principles of semiconductor devices-l21

25
www.nanohub.org NCN  Lecture 21: pn Diode IV Characteristics Muhammad Ashraful  Alam . Alam ECE606 S09 1

Upload: liakman

Post on 09-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 1/25

www.nanohub.org

NCN

Lecture 21: p‐n Diode I‐V CharacteristicsMuhammad Ashraful Alam

.

Alam ECE‐606 S09 1

Page 2: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 2/25

Outline

1) Derivation of

the

forward

bias

formula

2) Solution in the nonlinear regime

3) I‐V in the ambipolar regime

4 Conclusion

.

,

Alam ECE‐606 S09 2

Page 3: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 3/25

Topic Map

E uilibrium DC Small Lar e Circuits

signal SignalDiode

Schottky

BJT/HBT

MOSFET

Alam ECE‐606 S09 3

Page 4: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 4/25

Continuity Equations for p‐n junction Diode

+ −• = − − D A

1n∂ N N N t q

= −∂

J μ = + ∇qn E qD n

1P P P

pr g

∂ = ∇ • − +J

Will focus on this part today …

t q

P P Pqp E qD pμ = − ∇J

Alam ECE‐606 S09 4

Page 5: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 5/25

Applying a Bias: Poisson Equation

qV bi

E F -E V

E C -E F

q(V bi - V )

C - n

F p -E V

-q V

Alam ECE‐606 S09 5

Page 6: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 6/25

Depletion Widths

GND-V DN AN

xn xp

02 ( )s Abi n k N V V x ε = −

22 AD n pqNqN x x − =

D A pn D A D

0 02 2s sk k ε ε ( )0 ( )s D bi

A A D p V q N N N V = −+

Alam ECE‐606 S09 6

Page 7: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 7/25

Flat Quasi ‐Fermi Level up to Junction

E C

E V

E C

Jn

E V

Alam ECE‐606 S09 7

p

Page 8: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 8/25

Various Regions of I‐V Characteristics

ln I

n ~ A Bk T

. us on m e

2. Ambipolar transport 2

3. High injection

- 6,7

5. Breakdown A

1

6. Trap-assisted R-G

7. Esaki Tunneling

4

5

8Alam ECE‐606 S09

Page 9: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 9/25

Recall: One Sided Minority DiffusionSteady

stateAcceptor doped

Can calculate current q V bi

‐V anywhere, let us solvethe problem where it is the easiest …

1∂ d n J

F p‐E V

= − +∂ n nr g

t q dx

μ = +n nn

dnqn qD Jdx

E 2

20 =n

d nDdx

Alam ECE‐606 S09 9

Page 10: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 10/25

Boundary Conditions0 0 0

+ + +

Δ = −n n n

( )( 0 ) β −+= = n i F E i n x n e ( )

2

1 β

=

= −

G G

AqV i ne

N( )

( 0 )β − −+

= =p i F E

i p x n e

( )2 2 β β −= = pn AqV i i

F F n e n en p q(V bi -V A )

F p F n -V A(0 )+ =

A p N

2

(0 ) β + = Aqi

A

V n eN

n AN

Alam ECE‐606 S09 10

Page 11: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 11/25

Right Boundary Condition

2

( ) inn x W = ≈

( ) 0 A

pn x W Δ = =

C

V

E V

Alam ECE‐606 S09 11

Page 12: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 12/25

Example: One Sided Minority Diffusion

2

20

N D

dx=

( , )n x t C DxΔ = +

2

, ( ) 0 p p p x W n x W C DW = Δ = = ⇒ = −

0 ', ( 0) 1 AqV i

A

x n x e C N

β = Δ = = − =2 ⎛ ⎞

12

( , ) 1 1 Aqi

A p

n x t e N W

Δ = − −⎜ ⎟

⎝ ⎠

Page 13: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 13/25

Electron & Hole Fluxes

2 AqV in x⎛ ⎞

− − β n D n= + ∇E

A p N W

⎝ ⎠

( )

2

0 1 AqV n i

n n x A

qD ndn

J qD edx W N β

=

= = − −

Δn

F p

n

Δp

2

Alam ECE‐606 S09 13

( )0'

1 A p qV i p p

x n D

n p J qD e

dx W N

β

=

= − = − −

Page 14: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 14/25

Total Current

( )22

1 An i

p

qV T

p i

D A n

D nW N

D nW N

J q e β ⎡ ⎤

= − + −⎢ ⎥⎢ ⎥⎣ ⎦ln ln . J V k T const ≈ +

Forward Bias

Reverse BiasΔn .T J const ≈

ln(I)(2)

