private information retrieval in distributed storage systems using … · 2018-05-07 · private...

76
Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code Siddhartha Kumar 1 Eirik Rosnes 1 Alexandre Graell i Amat 2 1 Simula@UiB, Norway 2 Chalmers University of Technology, Sweden Institut Mittag-Leffler 16th May, 2017

Upload: others

Post on 14-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Private Information Retrieval in Distributed Storage

Systems Using an Arbitrary Linear Code

Siddhartha Kumar1 Eirik Rosnes1 Alexandre Graell i Amat2

1Simula@UiB, Norway

2Chalmers University of Technology, Sweden

Institut Mittag-Leffler16th May, 2017

Page 2: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 3: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 4: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 5: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 6: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

Q(1) Q(k) Q(k+1) Q(n)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 7: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

r1 rk rk+1 rn

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Page 8: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 9: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

Chor et al. (1995)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 10: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

Ishai et al. (2004)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 11: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

Shah et al. (2014)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 12: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

MDS

code

dPIR

Tajeddine and El Rouayheb (2016)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 13: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

MDS

code

dPIR

Opt

imal

MDS

PIR

Banawan and Ulukus (2016)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Page 14: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 15: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 16: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 17: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 18: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 19: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 20: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Page 21: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 22: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 23: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 24: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 25: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 26: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 27: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · · · · ·

......

......

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 28: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · · · · ·

......

......

k systematic nodes n − k parity nodes

fch

unks

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Page 29: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Page 30: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j) Q(j) =

( )

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Page 31: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)rj =

( )

= Q(j)

Content in the node

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Page 32: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)rj =

( )

= Q(j)

Content in the node

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Page 33: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Page 34: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Page 35: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Page 36: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Page 37: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Page 38: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 39: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 40: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

Non PIR scheme for retrieving X(1):

Queries:

q1 =(

1 0)

, q2 =(

1 0)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 41: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

Non PIR scheme for retrieving X(1):

Queries:

q1 =(

1 0)

, q2 =(

1 0)

Nodes’ responses:

r1 =(

1 0)

(

x1

y1

)

= x1, r2 =(

1 0)

(

x2

y2

)

= x2

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 42: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 43: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 44: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 45: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

Nodes’ responses:

r1 =(

u1 + 1 u2

)

(

x1

y1

)

= u1x1 + u2y1 + x1 = I1 + x1

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 46: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

Nodes’ responses:

r1 =(

u1 + 1 u2

)

(

x1

y1

)

= u1x1 + u2y1 + x1 = I1 + x1

r2 =(

u1 u2

)

(

x2

y2

)

= I2, r3 =(

u1 u2

)

(

x1 + x2

y1 + y2

)

= I1 + I2

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Page 47: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Page 48: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Page 49: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Page 50: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Page 51: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Page 52: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Page 53: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Page 54: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Page 55: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

Privacy : H(m|Q(s)) = H(m)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Page 56: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 57: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 58: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r1 = Q(1) ( x11

x21) =

(

u11+1 u12

u21 u22+1u31 u32

)

( x11

x21) =

(

u11x11+u12x21+x11

u21x11+u22x21+x21

u31x11+u32x21

)

=(

I1+x11

I4+x21

I7

)

r2 = Q(2) ( x12

x22) =

(

u11 u12

u21+1 u22

u31 u32+1

)

( x12

x22) =

(

u11x12+u12x22

u21x12+u22x22+x12

u31x12+u32x22+x22

)

=(

I2

I5+x12

I8+x22

)

r3 = Q(3) ( x13

x23) =

(

u11 u12+1u21 u22

u31+1 u32

)

( x13

x23) =

(

u11x13+u12x23+x23

u21x13+u22x23

u31x13+u32x23+x13

)

=(

I3+x23

I6

I9+x13

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 59: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 60: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

• Yields cPoP θ = 3·52·3

= 2.5.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 61: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

• Yields cPoP θ = 3·52·3

= 2.5.

Recovery : H(X(m)|r1, r2, . . . , rn) = 0

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Page 62: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 63: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 64: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 65: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 66: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 67: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 68: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Page 69: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Page 70: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Page 71: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Page 72: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Page 73: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Page 74: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13

Page 75: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13

Page 76: Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private Information Retrieval in Distributed Storage Systems Using an Arbitrary Linear Code

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13