probabilistic graphical models - vgiscience · probabilistic graphical models. michael yang....

52
Probabilistic Graphical Models Michael Yang September 12, 2017

Upload: others

Post on 20-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Probabilistic Graphical Models

    Michael Yang

    September 12, 2017

  • • Since 2016, Assistant Professor, University of Twente

    • 2008-2011, Ph.D, University of Bonn

    • 2016-2020, Co-Chair ISPRS WG Dynamic Scene Analysis

    • Main Research Areas: Photogrammetry, Computer Vision

    Brief CV

    2

  • • Introduction

    • Random Fields

    Man-made Object Segmentation Semantic Video Segmentation

    Outline

    3

  • Applications

    4

    • Medical diagnosis

    • Social network models

    • Speech recognition

    • Robot localization

    •Remote sensing

    • Natural language processing

    • Computer vision– Image segmentation– Tracking– Scene understanding– Image classification– 3D reconstruction

    •........

    6

  • Applications

    Segmentation

    5

    7Yang, Rosenhahn, 2016

  • Applications

    Classification

    6

    Zhong & Wang 2011

    • Reading letters/numbers

    • Land-cover classificationin remote sensing

    8

  • Applications

    Interpretation

    7

    • Building and road extraction

    • Facade interpretation

    Chai et al., 2013

    Yang & Förstner, 2011

    9

  • Probabilistic Graphical Models

    are a marriage between

    probability theory & graph theory

    8

  • Bayesian networks

    Graphical Models

    Conditional/Markov random fields

    9

  • • Graph

    Graphical Models

    set of the nodes

    set of the undirected edges

    set of the directed edges

    10

  • • Graphical models

    A stochastical model represented by a graph

    Graphical Models

    • Nodes represent random variables

    • Edges represent mutual relationships

    Undirected edges model joint probabilities

    Directed edges model conditional dependencies

    11

  • • Graphical models

    Graphical Models

    • Visualization of dependencies

    • Conditional probabilities : directed edges(Bayesian Networks)

    • Joint probabilities: undirected edges(Markov Random Field)

    12

  • • Introduction

    • Random Fields

    Man-made Object Segmentation Semantic Video Segmentation

    Outline

    13

  • • Definition Markov random field : graphical model over an undirected graph+ positivity property + Markov property

    Markov property:

    MRFs

    Set of random variables linked to nodes

    Set of neighbored random variable

    14

  • • Pairwise MRFspopular

    with energy function

    MRFs

    15

  • • Structure of MRFsTypical graph structures

    MRFs

    rectangular grid irregular graph pyramid structure

    Figure courtesy of P. Perez

    16

  • • Image Denoising using Pairwise MRFs

    MRFs

    [From Bishop PRML] noisy image result

    17

  • • Definition: conditioanl random fields

    A CRF is an MRF globally conditioned on observed data

    CRFs

    18

  • • Definition: conditioanl random fields

    A CRF is an MRF globally conditioned on observed data

    CRFs

    Conditional distribution

    Joint distributionMRF

    CRF

    19

  • • Introduction

    • Random Fields

    Man-made Object Segmentation Semantic Video Segmentation

    Outline

    20

  • CRFs

    Yang & Förstner, 2011

    Region adjacency graphBuilding facade image

    21

  • CRFs

    CRF has a Gibbs distribution

    Gibbs energy function (all dependent on data)

    22

  • Yang & Förstner, 2011

    Region adjacency graph

    Region hierarchy graphMulti-layer CRFBlue edges

    Red edges

    (a) Test image (b) Multi-scale segmentation

    (c) Graphical model

    Hierarchical CRFs

    23

  • Unary potential: classifier output (RF)Pairwise potential: (Data-dependent) PottsHierarchical potential: (Data-dependent) Potts