(3)F p

n

VA(4)Δp

Alam ECE‐606 S09 14

(5)

Page 15: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 15/25

Outline

1 Derivation of the forward bias formula

2) Solution in the nonlinear regime

4) Conclusion

Alam ECE‐606 S09 15

Page 16: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 16/25

Nonlinear Regime (3) …

( )2 2

n p AqV pn i i F F D D n n β −Δ Δ−⎡ ⎤= − − ( ) A pn J q V a b J β − −= −

p A n DW N W N ⎢ ⎥

⎣ ⎦

0

2

1

6,7

16

A

Page 17: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 17/25

Flat Quasi ‐Fermi Level up to Junction ?

N N N

dnqn qDμ = +J E n n n

n n n

dF J W J F nμ = ⇒ Δ =

dF dn− −

n D

n n iii N i N n n e q q

dx dxn e= = −

⎢ ⎥⎣ ⎦⎣ ⎦

F F n

n N N

dF dnqD qD

dx dxn β ⎡ ⎤= −⎢ ⎥⎣ ⎦

E

n N B N

n

dF D T q ndx q

μ μ

= − =⎢ ⎥⎣ ⎦

∵E

Alam ECE‐606 S09 17

Wn

Page 18: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 18/25

Forward Bias: Nonlinear Regime …

2( )(0 ) n pi

junctio

F F

n

nn e β −+ = ( ) ( )( )

2 2

(0 ) 1 p A An pnqV qV i F F F i F n ne n e

N N β β Δ Δ− − − −Δ + Δ= ⇒ Δ = −

( )2 2

n p AqV pn i i F F D D n n β −Δ Δ−⎡ ⎤− −

T p A n DW N W N ⎢ ⎥⎣ ⎦

Δn

n n

n Dn

J W N

F μ

Δ =ΔF

ΔFnV

p p n

n D

F N

J W μ

Δ =

Alam ECE‐606 S09 18

pprox: t us on om nate transport

Page 19: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 19/25

Outline

1) Derivation of the forward bias formula

2) Solution in the nonlinear regime

3) I‐V in the ambipolar regime

4) Tunneling and I‐V characteristics

5 Conclusion

Alam ECE‐606 S09 19

Page 20: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 20/25

Region (2): Ambipolar Transport

D − −⎡ ⎤

ln(2

) A n pnT i T

p n B

J q n e J W W k T

≈ − + ≈⎢ ⎥⎣ ⎦

2

1

6,7

20

A

Page 21: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 21/25

Nonlinear Regime: Ambipolar Transport

( )2

2

n pF F i

q V F F

np n e

n

β

β

−Δ −Δ

=

A i

A

n

N

pn e+ =+ −

( ) / 2

1 A n p

A n p

i

q V F F

n e pn

β

− −

−Δ −Δ≈

Δ = −Δ≈

( ) / 2 A n pqV F F n in n

qD nn J qD e

W W β −Δ −ΔΔ= − =

( ) / 2 A n pqV F F p i p p

n n

qD nn J qD e

W W β −Δ −ΔΔ= − =

Alam ECE‐606 S09 21

Note: junction never disappears!

Page 22: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 22/25

Outline

1) Derivation of the forward bias formula

2) Solution in the nonlinear regime

3) I‐V in the ambipolar regime4) Tunneling and I‐V characteristics

5) Conclusion

Alam ECE‐606 S09 22

Page 23: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 23/25

Forward Bias Nonlinearity (7): Esaki Diode

3ln(I)

F n F p

1

F n

VA

6,7

emptyp

Heavy doping

F n F

X1No states!

Alam ECE‐606 S09

VA

Page 24: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 24/25

Reverse Bias (5): Zener Tunneling

+VA

F n

p

4empty

5

4

= υ I qpT empty

2 2

4cosh sinhα⎛ ⎞α + − α⎜ ⎟α⎝ ⎠

k d d k

Alam ECE‐606 S09 24

.

Page 25: Principles of Semiconductor Devices-L21

8/8/2019 Principles of Semiconductor Devices-L21

http://slidepdf.com/reader/full/principles-of-semiconductor-devices-l21 25/25

Conclusion

1) I‐V characteristics of a p‐n junction is defined by many

interesting phenomena including diffusion, ambipolar

2) The separate regions are identified by specific features.

w y , w

other mechanism is dominated for a given technology.

3) In the next class, we will discuss a few more non ‐ideal effects.

Alam ECE‐606 S09 25