probing light new physics with isotope shift spectroscopy

39
Probing light new physics with Isotope shift spectroscopy Roee Ozeri Weizmann Institute of Science Rehovot, Israel GGI 2018 + Delaunay, RO, Perez and Soreq Phys. Rev. D 96, 093001 (2017) Berengut J. C.; Budker D.; Delaunay C.; Flambaum V. V.; Frugiuele C.; Fuchs E.; Grojean C.; Harnik R.; RO; Perez G.; Soreq Phys. Rev. Lett. 120, 091801 (2018)

Upload: others

Post on 23-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probing light new physics with Isotope shift spectroscopy

Probing light new physics with Isotope shift spectroscopy

Roee Ozeri Weizmann Institute of Science

Rehovot, Israel

GGI 2018

+

Delaunay, RO, Perez and Soreq Phys. Rev. D 96, 093001 (2017)

Berengut J. C.; Budker D.; Delaunay C.; Flambaum V. V.; Frugiuele C.; Fuchs E.; Grojean C.; Harnik R.; RO; Perez G.; Soreq Phys. Rev. Lett. 120, 091801 (2018)

Page 2: Probing light new physics with Isotope shift spectroscopy

-4 -2 0 2 40

0.2

0.4

0.6

0.8

1

Drive frequency

Ampl

itude

-4 -2 0 2 40

0.2

0.4

0.6

0.8

1

Drive frequency

Ampl

itude

-4 -2 0 2 40

0.2

0.4

0.6

0.8

1

Drive frequency

Ampl

itude

Steady-state response:

-100 -50 0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

Detuning [Hz]

Exci

ted

stat

e po

pula

tion

[%]

Rabi Spectroscopy:

time

drive

time

Ramsey Spectroscopy:

Atomic Spectroscopy: the Naïve picture

Page 3: Probing light new physics with Isotope shift spectroscopy

=|­ñ

|¯ñ

Atomic Spectroscopy

Page 4: Probing light new physics with Isotope shift spectroscopy

Z

Y

X

The Bloch sphere

|­ñ

|¯ñ

|­ñ

|¯ñ

Quantum two-level system

Page 5: Probing light new physics with Isotope shift spectroscopy

Z

Y

X

The Bloch sphere

|­ñ

|¯ñ

q = p/2q = p/2j = 0

1st Ramsey pulse 2nd Ramsey pulse

T

j = 0→2p

Ramsey Spectroscopy

Page 6: Probing light new physics with Isotope shift spectroscopy

+

+ =

=

Thomson and Rutherford(Cambridge, 1897)

Bohr atom model(Copenhagen, 1913)

Ångstrom and Rydberg(Upsala, Lund 1888)

Stern and Gerlach(Frankfurt, 1922)

Zeeman(Leiden, 1896)

Uhlenbeck and Goudsmit(Leiden, 1925)

Hand in hand with beam accelerators

Page 7: Probing light new physics with Isotope shift spectroscopy

High Energy High Precision

Aluminum-ion optical atomic clockNIST, Boulder CO

Separate ways

Large Hadron Collider

13 TeVPrecision ~ 10-2

Few eVPrecision ~ 10-18

Page 8: Probing light new physics with Isotope shift spectroscopy

The most accurate measurement of anything, ever.

Few 10-3 Hz

Page 9: Probing light new physics with Isotope shift spectroscopy

Gravitational red-shift@ 33 cm

Chou, Hume, Rosenband and Wineland, Science, 329, 1630, (2010)

Page 10: Probing light new physics with Isotope shift spectroscopy

Rosenband et. al., Science, 319, 1808, (2008)

Contrast with quasar absorption spectra:

• Observed −0.543 ± 0.116×10+, during the last 12 billion years

• ⁄∝̇ ∝ = −6.4 ± 1.35×10+12 / year

Time variation of fundamental constants

Page 11: Probing light new physics with Isotope shift spectroscopy

• Search for physics Beyond the Standard Model highly motivated:

Ø Flavor Mass Hierarchy problem

Ø Strong CP problem

Ø Neutrino oscillations

Ø Matter vs. anti-matter asymmetry

Ø Dark Matter

• Many theoretical solutions result in (pseudo) scalar or vector fields(axions/familons/ relaxions/ dark photons..)

