n,)4He reaction [M. Gai priv. comm.]• If l=0, 7Be+n→2 (forbiden) rate from Wagoner 1969 • If l=1, could contribute to 7Be destruction [Serpico et al. 2004]• Experimental project with n beam from Liquid Lithium Target

(LiLiT) at the Soreq Accelerator Facility (SARAF) [M. Gai priv. comm.]

Page 17: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Other resonances ?

Unknown Resonances in 7Be + n, p, d, t, 3He and ?

[Chakraborty, Fields & Olive 2011]

4.00

10.00

15.04 (2-, 1-) ?

14.99 (2-, 1-) ?

7Be+3He15.00

9.000

6.580 (2+)

5.220

3.353 2+

10C

16.50 (2+)

p?

6Be+

“Hoyle” states ?

Poorly known spectroscopy

9B+p

5.10

?

© F. Hammache

Page 18: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Indirect study of 10C, 9B & 10B states via (3He,t), (3He,d) reactions on 10B and 9Be targets

Recent Orsay Tandem ExperimentRecent Orsay Tandem Experiment

3He @ 35MeV

t or d

Position gas chamber

E proportional counter

Plastic scintillator (E)10B,9Be targets 100 g/cm2

DSSDs

ORSAY SPLIT-POLE spectrometer. B(pos) . E particle . E identification

© F. Hammache

Page 19: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

First results from Tandem experiment

Provisional !

[F. Hammache, priv. comm.]

• No new 10C level• Broad levels?• Unlikely to contribute

(Coulomb barrier) [Broggini et al. ArXiv:1202.523]

In search of new 10C levels: 10B(3He,t)10C

Page 20: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

BBN extended network up to CNO

Applications of extended network:

• CNO seeds for first stars : CNO/H > 10-11 [Cassisi & Castellani 1993] : CNO/H > 10-13 [Ekström et al. 2008]

• Potential neutron sources for 7Be destruction by 7Be(n,p)7Li(p,)4He in BBN (the lithium problem)? Unexpected effect (e.g. 7Li sensitivity to n(p,γ)d)

• Standard CNO primordial abundances versus exotic production (e.g. “variation of fundamental constants”)

Extended network predictions : CNO/H ≈ 10-15 [Iocco et al. 2007] but reaction rates not given

Page 21: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

CNO nucleosynthesis updated network

Z A

n 1

H 1-3

He 3,4,6

Li 6-9

Be 7,9-12

B 8,10-15

C 9-16

N 12-17

O 13-20

F 17-20

Ne 18-23

Na 20-23

59 isotopes : 391 reaction rates AZ + n, p, d, t, 3He and , mostly unknown hence possibly high yield uncertainty Descouvemont et al. 2004 (DAACV)

Angulo et al. 1999 (NACRE I)

Iliadis et al. 2010

Talys (271 rates) within 3 orders of magnitude, at T≈1 GK, compared with experiments!

…..

Reaction rate variations by 0.001, 0.01, 0.1, 10., 100. & 1000. factors

Reevaluation of selected rates 33 decay rates [Audi et al. 2003]

Page 22: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Reaction Fractional change in CNO abundance Test ratereference

Rate factor 0.001 0.01 0.1 10. 100. 1000.