    Energy function

    Hierarchical CRFs

    Michael Yang 24

  • 25

    Scene Interpretation

    Workflow for image interpretation of man-made scenes

    Framework

    25

  • ETRIMS Database

    Michael Yang 26

  • One example image Ground truth labeling

    Example Image

    Michael Yang 27

  • Region classifier (RDF) Pairwise CRF

    Classification Results

    Michael Yang 28

  • HCRF Results

    Image RDF CRF HCRF GT

    Michael Yang 29

  • Image GT

    RDF CRF HCRF

    HCRF Results

    Michael Yang 30

  • Pixelwise accuracy comparison

    HCRF Results

    Michael Yang 31

  • 4-connected CRF 8-connected CRF Fully-connected CRF

    Fully Connected CRF

    Michael Yang 32

  • Fully Connected CRF

    Michael Yang 33

    Unary

    Final

    Image

    Li, Yang, 2016

  • Fully Connected CRF

    Michael Yang 34

    Image GT Texonboost CRF FC-CRF

  • • Introduction

    • Random Fields

    Man-made Object Segmentation Semantic Video Segmentation

    Outline

    35

  • Semantic Video Segmentation

    Michael Yang

    : :

  • Deep Learning for Semantic Video Segmentation

    Michael Yang

    Badrinarayanan, Handa, Cipolla, arXiv 2015SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic

    Pixel-Wise Labelling

    Semantic Video Segmentation

  • Deep Learning

  • Michael Yang

    • Training CNN requires large amount of ground-truth data

    • Dense labeling requires extensive human effort

    • Labeling one image from CityScapes ~ 1.5 hours

    Semantic Video Segmentation

  • Semantic Video Segmentation

    Michael Yang

    • Use video to propagate labels. Pseudo Ground Truth (PGT)

    Semantic Seg. Net (FCN)Train withPGT

    Mustikovela, Yang, Rother, ECCV Workshop 2016Can Ground Truth Label Propagation from Video help Semantic Segmentation?

  • Semantic Video Segmentation

    Michael Yang

    • Use video to propagate labels. Pseudo Ground Truth (PGT)

    Semantic Seg. Net (FCN)Train withPGT

    • Weakly-Supervised Learning CNN+CRF

    Basic idea: given a few videos with limited labeled frames, we first estimate pseudo noisy ground truth for each frame in training set. Then we use all the labeled frames to train a CNN.

    Mustikovela, Yang, Rother, ECCV Workshop 2016Can Ground Truth Label Propagation from Video help Semantic Segmentation?

  • Semantic Video Segmentation

    Generating Pseudo Ground Truth DataCRF for Label Propagation

    Michael Yang

  • Semantic Video Segmentation

    Quality of Pseudo Ground Truth Data

    Michael Yang

  • Semantic Video Segmentation

    CNN Training

    Michael Yang

  • Semantic Video Segmentation

    Michael Yang

    Different is good

    More different but quality goes down

    • Image 4 is more different to GT than Image 1• Quality of labeling of Image 5 might go down

    CamVid Results

  • Semantic Video Segmentation

    Michael Yang

    • Model trained with GT + 4th images performs the best• Performs better in 10/11 classes

    CamVid Results

  • Semantic Video Segmentation

    Results

    Video frame Our CNN result ground-truth

  • Semantic Video Segmentation

    Results

    Video frame Our CNN result ground-truth

  • • Introduction

    • Random Fields

    Man-made Object Segmentation Semantic Video Segmentation

    Outline

    49

  • ITCUniversity of Twente, NL

    Thank you!

  • Image Labeling Problems

    • Labelings highly structured• Labels highly correlated with very complex dependencies

    • Neighbouring pixels tend to take the same label

    • Low number of connected components

    • Classes present may be seen in one image

    • Geometric / Location consistency

    • Planarity in depth estimation

    • … many others (task dependent)

    51

  • Object-class Segmentation

    Unary term Pairwise termUnary term

    Pairwise term

    where

    Discriminatively trained classifier (RF, Boosting, etc.)

    52

    Probabilistic Graphical ModelsBrief CVOutlineApplicationsApplicationsApplicationsApplicationsSlide Number 8Graphical ModelsGraphical ModelsGraphical ModelsGraphical ModelsOutlineMRFsMRFsMRFsMRFsCRFsCRFsOutlineCRFsCRFsSlide Number 23Slide Number 24Scene InterpretationETRIMS DatabaseExample ImageClassification ResultsHCRF ResultsHCRF ResultsHCRF ResultsFully Connected CRFFully Connected CRFFully Connected CRFOutlineSemantic Video SegmentationSlide Number 37Slide Number 38Slide Number 39Semantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationSemantic Video SegmentationOutlineThank you!Image Labeling Problems�Object-class Segmentation