• Multitude of experimental searches

Search for New Scalar or Vector Fields

Graham et. al. Ann. Rev. Nuc. Part. Sci. 65, 485 (2015)

Safronova, Budker, et. al. Reviews of Modern Physics, 90, 025008 (2018)

Page 12: Probing light new physics with Isotope shift spectroscopy

A new force between the electron and nucleus will modify the electronic spectrum in atoms

NP detection through spectroscopy

Page 13: Probing light new physics with Isotope shift spectroscopy

5 2S1/2

4 2D5/2 g = 0.4 Hz

674nm; accuracy 0.01 Hz

440 THz

• yeyn~10-6 ↔ 100 Hz• Can’t differentiate this contribution from QED background

(calculate transition freq. with 10-13 accuracy)

Now with numbers…

NP detection through spectroscopy

Page 14: Probing light new physics with Isotope shift spectroscopy

• Parity symmetry: APV experiments

• Charge symmetry: Anti-hydrogen spectroscopy

• CP symmetry: electron EDM

• Lorenz symmetry: LLI experiments

• Time and space translation symmetry: Time variation of fundamental constants

Symmetry breaking in spectroscopy

Will not work with scalar, vector forces....

or anything else that respects all the symmetries QED respects

Page 15: Probing light new physics with Isotope shift spectroscopy

5 2S1/2

4 2D5/2 g = 0.4 Hz

674nm; accuracy 0.01 Hz

440 THz

• yeyn~10-6 ↔ 100 Hz

Isotope Shift Spectroscopy

New physics contribution to IS: 2 Hz

(calculate IS with 10-8 accuracy)

Lybarger Jr., Berengut and Chiaverini Phys. Rev. A 83, 052509 (2011)

Page 16: Probing light new physics with Isotope shift spectroscopy

Mass shift• Normal Mass shift(NMS): Change to electron reduced

mass• Specific Mass shift (SMS): Change to quasi-particle

mass (many electrons)

Field shiftDue to the breaking of point-

charge approximation for nucleus

• Factorization: separation of electronic and nuclear contributions

Isotope Shift SpectroscopyA closer look

W. H. King “Isotope Shifts in Atomic Spectra” Springer (1984)

Page 17: Probing light new physics with Isotope shift spectroscopy

• Factorization: separation of electronic and nuclear contributions

Isotope Shift SpectroscopyA closer look

W. H. King “Isotope Shifts in Atomic Spectra” Springer (1984)

Page 18: Probing light new physics with Isotope shift spectroscopy

King’s linear relation between normalized IS:

King ComparisonTwo transitions

W. H. King “Isotope Shifts in Atomic Spectra” Springer (1984)

Page 19: Probing light new physics with Isotope shift spectroscopy

Dy King plot. Budker et al 1994

King Plot

Page 20: Probing light new physics with Isotope shift spectroscopy

Relative accuracy ~ 10-3 – 10-4

King Linearity holds

Nonlinear anomalies; e.g. Samarium; due to level degeneracies

Page 21: Probing light new physics with Isotope shift spectroscopy

New Physics and King linearity

Electronic NuclearCoupling

New Physics is likely to break King linearity

Page 22: Probing light new physics with Isotope shift spectroscopy

Bounds on new physics

Estimate for new physics coupling:

• measured

• expectation value (atomic structure calculations)

• (theory)

Minimal theory input:

Page 23: Probing light new physics with Isotope shift spectroscopy

1. Two narrow optical transitions (optical clocks) with the same nucleus

2. Transitions between as different states as possible

3. At least four stable (even) isotopes without nuclear spin for three independent IS comparisons

What do we need?