7Li(d,)9Be 1.00 1.00 1.00 1.01 1.11 2.10 TALYS*

7Li(d,n)2 1.66 1.65 1.55 0.28 0.06 0.02 Boy93*

7Li(t,n)9Be 0.99 0.99 0.99 1.10 2.14 11.7 Bru90*

7Li(t,2n)2 1.00 1.00 1.00 0.99 0.91 0.53 MF89

8Li(n,)9Li 1.00 1.00 1.00 1.01 1.06 1.62 Rau94

8Li(,)12B 1.00 1.00 1.00 1.01 1.11 2.15 TALYS

8Li(,n)11B 0.89 0.89 0.90 1.97 11.2 78.1 Miz01*

9Li(,n)12B 1.00 1.00 1.00 1.01 1.08 1.73 TALYS

10Be(,n)13C 1.00 1.00 1.00 1.00 1.03 1.28 TALYS

11B(n,)12B 0.91 0.91 0.92 1.81 9.91 87.7 Rau94*

11B(d,n)12C 0.70 0.71 0.73 3.67 30.2 280. TALYS*

11B(d,p)12B 0.99 0.99 0.99 1.08 1.83 9.33 TALYS*

11B(t,n)13C 1.00 1.00 1.00 1.01 1.12 2.17 TALYS

11C(n,)12C 1.00 1.00 1.00 1.01 1.08 1.75 Rau94

11C(d,p)12C 0.99 0.99 0.99 1.05 1.55 5.67 TALYS*

12C(t,)11B 1.00 1.00 1.00 1.00 0.97 0.75 TALYS

13C(d,)11B 1.00 1.00 1.00 0.96 0.84 0.75 TALYS

Most important reactions for CNO nucleosynthesis

* Rate reevaluated in Coc, Goriely, Xu, Saimpert & Vangioni 2011

Page 23: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Main path for: H, D, 3He, 4He, 7Li, 6Li, 9Be, 10,11B and CNO (12C), out of the >400 reactions

6LiBe11B and CNO nucleosynthesis

Page 24: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Monte-Carlo BBN versus observations

*Hammache et al. 2010, Ωbfrom Spergel et al. 2007† or Komatsu et al. 2011††

Number of atoms [Iocco et al. 2007] [Coc et al. 2012]

(12C+13C)/H (10-16) 5.5 6.75

(14C+14N)/H (10-17) 5.0 6.76

16O/H (10-20) 2.7 9.13

CNO/H (10-16) 6.0 7.43

Number of atoms

13 reactions Monte-Carlo † [CV 2010]

424 reactions Network †† [Coc et

al. 2012]

4He (Yp) 0.2476±0.0004 0.2476

D/H(10-5) 2.68±0.15 2.59

3He/H(10-5) 1.05±0.04 1.04

7Li/H(10-10) 5.14±0.50 5.24

6Li/H(10-14) 1.3* 1.2

Estimated uncertainty: CNO/H =(0.5-3)×10-15

Page 25: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Counter intuitive effects in BBN

The 1H(n,)D reaction affects mostly 7Li

n(p,)d 0.7

The 7Li(d,n)24He reaction affects strongly the CNO but leaves 7Li (and other isotopes) unchanged!

Systematic sensitivity studies are important

Page 26: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

1. Neutron injection at constant rate

2. Neutron injection from decay with τχ = 40 mn

3. Neutron injection from annihilation with TC = 0.3 GK

Alleviates the 7Li problem at the expense of D

Representative results

[Albornoz Vásquez, Belikov, Coc, Silk & Vangioni, submitted]

Page 27: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Main collaborators

Elisabeth Vangioni, Jean-Philippe Uzan

(Institut d’Astrophysique de Paris)

Keith Olive (U. of Minnesota)

Pierre Descouvemont, Stéphane Goriely

(Université Libre de Bruxelles)

Page 28: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

SBBN + WMAP in good agreement with D and 4He observations

However disagreement (factor of 3-4) with Li observations

Nuclear : most probably no but important to quantify needed depletion

Stellar depletion (diffusion+turbulence) [Korn et al. 2006, Richard et al. 2005; http://www.iap.fr/lithiuminthecosmos2012] ?

Cosmology and particle physics ?

Using extended network: minute amounts of 6Li, 9Be, 10,11B and CNO produced

Systematic sensitivity studies are important

SBBN is now a parameter free model !

When looking back in time, Standard BBN is the last milestone of know physics : probe of the physics of the early Universe

Conclusions

Page 29: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Backup

Page 30: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Reaction Fractional change in 6Li abundance Test ratereference

Rate factor 0.001 0.01 0.1 10. 100. 1000.

3He(t,)6Li 1.00 1.00 1.00 1.03 1.31 4.11 FK90

4He(d,)6Li 0.004 0.013 0.010 9.97 99.7 995. Ham10

Reaction Fractional change in 11B abundance Test ratereference

Rate factor 0.001 0.01 0.1 10. 100. 1000.

3He(t,np)4He 1.00 1.00 1.00 1.00 0.97 0.79 CF88

7Be(d,p)2 1.01 1.01 1.01 0.93 0.55 0.11 CF88

11C(n, )2 1.16 1.16 1.15 0.40 0.01 0.0001 Rau94*

Most important reactions for 6LiBe11B nucleosynthesis

Reaction Fractional change in 9Be abundance Test ratereference

Rate factor 0.001 0.01 0.1 10. 100. 1000.