Page 24: Probing light new physics with Isotope shift spectroscopy

Flambaum, Geddes, Viatkina Phys. Rev. A 97, 032510 (2018)

Are King plots really linear?• Higher order terms• Nuclear polarizability• Many-body effects

• King linearity will provide solid bounds (baring cancelation)

• Observation of nonlinearity will require further investigations

Page 25: Probing light new physics with Isotope shift spectroscopy

Current and projected bounds

Heavy mass limit:Massless limit:

Renormalization of Coulomb interaction

Inseparable from other nuclear effects: loss of sensitivity

Intermediate regime

Page 26: Probing light new physics with Isotope shift spectroscopy

Origlia et. al. arXiv:1803.03157 (2018)v

Recent accurate IS measurements

Comparison between two lattice clocks

Uncertainty:

Takano, Mizushima and Katori arXiv:1706.02905 (2017)

Page 27: Probing light new physics with Isotope shift spectroscopy

Optical Transition674 nm ~400 THz

~ 570 MHz

88Sr+ 86Sr+

5 2S1/2

4 2D5/2

⟩|S

⟩|D

The optical Quadruple transition in Sr+

IS measurement in a Decoherence-Free Subspace

Measuring the Isotope shift in decoherence free subspace

%(') = ⟩|*88,86 + /012345678|,88*86

Page 28: Probing light new physics with Isotope shift spectroscopy

!(#) = ⟩|(88*86 + -./0123456|*88(86

IS measurement in a Decoherence-Free Subspace

⟩|(88*86

⟩|*88(86

Δ89*

!/:/; = ⟩|(88*86 + ⟩|*88(86

• Zeeman shifts• Quadrupole shifts• BBR• 2nd order Doppler

Canceled up to gradients

Page 29: Probing light new physics with Isotope shift spectroscopy

!"#$$

!"%$&

⁄( 2BSB

(RSB

⁄( 2

!"%-#. + !/0122,245"#-%.!"07 !"07⁄( 2

Initializing Entangling Interrogating Detecting

RF (Local Oscillator)

89:;<= = 8?? + 8AA - (8A? + 8?A)

IS measurement in a Decoherence-Free SubspacePreliminaryNitzan Akerman

Tom Manovitz

Page 30: Probing light new physics with Isotope shift spectroscopy

IS measurement in a Decoherence-Free Subspace

• IS clock

• MW clock (~ 570.281 MHz) with optical clock systematics (e.g. 2nd – order Doppler)

• Statistical uncertainty < 10 mHz

Preliminary!(#) = ⟩|(88*86 + -./0123456|*88(86

Page 31: Probing light new physics with Isotope shift spectroscopy

Weizmann Institute Trapped-ion group

Available postdoc positions

Roee OzeriNitzan AkermanRavid ShanivLee PelegYonatan PiasetzkyMeirav Pinkas

Tomas SikorskyRuti Ben-ShlomiTom ManovitzYotam ShapiraMeir Alon

Collaborators:Gilad PerezCedric DeleunayYotam SoreqDima BudkerChristoph Grojean

Julian BerengutVictor FlambaumClaudia FrugiueleElina FuchsRoni Harnik

Page 32: Probing light new physics with Isotope shift spectroscopy

Geometric Interpretation

Page 33: Probing light new physics with Isotope shift spectroscopy

Geometric Interpretation

King linearity = co-planarity of

Page 34: Probing light new physics with Isotope shift spectroscopy

Geometric Interpretation

Nonlinearity:

Page 35: Probing light new physics with Isotope shift spectroscopy

The twins paradox at running speed

Chou, Hume, Rosenband and Wineland, Science, 329, 1630, (2010)

Page 36: Probing light new physics with Isotope shift spectroscopy

Precision mass measurements: 10-10

Page 37: Probing light new physics with Isotope shift spectroscopy

Relative accuracy ~ 10-3 – 10-4

King Linearity holds

Nonlinear anomalies; e.g. Samarium; due to level degeneracies

Page 38: Probing light new physics with Isotope shift spectroscopy

Yb+ ion-clock

Page 39: Probing light new physics with Isotope shift spectroscopy

• Parity violation: nuclear electroweak neutral charge

• Search for electron electric-dipole moment: SUSY breaker

• Search for time variations of fundamental constants

• Measurement of the electron anomalous g-factor: validity of QED

• Tests of CPT: Spectroscopy of anti-matter

• Rydberg constant and Proton charge radius: Spectroscopy in Hydrogen or MuonicHydrogen

• Dark matter searches

• Axion searches

• Search for violation of Lorenz invariance

Fundamental and New Physics Searches