7Li(d,)9Be 0.83 0.83 0.85 2.52 17.7 170. TALYS*

7Li(t,n)9Be 0.52 0.53 0.57 5.29 48.2 477. Bru90*

7Li(3He,p)9Be 1.00 1.00 1.00 1.04 1.45 5.49 TALYS

7Be(d,p)2 1.01 1.01 1.01 0.95 0.67 0.38 CF88

7Be(t,p)9Be 0.65 0.65 0.69 4.15 35.6 345. TALYS*

* Rate reevaluated in Coc, Goriely, Xu, Saimpert & Vangioni 2011

Page 31: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Origin of CMB, SBBN and Li observations discrepancies

Stellar/Galactic ? Observational bias: 1D/3D, LTE/NLTE model atmospheres, effective

temperature scale

Li stellar destruction [Korn et al. (2006)]

Pregalactic 6Li production [Suzuki & Inoue (2002); Rollinde et al. 2005]

6Li production by solar-like flares [Tatischeff & Thibaud 2007]

Non Standard Model(s) ? Affecting expansion rate during BBN : Quintessence, Tensor-Scalar gravity, ν-

degeneracy,….

Variation of fundamental couplings : em [Ichikawa & Kawasaki 2004], or all [Landau et al. 2005, Coc et al. 2007]

Massive particle decay : could produce 6Li and destroy 7Li [Jedamzik (2004,2006), Kawasaki et al. (2005), Ellis et al. (2005)]

Page 32: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

np weak reaction rate

• n=885.70.8 s [PDG 2004]

• n=878.50.7 0.3 [Serebrov et al. 2005, Mathews, Kajino & Shima 2004]

np= n-1

å (phase space)(e distribution)(e distribution) dE

+ small corrections

[Dicus et al. (1982), Brown & Sawyer (2001)]

Page 33: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

The 2H(d,n)3He reaction

Sensitivity = 0.61

E0(E0/2) = 0.12(0.12) MeV

New precise measurements of 2H(d,n)3He (and 2H(d,p)3H) reaction at TUNL [Leonard et al. 2006]

Excellent agreement with DAACV 2004 fit within Gamow window No change in central Li/H value Reduced uncertainty R-matrix fit reliability

Page 34: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

The 2H(d,n)3He reaction

New “Trojan Horse Method” measurement [Tumino et al. 2011]

~15% difference with DAACV ~10% change in 7Li ~8% change in D 3% “theoretical uncertainty” (?)

Page 35: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Inhomogeneous BBN [Thomas et al. 1993, 1994]

Primordial CNO BBN [Iocco et al. 2007]

CNO nucleosynthesis

©Fields & Olive 2006

Origin of the rates ???

• Data bases of nuclear level properties

• Estimates following Fowler & Hoyle 1964; Wagoner 1967 prescriptions

Page 36: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Comparison between Talys and experiments[Iliadis et al. 2010]

Page 37: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Comparison between Talys and experiments[NACRE 1999]

Page 38: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

[Thomas et al. 1993; 1994]

Comparison between Talys and estimates

Rates based on Fowler &

Hoyle 1964 and Wagoner

1967 prescriptions

Page 39: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Reevaluated reaction rates

Page 40: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Stability of results with re-evaluated reaction ratesIndependent re-evaluation of

8Li(α,n)11B by La Cognata & Del Zoppo 2011

Changes in 11B(d,n) by 11B(d,p) cancel each other

Changes CNO by 1.5%

Page 41: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

CNO nucleosynthesis

Page 42: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear

Number of atoms [Iocco et al. 2007]

Initial Network

Updated Network

(12C+13C)/H (10-16) 5.5 4.43 6.75

(14C+14N)/H (10-17) 5.0 3.98 6.76

16O/H (10-20) 2.7 5.18 9.13

CNO/H (10-16) 6.0 4.83 7.43

CNO nucleosynthesis

Stability of results:

Nuclear uncertainties?

• Need a Monte-Carlo and statistically defined uncertainties: TBD

• Estimate from i) rate factor uncertainties <10 at T=1 GK, ii) sensitivity study CNO factor uncertainty ⇒ ≈4

Page 43: Primordial Nucleosynthesis  Standard Big-Bang Nucleosynthesis of 4 He, D, 3 He, 7 Li compared with observations  The SBBN “lithium problem”: nuclear